Skip to main content

The Family Acidimicrobiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The order Acidimicrobiales, phylum Actinobacteria, is a phylogenetically well defined lineage that embraces 5 genera. While the family Acidimicrobiaceae harbors 5 genera, the family Iamiaceae is monogeneric. However, there is phylogenetic evidence that the genus Ilumatobacter, Acidimicrobiaceae, is more closely related to the genus Iamia than to other members of the family. While Acidimicrobium, Ferrimicrobium, Ferrithrix and Aciditerrimonas are obligate acidophilic, oxidize ferrous iron or reduce ferric iron and contain meso-diaminopimelic acid in their peptidoglycan, Ilumatobacter grows under neutral or slightly alkaline conditions, is and organotrophic and contains LL-diaminopimelic acid in its peptidoglycan. The iron oxidizing members are involved in uncontrolled pollution by heavy metals but are also used under controlled conditions for biomining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46:344–3446

    Article  CAS  PubMed  Google Scholar 

  • Bond PL, Banfield JF (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161

    CAS  PubMed  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breuker A, Blazejak A, Bosecker K, Schippers A, Lavalle TL (2009) Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. In: Donati ER, Viera MR, Tavani EL, Giaveno MA, Chiacchiarini PA (eds) Advanced materials research, biohydrometallurgy: a meeting point between microbial ecology, metal recovery processes amd environmental remediation. Trans Tech, Zürich, pp 47–50

    Google Scholar 

  • Brierley JA (1978) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Brofft JE, Vaun McArthur J, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769

    Article  CAS  PubMed  Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed–culture ferrous iron oxidation with Sulfolobus species. Microbiology 142:785–790

    Article  CAS  Google Scholar 

  • Cleaver AA, Burton NP, Norris PR (2007) A novel Acidimicrobium species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. Appl Environ Microbiol 73:4294–4299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clum A, Nolan M, Lang E, Glavina T, Del Rio H, Tice A, Copeland J-F, Cheng S, Lucas F, Chen D, Bruce L, Goodwin S, Pitluck N, Ivanova K, Mavromatis N, Mikhailova A, Pati A, Chen K, Palaniappan M, Göker S, Spring M, Land L, Hauser Y-J, Chang CD, Jeffries P, Chain J, Bristow JA, Eisen V, Markowitz P, Hugenholtz NC, Kyrpides H-PK, Lapidus A (2009) Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). Stand Genomic Sci 1:38–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins G, Foy C, McHugh S, O’Flaherty V (2005) Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 degrees C. FEMS Microbiol Ecol 53:167–178

    Article  CAS  PubMed  Google Scholar 

  • Davis-Belmar CS, Norris PR (2009) Ferrous iron and pyrite oxidation by “Acidithiomicrobium” species. Adv Mater Res 71–73:271–274

    Article  Google Scholar 

  • DSMZ Catalogue of Strains (2001) http//www.dsmz.de

  • Garcia-Moyano A, Gonzalez-Toril E, Aquilera A, Amils R (2012) Comparative microbial ecology study of the sediments and the water columns of the Rio Tinto, an extreme acidic environment. FEMS Microb Ecol 81:303–314

    Article  CAS  Google Scholar 

  • Garrido P, Gonzalez-Toril E, Garcia-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (eds) (2001) The road map to the manual. Bergey’s manual of systematic bacteriology. Springer, New York

    Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) The proteobacteria, part A, introductory essays, vol 2, 2nd edn. Springer, New York, pp 159–206

    Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed Central  PubMed  Google Scholar 

  • González-Toril E, Aguilera A, Souza-Egipsy V, Lopez Pamo E, Sanchez Espana J, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic “acid streamer” growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T (2011) Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int J Syst Evol Microbiol 61:1281–1285

    Article  PubMed  Google Scholar 

  • Jenkins SN, Waite IS, Blackburn A, Husband R, Rushton SP, Manning DC, O’Donnell AG (2009) Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95:319–334

    Article  PubMed  Google Scholar 

  • Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23:205–218

    Article  Google Scholar 

  • Johnson DB, McGinness S (1991) A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic iron-oxidising, acidophilic bacteria. J Microbiol Methods 13:113–122

    Article  Google Scholar 

  • Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurahashi M, Fukunaga Y, Akiyama Y, Harayama S, Yokota A (2009) Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59:869–873

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni S, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Z, Zhang W (2012) Comparative phylogenies of ribosomal proteins and the 16S rRNA gene at higher ranks of the class Actinobacteria. Curr Microbiol 65:1

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, the Actinobacteria. Springer, New York

    Google Scholar 

  • Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Lumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Gen Appl Microbiol 55:201–205

    Article  CAS  PubMed  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681

    Article  CAS  PubMed  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel Actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36

    Article  CAS  PubMed  Google Scholar 

  • Normand P (1996) Geodermatophilaceae fam.nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278

    Article  Google Scholar 

  • Normand P (2006) The families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 669–681

    Chapter  Google Scholar 

  • Norris PR, Barr DW (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28:221–224

    Article  CAS  Google Scholar 

  • Norris PR, Davis-Belmar CS, Brown CF, Calvo-Bado LA (2011) Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15:155–163

    Article  CAS  PubMed  Google Scholar 

  • Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783

    Article  CAS  PubMed  Google Scholar 

  • Pertoft H, Laurent TC, Låås T, Kågedal L (1978) Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem 88:271–282

    Article  CAS  PubMed  Google Scholar 

  • Readett D, Sylwestrzak L, Franzmann PD, Plumb JJ, Robertson WR, Gibson JAE, Watling H, Young CA (2003) The life cycle of a chalcocite heap bioleach system. In: Young CA, Alfantazi AM, Anderson CG, Dreisinger DB, Harris B, James A (eds) Hydrometallurgy, vol 1, Leaching and solution purification. TMS, Warrendale, pp 365–374

    Google Scholar 

  • Rheims H, Sproer C, Rainey FA, Stackebrandt E (1996) Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870

    Article  CAS  PubMed  Google Scholar 

  • Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64

    Article  CAS  PubMed  Google Scholar 

  • Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst Appl Microbiol 31:68–77

    Article  PubMed  Google Scholar 

  • Rudi K, Zimonja M, Naes T (2006) Alignment-independent bilinear multivariate modelling (AIBIMM) for global analyses of 16S rRNA gene phylogeny. Int J Syst Evol Microbiol 56:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:471–491

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Sultana M, Vogler S, Zargar K, Schmidt AC, Saltikov C, Seifert J, Schlömann M (2012) New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194:623–625

    Google Scholar 

  • Urbieta MS, González Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic River in Neuquén, Argentina. Microb Ecol 64:91–104

    Article  PubMed  Google Scholar 

  • Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750

    Article  CAS  PubMed  Google Scholar 

  • Watkin EL, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR (2009) Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol 36:461–465

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Huang J, Deng M, Zhang W (2008) Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp. Antonie Van Leeuwenhoek 94:533–542

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Liu X, Dai Z, Ding J, Liu X (2008) Molecular diversity of 16S rRNA and gyrB genes in copper mines. Arch Microbiol 189:101–110

    Article  CAS  PubMed  Google Scholar 

  • Zammit CM, Jonna Mangold SV, Mutch LA, Watling HR, Dopson M, Watkin EL (2012) Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93:319–329

    Article  PubMed  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erko Stackebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stackebrandt, E. (2014). The Family Acidimicrobiaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_198

Download citation

Publish with us

Policies and ethics