Skip to main content

Dinitrogen-Fixing Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

Dinitrogen fixation is a key process in the N cycle and only carried out by few prokaryotes. Research on dinitrogen fixation includes basic and practical applications: from nif genes to crops, with molecular, genetic, ecological, taxonomic, and agricultural approaches used. Nitrogen fixing rhizobia, which have been used in agriculture for over a 100 years, are excellent research models still leading the knowledge of eukaryote-bacteria symbioses. Other less known symbioses of dinitrogen fixing bacteria are reviewed as well as free-living diazotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak W, Normand P, Heulin T (1999) Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol 49:961ā€“967

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183ā€“187

    ArticleĀ  Google ScholarĀ 

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. University of Wisconsin Press, Wisconsin, p 812

    Google ScholarĀ 

  • Andrade G, Esteban E, Velasco L, Lorite MJ, Bedmar EJ (1997) Isolation and identification of N2-fixing microorganism from the rhizosphere of Capparis spinosa (L.). Plant Soil 197:19ā€“23

    ArticleĀ  CASĀ  Google ScholarĀ 

  • App AA, Santiago T, Daez C, Menguito C, Ventura V, Tirol A, Po J et al (1984) Estimation of the nitrogen balance for irrigated rice and the contribution of phototrophic nitrogen fixation. Field Crop Res 9:17ā€“27

    ArticleĀ  Google ScholarĀ 

  • App AA, Watanabe I, Ventura TS, Bravo M, Jurey CD (1986) The effect of cultivated and wild rice varieties on the nitrogen balance of flooded soil. Soil Sci 141:448ā€“452

    ArticleĀ  Google ScholarĀ 

  • Araujo da Silva KR, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213ā€“231

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ardley JK, Parker MA, De Meyer SE, Trengove RD, Oā€™Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2011) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are Alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol [Epub ahead of print]

    Google ScholarĀ 

  • Arnold W, Rump A, Klipp W, Priefer UB, PĆ¼hler A (1988) Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 203:715ā€“738

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Baker DD, Mullin BC (1992) Actinorhizal symbioses. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 259ā€“292

    Google ScholarĀ 

  • Balatti AP, Freire JRJ (eds) (1996) Legume inoculants, selection and characterization of strains, production, use and management. Editorial Kingraf, La Plata, Argentina

    Google ScholarĀ 

  • Baldani VLD, Dƶbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433ā€“439

    ArticleĀ  Google ScholarĀ 

  • Baldani I, Baldani VLD, Seldin L, Dƶbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86ā€“93

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Baldani JI, Reis VM, Baldani VLD, Dƶbereiner J (1999) Biological nitrogen fixation (BNF) in non-leguminous plants: the role of endophytic diazotrophs. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do ParanĆ”, ParanĆ”, Brazil, p 12

    Google ScholarĀ 

  • Bally R, Thomas-Bauzon D, Heulin T, Balandreau J, Richard C, De Ley J (1983) Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29:881ā€“887

    ArticleĀ  Google ScholarĀ 

  • Balota EL, Lopes ES, Hungria M, Dobereiner J (1997) InoculaĆ§Ć£o de bactĆ©rias diazotrĆ³ficas e fungos micorrĆ­zico-arbusculares na cultura da mandioca. Pesq Agropec Bras 32:627ā€“639

    Google ScholarĀ 

  • Barcellos FG, Menna P, Batista JSS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil. Appl Environ Microbiol 73:2635ā€“2643

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Barraquio WL, de Guzman MR, Barrion M, Watanabe I (1982) Population of aerobic heterotrophic nitrogen fixing bacteria associated with wetland and dryland rice. Appl Environ Microbiol 43:124ā€“128

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Barraquio WL, Ladha JK, Watanabe I (1983) Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can J Microbiol 29:867ā€“873

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15ā€“24

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bashan Y, Holguin G (1997) Azospirillumā€”plant relationships: environmental and physiological advances (1990ā€“1996). Can J Microbiol 43:103ā€“121

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bauer CC, Scappino L, Haselkorn R (1993) Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci USA 90:8812ā€“8816

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14:2637ā€“2643

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bergersen FJ (1974) Formation and function of bacteroids. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 473ā€“498

    Google ScholarĀ 

  • Bergersen FJ (ed) (1980) Methods for evaluating biological nitrogen fixation. Wiley, Chichester, p 701

    Google ScholarĀ 

  • Bergersen FJ, Hipsley EH (1970) The presence of N2-fixing bacteria in the intestines of man and animals. J Gen Microbiol 60:61ā€“65

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bergman B, Rai AN, Johansson C, SƶderbƤck E (1992) Cyanobacterial-plant symbioses. Symbiosis 14:61ā€“81

    Google ScholarĀ 

  • Berry AM (1994) Recent developments in the actinorhizal symbioses. Plant Soil 161:135ā€“145

    ArticleĀ  Google ScholarĀ 

  • Boddey RM, Urquiaga S, Reis V, Dƶbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111ā€“117

    ArticleĀ  Google ScholarĀ 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, de Olivares FL, Baldani VLD, Dƶbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195ā€“209

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bordeleau LM, PrĆ©vost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115ā€“125

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bottomley PJ (1992) Ecology of Bradyrhizobium and Gluconoacetobacter diazotrophicus. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 293ā€“348

    Google ScholarĀ 

  • Brewin NJ, Legocki AB (1996) Biological nitrogen fixation for sustainable agriculture. Trends Microbiol 4:476ā€“477

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Brigle KE, Weiss MC, Newton WE, Dean DR (1987) Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. J Bacteriol 169:1547ā€“1553

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683ā€“697

    ArticleĀ  CASĀ  Google ScholarĀ 

  • BuendĆ­a-ClaverĆ­a AM, Rodriguez-Navarro DN, SantamarĆ­a-Linaza C, Ruiz-SaĆ­nz JE, Temprano-Vera F (1994) Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst Appl Microbiol 17:155ā€“160

    ArticleĀ  Google ScholarĀ 

  • BĆ¼rgmann H, Widmer F, von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240ā€“247

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Caballero-Mellado J, MartĆ­nez-Romero E (1994) Limited genetic diversity in the endophytic sugarcane bacterium Acetobacter diazotrophicus. Appl Environ Microbiol 60:1532ā€“1537

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Caballero-Mellado J, MartĆ­nez-Romero E (1999) Soil fertilization limits the genetic diversity of Gluconoacetobacter diazotrophicus obium in bean nodules. Symbiosis 26:111ā€“121

    Google ScholarĀ 

  • Caballero-Mellado J, Carcano-Montiel M, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243ā€“253

    Google ScholarĀ 

  • Caballero-Mellado J, Fuentes-RamĆ­rez LE, Reis VM, MartĆ­nez-Romero E (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008ā€“3013

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270:64ā€“72

    ArticleĀ  Google ScholarĀ 

  • Carrasco CD, Buettner JA, Golden JW (1995) Programed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92:791ā€“795

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) A supernodulating and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34ā€“40

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR (2010) Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 10:37

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial production and use. Plant Soil 230:21ā€“30

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cavalcante VA, Dƶbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23ā€“31

    ArticleĀ  Google ScholarĀ 

  • Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201ā€“208

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chelius M, Triplett E (2001) The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252ā€“263

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen T-H, Pen S-Y, Huang T-C (1993) Induction of nitrogen-fixing circadian rhythm Synechococcus RF-1 by light signals. Plant Sci 92:179ā€“182

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729ā€“1735

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Chen W-M, Moulin L, Bontemps C, Vandamme P, BĆ©na G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by Ī²-proteobacteria is widespread in nature. J Bacteriol 185:7266ā€“7272

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Christiansen-Weniger C, Groneman AF, van Veen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant Soil 139:167ā€“174

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cojho EH, Reis VM, Schenberg ACG, Dƶbereiner J (1993) Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture. FEMS Microbiol Lett 106:341ā€“346

    CASĀ  Google ScholarĀ 

  • Dā€™hooghe I, Michiels J, Vlassak K, Verreth C, Waelkens F, Vanderleyden J (1995) Structural and functional analysis of the fixLJ genes of R. leguminosarum biovar phaseoli CNPAF512. Mol Gen Genet 249:117ā€“126

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dardanelli MS, RodrĆ­guez-Navarro DN, MegĆ­as-Guijo M, Okon Y (2008) Influencia de la coinoculaciĆ³n Azospirillum-rizobios sobre el crecimiento y la fijaciĆ³n de nitrĆ³geno de leguminosas de interĆ©s agronĆ³mico. In: CassĆ”n FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. AsociaciĆ³n Argentina de Microbiologia, Buenos Aires, pp 141ā€“152

    Google ScholarĀ 

  • Date RA (2001) Advances in inoculant technology: a brief review. Aust J Exp Agric 41:321ā€“325

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Davis CS, McGillicuddy DJ (2006) Transatlantic abundance of the N2 fixing colonial Cyanobacterium Trichodesmium. Science 312:1517ā€“1520

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • De Groote MA, Pace NR, Fulton K, Falkinham JO III (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72:7602ā€“7606

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763ā€“834

    Google ScholarĀ 

  • Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422ā€“426

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917ā€“920

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • DĆ­az-Zorita M, Fernandez Canigia MV (2008) AnĆ”lisis de la producciĆ³n de cereales inoculados con Azospirillum brasilense en la RepĆŗblica Argentina. In: CassĆ”n FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. AsociaciĆ³n Argentina de Microbiologia, Buenos Aires, pp 152ā€“164

    Google ScholarĀ 

  • Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J (2002) Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52:2261ā€“2269

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dixon R (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in Ī³-proteobacteria. Arch Microbiol 169:371ā€“380

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dƶbereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugarcane. Plant Soil 15:211ā€“217

    ArticleĀ  Google ScholarĀ 

  • Dƶbereiner J (1974) Nitrogen-fixing bacteria in the rhizosphere. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 86ā€“120

    Google ScholarĀ 

  • Dƶbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CT (eds) Proceedings of the international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518ā€“538

    Google ScholarĀ 

  • Dƶbereiner J, Marriel I, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464ā€“1473

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Durbin KJ, Watanabe I (1980) Sulphate reducing bacteria and nitrogen fixation in flooded rice soil. Soil Biol Biochem 12:11ā€“14

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013ā€“3030

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Egener T, Hurek T, Reinhold-Hurek B (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact 11:71ā€“75

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Engelhard M, Hurek T, Reinhold-Hurek B (1999) Preferential colonization of wild rice species in comparison to modern races of Oryza sativa by Azoarcus spp., diazotrophic endophytes. In: de Wit P et al (eds) 9th international congress, book of abstracts. Molecular Plant-Microbe Interactions, Wageningen, p 198

    Google ScholarĀ 

  • Estrella MJ, MuƱoz S, Soto MJ, Ruiz O, SanjuĆ”n J (2008) Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 75:1088ā€“1098

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Evans HJ, Hanus FJ, Russell SA, Harker AR, Lambert GR, Dalton DA (1985) Biochemical characterization, evaluation, and genetics of H2 recycling in Gluconoacetobacter diazotrophicus obium. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, Amsterdam, pp 3ā€“11

    Google ScholarĀ 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:335ā€“361

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fani R, Casadei S, Lio P (1999) Origin and evolution of nif genes. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do ParanĆ”, ParanĆ”, p 48

    Google ScholarĀ 

  • Firth P, Thitipoca H, Suthipradit S, Wetselaar R, Beech DF (1973) Nitrogen balance studies in the central plain of Thailand. Soil Biol Biochem 5:41ā€“46

    ArticleĀ  Google ScholarĀ 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352ā€“386

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Fisher K, Hare ND, Newton WE (1998) Mapping the catalytic surface of A. vinelandii MoFe protein by site specific mutagenesis. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, pp 23ā€“26

    Google ScholarĀ 

  • Forchhammer K (2003) PII signal transduction in Cyanobacteria. Symbiosis 35:101ā€“115

    CASĀ  Google ScholarĀ 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison

    Google ScholarĀ 

  • Fuentes-RamĆ­rez LE, JimĆ©nez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154:145ā€“150

    ArticleĀ  Google ScholarĀ 

  • Fuentes-RamĆ­rez LE, Caballero-Mellado J, SepĆŗlveda J, MartĆ­nez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29:117ā€“128

    ArticleĀ  Google ScholarĀ 

  • Fuentes-RamĆ­rez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305ā€“1314

    PubMedĀ  Google ScholarĀ 

  • Fulweiler RW (2009) Fantastic fixers. Science 326:377ā€“378

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2007) Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180ā€“182

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668ā€“672

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Giller KE (2001) Nitrogen Fixation in Tropical Cropping Systems. CAB International Publishing, Wallingford, UK, p 448

    BookĀ  Google ScholarĀ 

  • Giller KE, Merckx R (2003) Exploring the boundaries of N2 fixation in cereals and grasses: an hypothetical and experimental framework. Symbiosis 35:3ā€“17

    CASĀ  Google ScholarĀ 

  • Giller KE, Wilson KJ (1991) Nitrogen fixation in tropical cropping systems. CAB International, Wallingford

    Google ScholarĀ 

  • Giller KE, Rowe E, de Ridder N, van Keulen H (2006) Resource use dynamics and interactions in the tropics: scaling up in space and time. Agric Syst 88:8ā€“27

    ArticleĀ  Google ScholarĀ 

  • Gillis M, Van TrĆ¢n V, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, FernĆ”ndez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274ā€“289

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Girard L, Brom S, Davalos A, Lopez O, Soberon M, Romero D (2000) Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol Plant Microbe Interact 13:1283ā€“1292

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Glazebrook J, Ichige A, Walker GC (1993) A R. meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485ā€“1497

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gollan U, Schneider K, MĆ¼ller A, SchĆ¼ddekopf K, Klipp W (1993) Detection of the in vivo incorporation of a metal cluster into a protein: the FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. Eur J Biochem 215:25ā€“35

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gough C, Webster G, Vasse J, Galera C, Batchelor C, Oā€™Callaghan K et al (1996) Specific flavonoids stimulate intercellular colonization of non-legumes by Azorhizobium caulinodans. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, pp 409ā€“415

    Google ScholarĀ 

  • Gough C, Vasse J, Galera C, Webster G, Cocking E, DĆ©nariĆ© J (1997) Interactions between bacterial diazotrophs and non-legume dicots: Arabidopsis thaliana as a model plant. Plant Soil 194:123ā€“130

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crops Res 4:93ā€“112

    ArticleĀ  Google ScholarĀ 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93ā€“106

    ArticleĀ  Google ScholarĀ 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater utilization. Plant Physiol 131:872ā€“877

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gremaud MG, Harper JE (1989) Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol 89:169ā€“173

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Guerinot ML, Fong W, Patriquin DG (1977) Nitrogen fixation (acetylene reduction) associated with sea urchins (Strongylocentrotus droebachiensis) feeding on seaweeds and eelgrass. J Fish Res Board Can 34:416ā€“420

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2ā€“3):117ā€“126

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Haahtela K, Helander I, Nurmiaho-Lassila E-L, Sundman V (1983) Morphological and physiological characteristics of N2-fixing (C2H2-reducing) root-associated Pseudomonas sp. Can J Microbiol 29:874ā€“880

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA (1986) Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25:7251ā€“7255

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Han B, Xiaoming Z, Liqing S, Hede G, Bin H, Hede G, Jijun K, Zhen Y, Tong C (2010) Nitrogen fixation of epiphytic plants enwrapping trees in Ailao Mountain cloud forests, Yunnan, China. Protoplasma 247(1):103ā€“110

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1ā€“17

    ArticleĀ  Google ScholarĀ 

  • Hardarson G, Danso SKA (1993) Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 152:19ā€“23

    ArticleĀ  Google ScholarĀ 

  • Hardy RWF, Havelka UD (1973) Symbiotic N2 fixation with multi-fold enhancement by CO2 enrichment of field-grown soybean. Plant Physiol 46:S35

    Google ScholarĀ 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185ā€“1207

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 166ā€“190

    Google ScholarĀ 

  • Haselkorn R, Jones K, Buikema WJ (1999) Heterocyst differentiation and nitrogen fixation in the cyanobacterium Anabaena. In: MartĆ­nez E, HernĆ”ndez G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum, New York, pp 185ā€“188

    ChapterĀ  Google ScholarĀ 

  • Hennecke H, Kaluza K, Thƶny B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Gluconoacetobacter diazotrophicus obium species and other nitrogen fixing bacteria. Arch Microbiol 142:342ā€“348

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411ā€“425

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Herridge DF, Peoples MB (1990) Ureide assay for measuring nitrogen fixation by nodulated soybean calibrated by 15N methods. Plant Physiol 93:495ā€“503

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hewson I, Moisander PH, Achilles KM, Carlson CA, Jenkins BD, Mondragon EA, Morrison AE, Zehr JP (2006) Characteristics of diazotrophs in surface to abyssopelagic waters of the Sargasso Sea. Aquat Microb Ecol 46:15ā€“30

    ArticleĀ  Google ScholarĀ 

  • Hicks WT, Harmon ME, Myrold DD (2003) Substrate controls on nitrogen fixation and respiration in woody debris from the Pacific Northwest, USA. For Ecol Manage 176:25ā€“35

    ArticleĀ  Google ScholarĀ 

  • Hƶlflich G, Wiehe W, Hecht-Bucholz C (1995) Gluconoacetobacter diazotrophicus osphere colonization of different crops with growth promoting Pseudomonas and Gluconoacetobacter diazotrophicus obium bacteria. Microbiol Res 150:139ā€“147

    ArticleĀ  Google ScholarĀ 

  • Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4:221ā€“227

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322:1108ā€“1109

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hoover TR, Imperial J, Ludden PW, Shah VK (1989) Homocitrate is a component of the iron-molybdenum cofactor of nitrogenase. Biochemistry 28:2768ā€“2771

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Howieson JG, Yates RJ, Foster KJ, Real D, Besier RB (2008) Prospects for the future use of legumes. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 7, Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 363ā€“393

    Google ScholarĀ 

  • Hungria M, Campo RJ (2004) Economical and environmental benefits of inoculation and biological nitrogen fixation with soybean: situation in South America. In: Proceedings of the seventh world soybean research conference, Embrapa Soja, Londrina ParanĆ”, pp 488ā€“498

    Google ScholarĀ 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151ā€“164

    ArticleĀ  Google ScholarĀ 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guttierrez-MaƱero F, MegĆ­as M (2000a) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515ā€“1528

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hungria M, Vargas MAT, Campo RJ, Chueire LMO, Andrade DS (2000b) The Brazilian experience with the soybean (Glycine max) and common bean (Phaseolus vulgaris) symbiosis. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, pp 515ā€“518

    Google ScholarĀ 

  • Hungria M, Campo RJ, Chueire LMO, Grange L, MegĆ­as M (2001) Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biol Fertil Soils 33:387ā€“394

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88ā€“93

    ArticleĀ  Google ScholarĀ 

  • Hungria M, Franchini JC, Campo RJ, Graham PH (2005a) The importance of nitrogen fixation to soybean cropping in South America. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 4, Werner W, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 25ā€“42

    Google ScholarĀ 

  • Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005b) Inoculant preparation, production and application. In: Newton WE (ed) Nitrogen fixation: origins, applications and research progress, vol 4, Werner W, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 223ā€“254

    Google ScholarĀ 

  • Hungria M, Campo RJ, Mendes IC, Graham PH (2006a) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK (eds) Nitrogen nutrition and sustainable plant productivity. Studium Press, Houston, pp 43ā€“93

    Google ScholarĀ 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006b) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and of N fertilizer to grain yield. Can J Plant Sci 86:927ā€“939

    ArticleĀ  Google ScholarĀ 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413ā€“425

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hunt S, Layzell D (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483ā€“511

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hurek T, Egener T, Reinhold-Hurek B (1997) Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the Ī² subclass. J Bacteriol 179:4172ā€“4178

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Jacobitz S, Bishop PE (1992) Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. J Bacteriol 174:3884ā€“3888

    PubMedĀ  CASĀ  Google ScholarĀ 

  • James EK, Olivares FL (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77ā€“119

    ArticleĀ  Google ScholarĀ 

  • Jenkins BD, Steward GF, Short SM, Ward BB, Zehr JP (2004) Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Appl Environ Microbiol 70:1767ā€“1776

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63:3676ā€“3683

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Johnston AWB, Li Y, Ogilvie L (2005) Metagenomic marine nitrogen fixationā€”feast or famine? Trends Microbiol 13:416ā€“420

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kaluza K, Hahn M, Hennecke H (1985) Repeated sequences similar to insertion elements clustered around the nif region of the Gluconoacetobacter diazotrophicus obium japonicum genome. J Bacteriol 162:535ā€“542

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kaminski PA, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by rhizobia. In: Spaink HP, Kondorosi A, Hooykas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 431ā€“460

    Google ScholarĀ 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331ā€“338

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe SA, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189ā€“197

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Karg T, Reinhold-Hurek B (1996) Global changes in protein composition of N2-fixing Azoarcus sp. strain BH72 upon diazosome formation. J Bacteriol 178:5748ā€“5754

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the worldā€™s oceans. Biogeochemistry 57:47ā€“98

    ArticleĀ  Google ScholarĀ 

  • Karpati E, Kiss P, Ponyi T, Fendrik I, de Zamaroczy M, Orosz L (1999) Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J Bacteriol 181:3949ā€“3955

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494ā€“498

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kessler PS, Daniel C, Leigh JA (2001) Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and 2. J Bacteriol 183:882ā€“889

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybeans. Science 215:1631ā€“1632

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Khadem AF, Pol A, Jetten MSM, Op den Camp HJM (2010) Nitrogen fixation by the verrucomicrobial methanotroph ā€˜Methylacidiphilum fumariolicumā€™ SolV. Microbiology 156:1052ā€“1059

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kneip C, Lockhart P, Voss C, Maier U-G (2007) Nitrogen fixation in eukaryotesā€”new models for symbiosis. BMC Evol Biol 7:55

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kneip C, Voss C, Lockhart PJ, Maier UW (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:30

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655ā€“666

    ArticleĀ  Google ScholarĀ 

  • Kovach ME, Shaffer MD, Peterson KM (1996) A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142:2165ā€“2174

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Koyama T, App AA (1979) Nitrogen balance in flooded rice soils. In: Nitrogen and rice. IRRI, Manila, pp 95ā€“104

    Google ScholarĀ 

  • Krotzky A, Werner D (1987) Nitrogen fixation in Pseudomonas stutzeri. Arch Microbiol 147:48ā€“57

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kudo T, Ohkuma M, Moriya S, Noda S, Ohtoko K (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2:155ā€“161

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kustu S, Santero E, Keener J, Popham D, Weiss D (1989) Expression of sigma54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367ā€“376

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Kuznetsov SI, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Ann Rev Microbiol 33:377ā€“387

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ladha JK, Barraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 28:478ā€“485

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen-fixing Enterobacter clocae and Klebsiella planticola associated with rice plants. Can J Microbiol 29:1301ā€“1308

    ArticleĀ  Google ScholarĀ 

  • Ladha JK, Pareek RP, Becker M (1992) Stem-nodulating legume: Gluconoacetobacter diazotrophicus obium symbiosis and its agronomic use in lowland rice. Adv Soil Sci 20:148ā€“192

    Google ScholarĀ 

  • Ladha JK, Tirol-Padre A, Reddy CK, Ventura W (1993) Prospects and problems of biological nitrogen fixation in rice production: a critical assessment. In: Palacios R, Mora J, Newton WE (eds) New Horizons in nitrogen fixation. Kluwer, Dordrecht, pp 677ā€“682

    Google ScholarĀ 

  • Laguerre G, Bardin M, Amarger N (1993) Isolation from soil of symbiotic and nonsymbiotic R. leguminosarum by DNA hybridization. Can J Microbiol 39:1142ā€“1149

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lal B, Khana S (1996) Long term field study shows increased biomass production in tree legumes inoculated with Rhizobium. Plant Soil 184:111ā€“116

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Langlois RJ, Huemmer D, LaRoche J (2008) Abundances and distributions of the dominant nifH phylotypes in the northern Atlantic Ocean. Appl Environ Microbiol 74:1922ā€“1931

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55ā€“61

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lechene CP, Luyten Y, McMahon G, Distel DL (2007) Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 317:1563ā€“1566

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lee PKH, Jianzhong J, Zinder SH, Alvarez-Cohen L (2009) Evidence for nitrogen fixation by ā€œDehalococcoides ethenogenesā€ strain 195. Appl Environ Microbiol 75:7551ā€“7555

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 657ā€“669

    Google ScholarĀ 

  • Li Y, Green LS, Day DA, Bergersen FJ (1999) Ammonia and alanine efflux from nitrogen-fixing soybean bacteroids. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do ParanĆ”, ParanĆ”, pp 13ā€“14

    Google ScholarĀ 

  • Lie TJ, Leigh JA (2003) A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47:235ā€“246

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495ā€“2498

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409ā€“1413

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lindblad A, Jansson J, Brostedt E, Johansson M, Nordlund S (1993) Sequencing and mutational studies of a nifJ-like gene in Rhodospirillum rubrum. In: Palacios R, Mora J, Newton W (eds) New Horizons in nitrogen fixation. Kluwer, Dordrecht, p 477

    Google ScholarĀ 

  • Lobo AL, Zinder SH (1992) Nitrogen fixation by methanogenic bacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 191ā€“211

    Google ScholarĀ 

  • Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722ā€“726

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lodwig E, Kumar S, Allaway D, Bourdes A, Prell J, Priefer U, Poole P (2004) Regulation of l-alanine dehydrogenase in Rhizobium leguminosarum bv. viciae and its role in pea nodules. J Bacteriol 186:842ā€“849

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-absorbed DNA. Arch Microbiol 154:380ā€“385

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Loveless TM, Saah JR, Bishop PE (1999) Isolation of nitrogen-fixing bacteria containing molybdenum-independent nitrogenases from natural environments. Appl Environ Microbiol 65:4223ā€“4226

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Lupwayi NZ, Olsen PE, Sande ES, Kayser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259ā€“270

    ArticleĀ  Google ScholarĀ 

  • Madigan M, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73ā€“78

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Maier RJ, Triplett EW (1996) Toward more productive, efficient, and competitive nitrogen-fixing symbiotic bacteria. Crit Rev Plant Sci 15:191ā€“234

    Google ScholarĀ 

  • Man-Aharonovich D, Kress N, Zeev EB, Berman-Frank I, Beja O (2007) Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ Microbiol 9:2354ā€“2363

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • MartĆ­nez E, Romero D, Palacios R (1990) The Rhizobium genome. Crit Rev Plant Sci 9:59ā€“93

    ArticleĀ  Google ScholarĀ 

  • MartĆ­nez L, Caballero-Mellado J, Orozco J, MartĆ­nez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257:35ā€“47

    ArticleĀ  Google ScholarĀ 

  • MartĆ­nez J, MartĆ­nez L, Rosenblueth M, Silva J, MartĆ­nez-Romero E (2004) How are gene sequence analyses modifying bacterial taxonomy? The case of Klebsiella. Int Microbiol 7:261ā€“268

    PubMedĀ  Google ScholarĀ 

  • MartĆ­nez-Romero E, Caballero-Mellado J (1996) Gluconoacetobacter diazotrophicus obium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113ā€“140

    Google ScholarĀ 

  • May BM, Attiwill PM (2003) Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For Ecol Manage 181:339ā€“355

    ArticleĀ  Google ScholarĀ 

  • McIsaac GF, David MB, Gertner GZ, Goolsby DA (2002) Nitrate flux in the Mississppi River. Nature 414:166ā€“167

    ArticleĀ  Google ScholarĀ 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85ā€“106

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Proc Biochem 37:955ā€“963

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mehta MP, Baross JA (2006) Nitrogen fixation at 92 degree C by a hydrothermal vent archaeon. Science 314:1783ā€“1786

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69:960ā€“970

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay: effects of plant disturbance. J Exp Bot 37:1581ā€“1591

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725ā€“732

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, Capone DG (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027ā€“1032

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Moore CM, Mills MM, Milne A, Langlois R, Achterberg EP, Lochte K, Geider RJ, La Roche J (2006) Iron limits primary productivity during spring bloom development in the central North Atlantic. Global Change Biol 12:626ā€“634

    ArticleĀ  Google ScholarĀ 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the Ī²-subclass of Proteobacteria. Nature 411:948ā€“950

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soybeans and sustainable agriculture: ā€˜Promiscuousā€™ soybeans in southern Africa. Field Crops Res 65:137ā€“149

    ArticleĀ  Google ScholarĀ 

  • Muro-Pastor AM, Valladares A, Flores E, Herrero A (1999) The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181:6664ā€“6669

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Muthukumarasamy R, Revathi G, Lakshminarasimhan C (1999) Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biol Fertil Soil 29:157ā€“164

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695ā€“700

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751ā€“763

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nees DW, Stein PA, Ludwig RA (1988) The Azorhizobium caulinodans nifA gene: identification of upstream-activating sequences including a new element, the ā€œanaeroboxā€. Nucleic Acids Res 16:9839ā€“9853

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Neves MCP, Hungria M (1987) The physiology of nitrogen fixation in tropical grain legumes. CRC Crit Rev Plant Sci 6:267ā€“321

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Newton WE (2000) Nitrogen fixation in perspective. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, pp 3ā€“8

    Google ScholarĀ 

  • Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65:4935ā€“4942

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Nordlund S (2000) Regulation of nitrogenase activity in phototrophic bacteria by reversible covalent modification. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 149ā€“164

    Google ScholarĀ 

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganims. J Mol Evol 29:436ā€“447

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1ā€“9

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S, Medigue C (2007) Exploring the genomes of Frankia. Physiol Plant 130:331ā€“343

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oā€™Callaghan KJ, Davey MR, Cocking EC (1999) Xylem colonization of Sesbania rostrata by Azorhizobium caulinodans ORS571. In: MartĆ­nez E, HernĆ”ndez G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum, New York, pp 145ā€“147

    ChapterĀ  Google ScholarĀ 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65:4926ā€“4934

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 49:429ā€“446

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591ā€“1601

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Dƶbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197ā€“200

    ArticleĀ  Google ScholarĀ 

  • Oliveira ALM, Stoffles M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106ā€“113

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antartica. Microb Ecol 36:231ā€“238

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Paau AS (1989) Improvement of Gluconoacetobacter diazotrophicus obium inoculants. Appl Environ Microbiol 55:862ā€“865

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR (1993) Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochem J 293:101ā€“107

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Perlova O, Ureta A, Meletzus D, Nordlund S (2003) Sensing of N-status in Gluconacetobacter diazotrophicus: biochemistry and genetics of nitrogen fixation and assimilation. Symbiosis 35:73ā€“84

    CASĀ  Google ScholarĀ 

  • Peters GA, Meeks JC (1989) The Azolla-Anabaena symbiosis: basic biology. Annu Rev Plant Physiol Plant Mol Biol 40:193ā€“210

    ArticleĀ  Google ScholarĀ 

  • Phillips DA (1974) Promotion of acetylene reduction by Gluconoacetobacter diazotrophicus obium-soybean cell associations in vitro. Plant Physiol 54:654ā€“655

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Phillips DA, MartĆ­nez-Romero E (2000) Biological nitrogen fixation. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, New York

    Google ScholarĀ 

  • Phillips DA, MartĆ­nez-Romero E, Yang GP, Joseph CM (1999) Release of nitrogen: a key trait in selecting bacterial endophytes for agronomically useful nitrogen fixation. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los BaƱos, pp 205ā€“217

    Google ScholarĀ 

  • Piehler MF, Swistak JG, Pinckney JL, Paerl HW (1999) Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microb Ecol 38:69ā€“78

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120ā€“1123

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Polhill RM, Raven PH (1981) Advances in legume systematics. Royal Botanic Gardens, Kew, p 446

    Google ScholarĀ 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge, UK, p 252

    Google ScholarĀ 

  • Postgate J (1988) The ghost in the laboratory. New Scientist 117:49ā€“52

    Google ScholarĀ 

  • Prantera MT, Drozdowicz A, Leite SG, Rosado AS (2002) Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol Lett 24:85ā€“89

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pulver EL, Kueneman EA, Ranga-Rao V (1985) Identification of promiscuous nodulating soybean efficient in N2 fixation. Crop Sci 25:660ā€“663

    ArticleĀ  Google ScholarĀ 

  • Qui YS, Zhou SP, Mo XZ (1981) Study of nitrogen fixing bacteria associated with rice root. 1: isolation and identification of organisms. Acta Microbiol Sinica 21:468ā€“472

    Google ScholarĀ 

  • Quispel A (1988) Hellriegel and Wilfarthā€™s discovery of (symbiotic) nitrogen fixation hundred years ago. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after Gustav. Fischer, Stuttgart, pp 3ā€“12

    Google ScholarĀ 

  • Rajagopal BS, Belay N, Daniels L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153ā€“158

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K, Zheng WW, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS One 5:e11486

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rao VR, Ramakrishnan B, Adhya TK, Kanungo PK, Nayak DN (1998) Review: current status and future prospects of associative nitrogen fixation in rice. World J Microbiol Biotechnol 14:621ā€“633

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369ā€“394

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541ā€“554

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, de Bruijn FJ (1997) Gluconoacetobacter diazotrophicus obial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81ā€“98

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Reiter B, Buergmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol/Rev Can Microbiol 49:549ā€“555

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627ā€“26633

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martinez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl Environ Microbiol 68:5217ā€“5222

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature (London) 322:388ā€“390

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rolfe BG, Verma DPS, Potrykus I, Dixon R, McCully M (1998) Round table: Agriculture 2020: 8 billion people. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological Nitrogen Fixation for the 21st century, Kluwer Academic Publishers, Dordrecht, pp 685ā€“692

    Google ScholarĀ 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91ā€“111

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39ā€“47

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rosenblueth M, MartĆ­nez L, Silva J, MartĆ­nez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27ā€“35

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Roughley RJ (1970) The preparation and use of legume seed inoculants. Plant Soil 32:675ā€“701

    ArticleĀ  Google ScholarĀ 

  • Ruinen J (1974) Nitrogen fixation in the phyllosphere. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland, Amsterdam, pp 121ā€“167

    Google ScholarĀ 

  • Ruppel S, Hecht-Bucholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: an investigation using ELISA and transmission electron microscopy. Plant Soil 145:261ā€“273

    ArticleĀ  Google ScholarĀ 

  • Russelle MP, Birr AS (2004) Large-scale assessment of symbiotic dinitrogen fixation by crops: soybean and alfalfa in the Mississippi river basin. Agron J 96:1754ā€“1760

    ArticleĀ  Google ScholarĀ 

  • Saah JR, Bishop PE (1999) Diazotrophs that group within the Pseudomonadaceae based on phylogenetic evidence. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do ParanĆ”, ParanĆ”, p 117

    Google ScholarĀ 

  • Sabry SRS, Saleh SA, Batchelor CA et al (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond B Biol Sci 264:341ā€“346

    ArticleĀ  Google ScholarĀ 

  • Sadowsky MJ, Graham PH (1998a) Soil biology of the Gluconoacetobacter diazotrophicus obiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 155ā€“172

    Google ScholarĀ 

  • Sadowsky MJ, Graham PH (1998b) Soil biology of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceaeā€”molecular biology of model plant/associated bacteria. Kluwer, Dordrecht, pp 155ā€“172

    Google ScholarĀ 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:2019ā€“2020

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • SĆ”nchez PA, Vehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 471ā€“514

    Google ScholarĀ 

  • SaƱudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411:66ā€“69

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Segonds C, Heulin T, Marty N, Chabanon G (1999) Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37:2201ā€“2208

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Segovia L, PiƱero D, Palacios R, MartĆ­nez-Romero E (1991) Genetic structure of a soil population of nonsymbiotic R. leguminosarum. Appl Environ Microbiol 57:426ā€“433

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, MartĆ­nez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323ā€“378

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sevilla M, De Oliveira A, Baldani I, Kennedy C (1998) Contributions of the bacterial endophyte Acetobacter diazotrophicus to sugarcane nutrition: a preliminary study. Symbiosis 25:181ā€“191

    CASĀ  Google ScholarĀ 

  • Sevilla M, Lee S, Meletzus D, Burris R, Kennedy C (1999) Genetic analysis and effect on plant growth of the nitrogen-fixing sugarcane endophyte Acetobacter diazotrophicus. In: Pedrosa FO, Hungria M et al (eds) 12th international congress on nitrogen fixation, book of abstracts. Universidade Federal do ParanĆ”, ParanĆ”, p 12

    Google ScholarĀ 

  • Shen J, Dean DR, Newton WE (1997) Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Biochemistry 36:4884ā€“4894

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Siemann S, Schneider K, Oley M, Mueller A (2003) Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 42:3846ā€“3857

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Singleton PW, Tavares JW (1986) Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium population. Appl Environ Microbiol 51:1013ā€“1018

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam, vol 109, ACIAR Proceedings. ACIAR, Brisbane, pp 52ā€“66

    Google ScholarĀ 

  • Smil V (1999) Nitrogen in crop production. Global Biogeochem Cycles 13:647ā€“662

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485ā€“492

    ArticleĀ  Google ScholarĀ 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135ā€“7155

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA 96:6001ā€“6008

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Res 65:183ā€“196

    ArticleĀ  Google ScholarĀ 

  • Staal M, Meysman FJR, Stal JJ (2003) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504ā€“507

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Stephens JHG, Rask RH (2000) Inoculant production and formulation. Field Crops Res 65:249ā€“258

    ArticleĀ  Google ScholarĀ 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876ā€“1879

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol 70:1455ā€“1465

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Stewart WDP (1974) Blue-green algae. In: Quispel A (ed) The biology of nitrogen fixation research. North-Holland, Amsterdam, pp 202ā€“237

    Google ScholarĀ 

  • Suh M, Pulakat L, Gavini N (2003) Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. J Biol Chem 278:5353ā€“5360

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145ā€“5149

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of R. loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92:8985ā€“8989

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62:2818ā€“2825

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086ā€“3095

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sumner ME (1990) Crop responses to Azospirillum inoculation. Adv Soil Sci 12:54ā€“123

    Google ScholarĀ 

  • Suominen L, Jussila MM, Makelainen K, Romantschuk M, Lindstrom K (2000) Evaluation of the Galega-Gluconoacetobacter diazotrophicus-Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107:239ā€“244

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214ā€“220

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009ā€“1015

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358ā€“9362

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial population on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19ā€“28

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Thies JE, Woomer PL, Singleton PW (1995) Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host plant. Soil Biol Biochem 27:633ā€“636

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414ā€“1417

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N inferior 2 fixation by annual legumes. Field Crops Res 65:211ā€“228

    ArticleĀ  Google ScholarĀ 

  • Unkovich M, Herridge D, Peoples M, Cadish G, Boddey B, Giller K, Alves BA, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Camberra, p 258

    Google ScholarĀ 

  • Urquiaga S, Botteon PBL, Boddey RM (1989) Selection of sugar cane cultivars for associated biological nitrogen fixation using 15N-labelled soil. In: Skinner FA et al (eds) Nitrogen fixation with non-legumes. Kluwer, Dordrecht, pp 311ā€“319

    ChapterĀ  Google ScholarĀ 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105ā€“114

    ArticleĀ  Google ScholarĀ 

  • Vaisanen OM, Weber A, Bennasar A, Rainey FA, Busse HJ, Salkinoja-Salonen MS (1998) Microbial communities of printing paper machines. J Appl Microbiol 84:1069ā€“1084

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Valderrama B, Davalos A, Girard L, Morett E, Mora J (1996) Regulatory proteins and cis-acting elements involved in the transcriptional control of Gluconoacetobacter diazotrophicus obium etli reiterated nifH genes. J Bacteriol 178:3119ā€“3126

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Valverde A, VelĆ”zquez E, FernĆ”ndez-Santos F, VizcaĆ­no N, Rivas R, Mateos PF, MartĆ­nez-Molina E, Igual JM, Willems A. (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985ā€“1989

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Van Breemen N, Boyer E, Goodale C, Jaworski N, Paustian K, Seitzinger S, Lajtha K, Mayer B, van Dam D, Howarth R, Nadelhoffer K, Eve M, Billen G (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57:267ā€“293

    ArticleĀ  Google ScholarĀ 

  • van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res 65:165ā€“181

    ArticleĀ  Google ScholarĀ 

  • Van TrĆ¢n V, Mavingui P, Berge O, Balandreau J, Heulin T (1994) Promotion de croissance du riz inoculĆ© par une bactĆ©rie fixatrice dā€™azote, Burkholderia vietnamiensis, isolĆ©e dā€™un sol sulfatĆ© acide du Vietnam. Agronomie 14:697ā€“707

    ArticleĀ  Google ScholarĀ 

  • Van TrĆ¢n V, Berge O, Balandreau J, NgĆ“ KĆŖ S, Heulin T (1996) Isolement et activitĆ© nitrogĆ©nasique de Burkholderia vietnamiensis, bacterie fixatrice dā€™azote associĆ©e au riz (Oryza sativa L.) cultivĆ© sur un sol sulfatĆ© du Vietnam. Agronomie 16:479ā€“491

    ArticleĀ  Google ScholarĀ 

  • Vance CP (1998) Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Gluconoacetobacter diazotrophicus obiaceae. Kluwer, Dordrecht, pp 509ā€“530

    Google ScholarĀ 

  • Ventura TS, Bravo M, Daez C, Ventura V, Watanabe I, App A (1986) Effects of N-fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant Soil 93:405ā€“411

    ArticleĀ  Google ScholarĀ 

  • Vermeiren H, Hai W-L, Vanderleyden J (1998) Colonisation and nifH expression on rice roots by Alcaligenes faecalis A15. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes. Kluwer, Dordrecht, pp 167ā€“177

    ChapterĀ  Google ScholarĀ 

  • Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J (1999) The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol 22:215ā€“224

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vlassak KM, Vanderleyden J (1997) Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16:163ā€“229

    Google ScholarĀ 

  • Voelcker JA (1896) ā€œNitraginā€ or the use of ā€œpure cultivationā€ bacteria for leguminous crops. J R Agron Soc 3rd Ser 7:253ā€“264

    Google ScholarĀ 

  • Von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147ā€“2153

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Voss M, Croot P, Lochte K, Mills M, Peeken I (2004) Patterns of nitrogen fixation along 10Ā°N in the tropical Atlantic. Geophys Res Lett 31

    Google ScholarĀ 

  • Walcott JJ, Chauviroj M, Chinchest A, Choticheuy P, Ferraris R, Norman BW (1977) Long term productivity of intensive rice cropping systems on the central plains of Thailand. Exp Agric 13:305ā€“316

    ArticleĀ  Google ScholarĀ 

  • Wang E, MartĆ­nez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbacea-nodulating rhizobia in different environments. Microb Ecol 40:25ā€“32

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Watanabe I, Yoneyama T, Padre B, Ladha JK (1987) Difference in natural abundance of 15 N in several rice (Oryza sativa L.) varieties: applications for evaluating N2 fixation. Soil Sci Plant Nutr 33:407ā€“415

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Waters JK, Hughes BL 2nd, Purcell LC, Gerhardt KO, Mawhinney TP, Emerich DW (1998) Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA 95:12038ā€“12042

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Weaver RW, Frederick LR (1974) Effect of inoculum rate on competitive nodulation of Glycine max (L.) Merrill II Field studies. Agron J 58:233ā€“236

    ArticleĀ  Google ScholarĀ 

  • Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, Cocking EC (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373ā€“383

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Welbaum GE, Meinzer FC, Grayson RL, Thornham KT (1992) Evidence for and consequences of a barrier to solute diffusion between the apoplast and vascular bundles in sugarcane stalk tissue Australian. J Plant Physiol 19:611ā€“623

    Google ScholarĀ 

  • Wolk CP (1996) Heterocyst formation. Annu Rev Genet 30:59ā€“78

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wouters J, Raven JA, Minnhagen S, Janson S (2009) The luggage hypothesis: comparisons of two phototrophic hosts with nitrogen-fixing cyanobacteria and implications for analogous life strategies for kleptoplastids/secondary symbiosis in dinoflagellates. Symbiosis 49:61ā€“70

    ArticleĀ  Google ScholarĀ 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244ā€“1251

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yanni YG, Rizk RY, Corich V, Squartini A et al (1997) Natural endophytic association between R. leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99ā€“114

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yoneyama T, Muraoka T, Kim TH, Dacanay EV, Nakanishi Y (1997) The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant Soil 189:239ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yoshino J, Sugiyama Y, Sakuda S, Kodama T, Nagasawa H, Ishii M, Igarashi Y (2001) Chemical structure of a novel aminophospholipid from Hydrogenobacter thermophilus strain TK-6. J Bacteriol 183:6302ā€“6304

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43ā€“86

    Google ScholarĀ 

  • Youzhong L, Parsons R, Day DA, Bergersen FJ (2002) Reassessment of major products of N2 fixation by bacteroids from soybean root nodules. Microbiology 148:1959ā€“1966

    Google ScholarĀ 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968ā€“989

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zanetti S, Hartwig UA, Luescher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Noesberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575ā€“583

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zehr JP, Mellon M, Braun S, Litaker W, Steppe T, Paerl HW (1995) Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol 61:2527ā€“2532

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539ā€“554

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zehr JP, Montoya JP, Jenkins BD, Hewson I, Mondragon E, Short CM, Church MJ, Hansen A, Karl DM (2007) Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol Oceanogr 52:169ā€“183

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2003) Regulation of nitrogen fixation by multiple PII homologs in the photosynthetic bacterium Rhodospirillum rubrum. Symbiosis 35:85ā€“100

    CASĀ  Google ScholarĀ 

  • Zhang L, Hurek T, Reinhold-Hurek B (2007) A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microb Ecol 53:456ā€“470

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zurdo-PiƱeiro JL, Rivas R, Trujillo ME, VizcaĆ­no N, Carrasco JA, Chamber M, Palomares A, Mateos PF, MartĆ­nez-Molina E, VelĆ”zquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784ā€“788

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

Thanks to Julio MartĆ­nez Romero for technical support. To PAPIIT IN200709 and IN205412 from UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza Martinez-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

OrmeƱo-Orrillo, E., Hungria, M., Martinez-Romero, E. (2013). Dinitrogen-Fixing Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_72

Download citation

Publish with us

Policies and ethics