Skip to main content

The Class Nitriliruptoria

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The Nitriliruptoria line of descent is one of the deeply branching actinobacterial lineages, containing the orders Nitriliruptorales and Euzebyales. Each of them is defined by a single family, genus, and species, respectively: within Nitriliruptoraceae, it is the genus Nitriliruptor with Nitriliruptor alkaliphilus (Sorokin et al. 2009) and within Euzebyaceae, it is Euzebya with Euzebya tangerina (Kurahashi et al. 2010). The higher classification as a subclass Nitriliruptoridae, and recently as a class Nitriliruptoria, followed the description of Euzebya tangerina and the notion that Nitriliruptorales and Euzebyales are phylogenetic neighbors, sharing a common origin. Nitriliruptor alkaliphilus has been isolated from soda lake sediments of the Kulunda Steppe (Altai, Russia). The Gram-positive type strain ANL-iso2T is the only known alkaliphilic bacterium to degrade isobutyronitrile [iBN, (CH3)2CHCN] and utilizes it as a sole source of energy, carbon, and nitrogen. Biodegradation is via the nitrile hydratase/amidase system. Euzebya tangerina was isolated from abdominal epidermidis of a sea cucumber, Holothuria edulis. In addition to the type strains, the lineage contains several unclassified isolates and hitherto uncultured strains from sources different to those of the type strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19:1033–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chertkov O, Sikorski J, Nolan M, Lapidus A, Lucas S, Del Rio TG, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Djao OD, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Han C, Detter JC, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC (2011) Complete genome sequence of Thermomonospora curvata type strain (B9). Stand Genomic Sci 4:13–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790

    Article  CAS  Google Scholar 

  • Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb Ecol 58:290–306

    Article  CAS  PubMed  Google Scholar 

  • Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J-S, Crowley DE (2007) Microbial diversity in natural Asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol 73:4579–4591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurahashi M, Yokota A (2004) Agarivorans albus gen. nov., sp. nov., a γ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 54:693–697

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A (2009) Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59:869–873

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A (2010) Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoriaceae subclassis nov. Int J Syst Evol Microbiol 60:2314–2319

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Euzeby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  • Matsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Appl Microbiol 55:201–205

    CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587

    Article  PubMed Central  PubMed  Google Scholar 

  • Mesbah NM, Abou-El-Ela HS, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi an Natrun, Egypt. Microb Ecol 54:598–616

    Article  CAS  PubMed  Google Scholar 

  • Normand P (2006) The families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 669–681

    Chapter  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, van Pelt S, Tourova TP, Muyzer G (2007) Microbial isobutyronitrile utilization at haloalkaline conditions. Appl Environ Microbiol 73:5574–5579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254

    Article  CAS  PubMed  Google Scholar 

  • Van Pelt S, Quignard S, Kubáč D, Sorokin DY, van Rantwijk F, Sheldon RA (2008a) Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green Chem 10:395–400

    Article  Google Scholar 

  • Van Pelt S, van Rantwijk F, Sheldon RA (2008b) Nitrile hydratases in synthesis. Chim Oggi 26:S2–S4

    Google Scholar 

  • Van Pelt S, van Rantwijk F, Sheldon RA (2009) Synthesis of aliphatic (S)-α-hydroxycarboxylic amides using a one-pot bienzymatic cascade of immobilised oxynitrilase and nitrile hydratase. Adv Synth Catal 351:397–404

    Article  Google Scholar 

  • Van Pelt S, Zhang M, Otten LG, Holt J, Sorokin DY, van Rantwijk F, Black GW, Perry JJ, Sheldon RA (2011) Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org Biomol Chem 9:3011–3019

    Article  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Parts of this chapter have been prepared under the EMbaRC project (EU Seventh Framework Programme Research Infrastructures [Infra-2—8-1.1.2.9: Biological Resources Centres (BRCs) for Microorganisms, grant Agreement No: FP7-228310) to support science in BRCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erko Stackebrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Stackebrandt, E., Otten, L.G. (2014). The Class Nitriliruptoria . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_197

Download citation

Publish with us

Policies and ethics