Skip to main content

Aerobic Methylotrophic Prokaryotes

  • Reference work entry

Abstract

This chapter describes biochemical pathways operating in aerobic methylotrophic bacteria. We first define aerobic methylotrophy as a specific metabolic capability and describe the phylogenetic diversity of these bacteria. We then describe enzymes involved in primary oxidation of different single carbon substrates, resulting in formaldehyde or methyl or methylene radical, and describe the variety of pathways used for their assimilation and dissimilation. We also give a brief account of genetic manipulation tools in methylotrophic bacteria and examples of systems approaches for studying their metabolism, including availability of whole genome sequence information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alber BE (2010) Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 89:17–25

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Murrell JC (2009) Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155:761–771

    Article  PubMed  CAS  Google Scholar 

  • Ali H, Scanlan J, Dumont MG, Murrell JC (2006) Duplication of the mmoX gene in Methylosinus sporium: cloning, sequencing and mutational analysis. Microbiology 152:2931 –2942

    Article  PubMed  CAS  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, New York, 404

    Google Scholar 

  • Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137

    Article  PubMed  CAS  Google Scholar 

  • Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21

    Article  PubMed  CAS  Google Scholar 

  • Antony CP, Kumaresan D, Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Murrell JC (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480

    Article  PubMed  CAS  Google Scholar 

  • Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J (1997) Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244:426–433

    Article  PubMed  CAS  Google Scholar 

  • Attwood MM, Arfman N, Weusthuis RA, Dijkhuizen L (1992) Purification and characterization of an NAD-linked formaldehyde dehydrogenase from the facultative RuMP cycle methylotroph Arthrobacter P1. Antonie Van Leeuwenhoek 62:201–207

    Article  PubMed  CAS  Google Scholar 

  • Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM, van Spanning RJ (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62:1046–1078

    PubMed  CAS  Google Scholar 

  • Balasubramanian R, Rosenzweig AC (2008) Copper methanobactin: a molecule whose time has come. Curr Opin Chem Biol 12:245–249

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119

    Article  PubMed  CAS  Google Scholar 

  • Barber RD, Donohue TJ (1998) Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37:530–537

    Article  PubMed  CAS  Google Scholar 

  • Baxter NJ, Hirt RP, Bodrossy L, Kovacs KL, Embley TM, Prosser JI, Murrell JC (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch Microbiol 177:279–289

    Article  PubMed  CAS  Google Scholar 

  • Boden R, Kelly DP, Murrell JC, Schäfer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12:2688–2699

    PubMed  CAS  Google Scholar 

  • Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011a) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001–7002

    Article  PubMed  CAS  Google Scholar 

  • Boden R, Ferriera S, Johnson J, Kelly DP, Murrell JC, Schäfer H (2011b) Draft genome sequence of the chemolithoheterotrophic halophilic methylotroph Methylophaga thiooxydans DMS010. J Bacteriol 193:3154–3155

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16 S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503

    Article  PubMed  CAS  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437

    Article  PubMed  CAS  Google Scholar 

  • Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL, Wood AP (2002) Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. Nov. Arch Microbiol 177:173–183

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Kysela DT, Buechlein A, Hemmerich C, Brun YV (2011) Genome sequences of eight morphologically diverse Alphaproteobacteria. J Bacteriol 193:4567–4568

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh LV, Vonck J, van Bruggen EF, van Beeumen J, Samyn B, Govorukhina NI, Arfman N, Duine JA, Dijkhuizen L (1993) Electron microscopic analysis and structural characterization of novel NADP (H)-containing methanol: N, N′-dimethyl-4nitrosoaniline oxidoreductases from the gram-positive methylotrophic bacteria Amycolatopsis methanolica and Mycobacterium gastri MB19. J Bacteriol 175:1814–1822

    PubMed  CAS  Google Scholar 

  • Bystrykh LV, Govorukhina NI, Dijkhuizen L, Duine JA (1997) Tetrazolium-dye-linked alcohol dehydrogenase of the methylotrophic actinomycete Amycolatopsis methanolica is a three-component complex. Eur J Biochem 247:280–287

    Article  PubMed  CAS  Google Scholar 

  • Chang SL, Wallar BJ, Lipscomb JD, Mayo KH (1999) Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38:5799–5812

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010a) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, McAleer KL, Murrell JC (2010b) Monomethylamine as a nitrogen source for a nonmethylotrophic bacterium, Agrobacterium tumefaciens. Appl Environ Microbiol 76:4102–4104

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schäfer H, Murrell JC (2010c) {gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris. Appl Environ Microbiol 76:4530–4537

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC (2011) Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci USA 108:17791–17796

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) The genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065

    PubMed  CAS  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova LV, Lidstrom ME (1994) Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 176:1957–1968

    PubMed  CAS  Google Scholar 

  • Chistoserdova LV, Chistoserdov AY, Schklyar NL, Baev MV, Tsygankov YD (1991) Oxidative and assimilative enzyme activities in continuous cultures of the obligate methylotroph Methylobacillus flagellatum. Antonie Van Leeuwenhoek 60:101–108

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Vorholt J, Thauer RK, Lidstrom ME (1998) Enzymes and coenzymes thought to be archaeal-specific that are required for aerobic methylotrophy. Science 281:99–102

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME (2000) Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146:233–238

    PubMed  CAS  Google Scholar 

  • Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185:2980–2987

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004a) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Laukel M, Portais JC, Vorholt JA, Lidstrom ME (2004b) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Rasche ME, Lidstrom ME (2005a) Novel dephospho-tetrahydromethanopterin biosynthesis genes discovered via mutagenesis in Methylobacterium extorquens AM1. J Bacteriol 187:2508–2512

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005b) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    Article  PubMed  Google Scholar 

  • Chistoserdova L, Crowther GJ, Vorholt JA, Skovran E, Portais JC, Lidstrom ME (2007a) Identification of a fourth formate dehydrogenase in Methylobacterium extorquens AM1 and confirmation of the essential role of formate oxidation in methylotrophy. J Bacteriol 189:9076–9081

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Lapidus A, Han C, Goodwin L, Saunders L, Brettin T, Tapia R, Gilna P, Lucas S, Richardson PM, Lidstrom ME (2007b) The genome of Methylobacillus flagellatus, the molecular basis for obligate methylotrophy, and the polyphyletic origin of methylotrophy. J Bacteriol 189:4020–4027

    Article  PubMed  CAS  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  PubMed  CAS  Google Scholar 

  • Chongcharoen R, Smith TJ, Flint KP, Dalton H (2005) Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification. Microbiology 151:2615–2622

    Article  PubMed  CAS  Google Scholar 

  • Coulter C, Hamilton JT, McRoberts WC, Kulakov L, Larkin MJ, Harper DB (1999) Halomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source. Appl Environ Microbiol 65:4301–4312

    PubMed  CAS  Google Scholar 

  • Crombie A, Murrell JC (2011) Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495:119–133

    Article  PubMed  CAS  Google Scholar 

  • Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062

    Article  PubMed  CAS  Google Scholar 

  • Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC (1997) Genetic manipulation of Bacillus methanolicus, a Gram-positive, thermotolerant methylotroph. Appl Environ Microbiol 63:1406–1420

    PubMed  CAS  Google Scholar 

  • Davidson VL (2005) Structure and mechanism of tryptophylquinone enzymes. Bioorg Chem 33:159–170

    Article  PubMed  CAS  Google Scholar 

  • de Vries GE, Arfman N, Terpstra P, Dijkhuizen L (1992) Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol 174:5346–5353

    PubMed  Google Scholar 

  • De Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    Article  Google Scholar 

  • DeBont JAM, VanDijken JP, Harder W (1981) Dimethylsulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium. J Gen Microbiol 127:315–323

    CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    PubMed  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  PubMed  CAS  Google Scholar 

  • Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938

    PubMed  CAS  Google Scholar 

  • Duine JA (1999) Thiols in formaldehyde dissimilation and detoxification. Biofactors 10:201–206

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  PubMed  CAS  Google Scholar 

  • Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH (1997) Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci 6:556–568

    Article  PubMed  CAS  Google Scholar 

  • Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE (2007) Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalyl-CoA pathway. Proc Natl Acad Sci USA 104:10631–10636

    Article  PubMed  CAS  Google Scholar 

  • Erb TJ, Rétey J, Fuchs G, Alber BE (2008) Ethylmalonyl-CoA mutase from Rhodobacter sphaeroides defines a new subclade of coenzyme B12-dependent acyl-CoA mutases. J Biol Chem 283:32283–32293

    Article  PubMed  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D, Di Valentin M, Carbonera D, Merli A, Chen ZW, Mathews FS, Davidson VL, Rossi GL (2004) Electron transfer in crystals of the binary and ternary complexes of methylamine dehydrogenase with amicyanin and cytochrome c551i as detected by EPR spectroscopy. J Biol Inorg Chem 9:231–237

    Article  PubMed  CAS  Google Scholar 

  • Gak ER, Chistoserdov AY, Lidstrom ME (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. J Bacteriol 177:4575–4578

    PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho JC, Oh HM, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Article  PubMed  CAS  Google Scholar 

  • Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736

    Article  PubMed  CAS  Google Scholar 

  • Hagemeier CH, Chistoserdova L, Lidstrom ME, Thauer RK, Vorholt JA (2000) Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769

    Article  PubMed  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241

    Article  PubMed  CAS  Google Scholar 

  • Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801

    Article  PubMed  CAS  Google Scholar 

  • Halsey KH, Carter AE, Giovannoni SJ (2012) Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02605.x

    Google Scholar 

  • Han GH, Kim W, Chun J, Kim SW (2011) Draft genome sequence of Methylophaga aminisulfidivorans MPT. J Bacteriol 193:4265

    Article  PubMed  CAS  Google Scholar 

  • Hancock TL, Costello AM, Lidstrom ME, Oremland RS (1998) Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils. Appl Environ Microbiol 64:2899–2905

    PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Harms N, Ras J, Reijnders WN, van Spanning RJ, Stouthamer AH (1996) S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: A universal pathway for formaldehyde detoxification? J Bacteriol 178:6296–6299

    PubMed  CAS  Google Scholar 

  • Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T (2012) Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 78:5170–5181

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson EL, Beck DAC, Wang T, Lidstrom ME, Hackett M, Chistoserdova L (2010) The expressed genome of Methylobacillus flagellatus defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192:4859–4867

    Article  PubMed  CAS  Google Scholar 

  • Hirt W, Papoutsakis E, Krug E, Lim HC, Tsao GT (1978) Formaldehyde incorporation by a new methylotroph (L3). Appl Environ Microbiol 36:56–62

    PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Molec Biol 45:197–209

    Article  CAS  Google Scholar 

  • Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Article  PubMed  CAS  Google Scholar 

  • Im J, Semrau JD (2011) Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol Lett 318:137–142

    Article  PubMed  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304

    Article  PubMed  CAS  Google Scholar 

  • Jensen LM, Sanishvili R, Davidson VL, Wilmot CM (2010) In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex. Science 327:1392–1394

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Lidstrom ME (2003) QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 185:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Lidstrom ME (2005) QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 187:7511–7517

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Korotkova N, Crowther CJ, Marx MEL, Chistoserdova L (2005) Analysis of gene islands involved in methanopterin-linked C1 transfer reactions reveals new functions and provides evolutionary insights. J Bacteriol 187:4607–4614

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008a) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008b) High resolution metagenomics targets major functional types in complex microbial communities. Nat Biotechnol 26:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Beck DAC, Vorobev A, Smalley N, Kunkel D, Lidstrom ME, Chistoserdova L (2011) Novel methylotrophic isolates from Lake Washington sediment and description of a new species in the genus Methylotenera, Methylotenera versatilis sp. nov. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.029165-0

    Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19

    CAS  Google Scholar 

  • Kane SR, Chakicherla AY, Chain PS, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945, Erratum 2007 J. Bacteriol. 189 4973

    Article  PubMed  CAS  Google Scholar 

  • Kao WC, Chen YR, Yi EC, Lee H, Tian Q, Wu KM, Tsai SF, Yu SS, Chen YJ, Aebersold R, Chan SI (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Yurimoto H, Thauer RK (2006) The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70:10–21

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Murrell JC (1999) Microbial metabolism of methanesulfonic acid. Arch Microbiol 172:341–348

    Article  PubMed  CAS  Google Scholar 

  • Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJ (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PM (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615

    Article  PubMed  CAS  Google Scholar 

  • King GM (1992) Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microb Ecol 12:431–474

    Article  CAS  Google Scholar 

  • Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart G-J, Smolders AJP, Jetten MSM, Sinninghe Damsté JS, Op den Camp HJM (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621

    Article  CAS  Google Scholar 

  • Kiriuchin MY, Kletsova LV, Chistoserdov AY, Tsygnkov YD (1988) Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT. FEMS Microbiol Lett 52:199–204

    Article  Google Scholar 

  • Kittichotirat W, Good NM, Hall R, Bringel F, Lajus S, Médigue C, Smalley NE, Beck D, Bumgarner R, Vuilleumier S, Kalyuzhnaya MG (2011) Genome sequence of Methyloversatilis universalis FAM5T, a methylotrophic representative of the order Rhodocyclales. J Bacteriol 193:4541–4542

    Article  PubMed  CAS  Google Scholar 

  • Klein CR, Kesseler FP, Perrei C, Frank J, Duine JA, Schwartz AC (1994) A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 301:289–295

    PubMed  CAS  Google Scholar 

  • Knief C, Frances L, Vorholt JA (2010) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 60:440–452

    Article  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  PubMed  CAS  Google Scholar 

  • Lapidus A, Clum A, LaButti K, Kaluzhnaya MG, Lim S, Beck DAC, Glavina del Rio T, Nolan N, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L (2011) Genomes of three methylotrophs from a single niche uncover genetic and metabolic divergence of Methylophilaceae. FEMS Microbiol Bacteriol 193:3757–3764

    Article  CAS  Google Scholar 

  • Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M (2010) Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 75:426–439

    Article  PubMed  CAS  Google Scholar 

  • Laukel M, Chistoserdova L, Lidstrom ME, Vorholt JA (2003) The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. Eur J Biochem 270:325–333

    Article  PubMed  CAS  Google Scholar 

  • Leisinger T, Braus-Stromeyer SA (1995) Bacterial growth with chlorinated methanes. Environ Health Perspect 103:33–36

    PubMed  CAS  Google Scholar 

  • Leisinger T, Bader R, Hermann R, Schmid-Appert M, Vuilleumier S (1994) Microbes, enzymes and genes involved in dichloromethane utilization. Biodegradation 5:237–248

    Article  PubMed  CAS  Google Scholar 

  • Levering PR, van Dijken JP, Veenhius M, Harder W (1981) Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 129:72–80

    Article  PubMed  CAS  Google Scholar 

  • Levering PR, Croes LM, Tiesma L, Dijkhuizen L (1986) Regulation of methylamine and formaldehyde metabolism in Arthrobacter P1. Effect of pulse-wise addition of “heterotrophic” substrates to C1 substrate-limited continuous cultures. Arch Microbiol 144:272–278

    Article  CAS  Google Scholar 

  • Li K, Wang S, Shi Y, Qu J, Zhai Y, Xu L, Xu Y, Song J, Liu L, Rahman MA, Yan Y (2011) Genome sequence of Paracoccus sp. strain TRP, a chlorpyrifos biodegrader. J Bacteriol 193:1786–1787

    Article  PubMed  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb J (1994) Biochemistry of the soluble methane monoxygenase. Annu Rev Microbiol 48:371–399

    Article  PubMed  CAS  Google Scholar 

  • Marison IW, Attwood MM (1982) A possible alternative mechanism for the oxidation of formaldehyde to formate. J Gen Microbiol 128:1441–1446

    CAS  Google Scholar 

  • Marx CJ (2008) Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC Res Notes 1:1

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147:2065–2075

    PubMed  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33:1062–1067

    PubMed  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2004) Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fiche. Microbiology 150:9–19

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Chistoserdova L, Lidstrom ME (2003a) Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1. J Bacteriol 185:7160–7168

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Laukel M, Vorholt JA, Lidstrom ME (2003b) Purification of the formate-tetrahydrofolate ligase from Methylobacterium extorquens AM1 and demonstration of its requirement for methylotrophic growth. J Bacteriol 185:7169–7175

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Miller JA, Chistoserdova L, Lidstrom ME (2004) Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400. J Bacteriol 186:2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Van Dien SJ, Lidstrom ME (2005) Flux analysis uncovers key role of functional redundancy in formaldehyde metabolism. PLoS Biol 3:e16

    Article  PubMed  CAS  Google Scholar 

  • Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M, Fleischman DE, Gruffaz C, Jourand P, Knief C, Lee MC, Muller EE, Nadalig T, Peyraud R, Roselli S, Russ L, Goodwin LA, Ivanova N, Kyrpides N, Lajus A, Land ML, Médigue C, Mikhailova N, Nolan M, Woyke T, Stolyar S, Vorholt JA, Vuilleumier S (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748

    Article  PubMed  CAS  Google Scholar 

  • McIntire WS (1990) Trimethylamine dehydrogenase from Bacterium W3A1. Methods Enzymol 188:250–260

    Article  PubMed  CAS  Google Scholar 

  • McIntire WS, Hartman C (1993) Copper-containing amine oxidases. In: Davidson V (ed) Principles and applications of quinoproteins. Marcel Dekker, New York, pp 97–172

    Google Scholar 

  • Meschi F, Wiertz F, Klauss L, Cavalieri C, Blok A, Ludwig B, Heering HA, Merli A, Rossi GL, Ubbink M (2010) Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex. J Am Chem Soc 132:14537–14545

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  PubMed  CAS  Google Scholar 

  • Nagy PL, Marolewski A, Benkovic SJ, Zalkin H (1995a) Formyltetrahydrofolate hydrolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 177:1292–1298

    PubMed  CAS  Google Scholar 

  • Nagy I, Verheijen S, De Schrijver A, Van Damme J, Proost P, Schoofs G, Vanderleyden J, De Mot R (1995b) Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N, N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol 163:439–446

    Article  PubMed  CAS  Google Scholar 

  • Nesvera J, Hochmannova J, Patek M, Sroglova A, Becvarova V (1994) Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the gram-positive methylotroph Brevibacterium methylicum by electrotransformation. Appl Microbiol Biotechnol 40:864–866

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Boden R, Moussard H, Schäfer H, Murrell JC (2008a) Substrate-specific clades of active marine methylotrophs associated with a phytoplankton bloom in a temperate coastal environment. Appl Environ Microbiol 74:7321–7328

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Chen Y, Dumont MG, Murrell JC (2008b) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HH, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273:7957–7966

    Article  PubMed  CAS  Google Scholar 

  • Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409

    Article  PubMed  CAS  Google Scholar 

  • Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 495:99–118

    Article  PubMed  Google Scholar 

  • Okubo Y, Yang S, Chistoserdova L, Lidstrom ME (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192:1813–1823

    Article  PubMed  CAS  Google Scholar 

  • Op den Camp HGM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland N-K, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Oremland RS, Culbertson CW (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356:421–423

    Article  CAS  Google Scholar 

  • Park H, Lee H, Ro YT, Kim YM (2010) Identification and functional characterization of a gene for the methanol: N,N′-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). Microbiology 156:463–471

    Article  PubMed  CAS  Google Scholar 

  • Pearson AR, Jones LH, Higgins L, Ashcroft AE, Wilmot CM, Davidson VL (2003) Understanding quinone cofactor biogenesis in methylamine dehydrogenase through novel cofactor generation. Biochemistry 42:3224–3230

    Article  PubMed  CAS  Google Scholar 

  • Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA (2009) Demonstration of the ethylmalonyl-CoA pathway by using 13 C metabolomics. Proc Natl Acad Sci USA 106:4846–4851

    Article  PubMed  CAS  Google Scholar 

  • Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC (2011) Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 5:189

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  PubMed  CAS  Google Scholar 

  • Pomper BK, Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK (1999) A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261:475–480

    Article  PubMed  CAS  Google Scholar 

  • Quayle JR, Pfennig N (1975) Utilization of methanol by rhodospirillaceae. Arch Microbiol 102:193–198

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Smolders AJ, Schmid MC, Rijpstra WI, Wolters-Arts M, Derksen J, Jetten MS, Schouten S, Sinninghe Damsté JS, Lamers LP, Roelofs JG, Op den Camp HJ, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784:1873–1898

    Article  PubMed  CAS  Google Scholar 

  • Ras J, Van Ophem PW, Reijnders WN, Van Spanning RJ, Duine JA, Stouthamer AH, Harms N (1995) Isolation, sequencing, and mutagenesis of the gene encoding NAD-and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 177:247–251

    PubMed  CAS  Google Scholar 

  • Reisch CR, Moran MA, Whitman WB (2011) Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol 2:172

    Article  PubMed  CAS  Google Scholar 

  • Roca A, Rodríguez-Herva JJ, Ramos JL (2009) Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida. J Bacteriol 191:3367–3374

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA (1997) Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Proteins 29:141–152

    Article  PubMed  CAS  Google Scholar 

  • Schaefer JK, Oremland RS (1999) Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Appl Environ Microbiol 65:5035–5041

    PubMed  CAS  Google Scholar 

  • Schmidt S, Christen P, Kiefer P, Vorholt JA (2010) Functional investigation of methanol dehydrogenase-like protein XoxF Methylobacterium extorquens AM1. Microbiology 156:2575–2586

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA (2011) The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 287(1):757–766

    Article  PubMed  CAS  Google Scholar 

  • Semrau JD, Dispirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323:1–12

    Article  PubMed  CAS  Google Scholar 

  • Siddavattam D, Karegoudar TB, Mudde SK, Kumar N, Baddam R, Avasthi TS, Ahmed N (2011) Genome of a novel isolate of Paracoccus denitrificans capable of degrading N,N-dimethylformamide. J Bacteriol 193:5598–5599

    Article  PubMed  CAS  Google Scholar 

  • Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME (2010) A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth. PLoS One 5:e14091

    Article  PubMed  CAS  Google Scholar 

  • Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG (2010) Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol 192:6497–6498

    Article  PubMed  CAS  Google Scholar 

  • Stein LY, Bringel F, Dispirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJ, Semrau JD, Vuilleumier S, Bruce DC, Cheng JF, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T (2011) Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). J Bacteriol 193:2668–2669

    Article  PubMed  CAS  Google Scholar 

  • Stirling DI, Dalton H (1978) Purification and properties of an NAD(P) + −linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J Gen Microbiol 107:19–29

    Article  PubMed  CAS  Google Scholar 

  • Strand SE, Lidstrom ME (1984) Characterization of a new marine methylotroph. FEMS Microbiol Lett 21:247–251

    Article  CAS  Google Scholar 

  • Studer A, Vuilleumier S, Leisinger T (1999) Properties of the methylcobalamin:H4folate methyltransferase involved in chloromethane utilization by Methylobacterium sp. strain CM4. Eur J Biochem 264:242–249

    Article  PubMed  CAS  Google Scholar 

  • Studer A, McAnulla C, Büchele R, Leisinger T, Vuilleumier S (2002) Chloromethane-induced genes define a third C1 utilization pathway in Methylobacterium chloromethanicum CM4. J Bacteriol 184:3476–3484

    Article  PubMed  CAS  Google Scholar 

  • Suylen GM, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG: a dimethyl-sulphide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie Van Leeuwenhoek 52:281–293

    Article  PubMed  CAS  Google Scholar 

  • Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Médigue C, Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T (2011) Genome sequence of the arctic methanotroph Methylobacter tundripaludum SV96. J Bacteriol 193:6418–6419

    Article  PubMed  CAS  Google Scholar 

  • Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Kusakabe Y, Ito K, Yoshimoto T, Nakamura KT (2003) Crystal structure of glutathione-independent formaldehyde dehydrogenase. Chem Biol Interact 143–144:211–218

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  PubMed  CAS  Google Scholar 

  • Van Ophem PW, Duine JA (1990) Different types of formaldehyde-oxidizing dehydrogenases in Nocardia sp. p. 239: purification and characterization of an NAD-dependent aldehyde dehydrogenase. Arch Biochem Biophys 282:248–253

    Article  PubMed  Google Scholar 

  • Van Ophem PW, Van Beeumen J, Duine JA (1992) NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. Eur J Biochem 206:511–518

    Article  PubMed  Google Scholar 

  • Vannelli T, Messmer M, Studer A, Vuilleumier S, Leisinger T (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. Proc Natl Acad Sci USA 96:4615–4620

    Article  PubMed  CAS  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249

    Article  PubMed  CAS  Google Scholar 

  • Vorholt J, Chistoserdova L, Lidstrom ME, Thauer RK (1998) The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356

    PubMed  CAS  Google Scholar 

  • Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME (1999) Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757

    PubMed  CAS  Google Scholar 

  • Vorholt JA, Kalyuzhnaya MG, Hagemeier CH, Lidstrom ME, Chistoserdova L (2005) MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases. J Bacteriol 187:6069–6074

    Article  PubMed  CAS  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  PubMed  CAS  Google Scholar 

  • Vrijbloed JW, van Hylckama VJ, van der Put NM, Hessels GI, Dijkhuizen L (1995) Molecular cloning with a pMEA300-derived shuttle vector and characterization of the Amycolatopsis methanolica prephenate dehydratase gene. J Bacteriol 177:6666–6669

    PubMed  CAS  Google Scholar 

  • Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Médigue C, Lidstrom ME (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584

    Article  PubMed  CAS  Google Scholar 

  • Vuilleumier S, Nadalig T, Ul Haque MF, Magdelenat G, Lajus A, Roselli S, Muller EE, Gruffaz C, Barbe V, Médigue C, Bringel F (2011) Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1. J Bacteriol 193:5035–5036

    Article  PubMed  CAS  Google Scholar 

  • Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJM, Jetten MSM, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG (2012) Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 194(2):551–552

    Article  PubMed  CAS  Google Scholar 

  • Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci USA 96:7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Ward N, Larsen Ø, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methé B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2:e303

    Article  PubMed  CAS  Google Scholar 

  • Weaver CW, Lidstrom ME (1985) Methanol dissimilation in Xanthobacter H4-14: activities, induction and comparison to Pseudomonas AM1 and Paracoccus denitrificans. J Gen Microbiol 131:2183–2197

    PubMed  CAS  Google Scholar 

  • Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Trüper JG, Balows A, Schlegel HG (eds) [{http://www.prokaryotes.com}The Prokaryotes]. Springer, New York, pp 894–902

  • Wilmot CM, Davidson VL (2009) Uncovering novel biochemistry in the mechanism of tryptophan tryptophylquinone cofactor biosynthesis. Curr Opin Chem Biol 13:469–474

    Article  PubMed  CAS  Google Scholar 

  • Wilson SM, Gleisten MP, Donohue TJ (2008) Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides. Microbiology 154:296–305

    Article  PubMed  CAS  Google Scholar 

  • Xu HH, Viebahn M, Hanson RS (1993) Identification of methanol-regulated promoter sequences from the facultative methylotrophic bacterium Methylobacterium organophilum XX. J Gen Microbiol 139:743–752

    Article  PubMed  CAS  Google Scholar 

  • Yang CC, Packman LC, Scrutton NS (1995) The primary structure of Hyphomicrobium X dimethylamine dehydrogenase: relationship to trimethylamine dehydrogenase and implications for substrate recognition Eur. J Biochem 232:264–271

    CAS  Google Scholar 

  • Yasueda H, Kawahara Y, Sugimoto S (1999) Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181:7154–7160

    PubMed  CAS  Google Scholar 

  • Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815

    Article  PubMed  CAS  Google Scholar 

  • Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029

    PubMed  CAS  Google Scholar 

  • Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA (2001) Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 183:6832–6840

    Article  PubMed  CAS  Google Scholar 

  • Zatman LJ (1981) A search for patterns in methylotrophic pathways. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 42–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Chistoserdova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chistoserdova, L., Lidstrom, M.E. (2013). Aerobic Methylotrophic Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_68

Download citation

Publish with us

Policies and ethics