Skip to main content

The Families Sanguibacteraceae and Rarobacteraceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The monogeneric family Sanguibacteraceae, defined on the basis of 16S rRNA gene sequence comparison and signature nucleotides, is a member of the order Micrococcales. Its precise 16S rRNA gene sequence-based phylogenetic position among the other 14 families of the order has not yet been determined with confidence as this lineage branches with varying neighbors depending upon algorithms and selection of sequences used in the analyses. The monogeneric family Rarobacteraceae was included in this chapter as it branches adjacent to Sanguibacteraceae in several ML and NJ trees. The six species of Sanguibacter possess a DNA mol% G+C between 69 and 73 mol%, an A4α peptidoglycan type, the predominant menaquinone MK-9(H4), straight-chain saturated, as well as iso- and anteiso-methyl-branched fatty acids and resemble certain members of Cellulomonadaceae and Promicromonosporaceae. Some type strains were isolated from blood of apparently healthy cows while others were found in soil, sand, and sediment. An extended range of habitats was revealed by non-culture studies and encompasses terrestrial and aquatic ecosystems. Strains are medically nonrelevant and have limited application potential. The genus Rarobacter embraces two species with yeast-lysing abilities. The ornithine-containing peptidoglycan type is A4β, and menaquinones are fully unsaturated and of the MK-9 type. Members of the genus must be considered rare actinobacteria as the literature mentions almost no additional cultures or 16S rRNA gene clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, McNeil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busse H-J, Schumann P (1999) Polyamine profiles within genera of the class Actinobacteria with LL-diaminopimelic acid in the peptidoglycan. Int J Syst Bacteriol 49:179–184

    Article  CAS  PubMed  Google Scholar 

  • Christner BC (2002) Recovery of bacteria from glacial and subglacial environments. Thesis, Ohio State University, Columbus

    Google Scholar 

  • Dominguez Rodriguez L, Suarez Fernandez G, Garayzabal JFF, Rodriguez Ferri E (1984) New methodology for the isolation of Listeria microorganisms from heavily contaminated environments. Appl Environ Microbiol 47:1188–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Garayzábal JF, Dominguez L, Pascual C, Jones D, Collins MD (1995) Phenotypic and phylogenetic characterization of some unknown coryneform bacteria isolated from bovine blood and milk: description of Sanguibacter gen.nov. Lett Appl Microbiol 20:69–75

    Article  PubMed  Google Scholar 

  • Funke G, von Graevenitz A, Clarridge JE 3rd, Bernard KA (1997) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Góra A, Mackiewicz B, Krawczyk P, Golec M, Skórska C, Sitkowska J, Cholewa G, Larsson L, Jarosz M, Wójcik-Fatla A, Dutkiewicz J (2009) Occupational exposure to organic dust, microorganisms, endotoxin and peptidoglycan among plants processing workers in Poland. Ann Agric Environ Med 16:143–150

    PubMed  Google Scholar 

  • Goto-Yamamoto N, Sato S, Miki H, Park YK, Tadenuma M (1993) Taxonomic studies on yeast-lysing bacteria, and a new species Rarobacter incanus. J Gen Appl Microbiol 39:261–272. Validation Lists N° 49 (1994) Int J Syst Bacteriol 44:370–371

    Google Scholar 

  • Han SJ, Park H, Lee SG, Lee HK, Yim HJ (2011) Optimization of cold-active chitinase production from the Antarctic bacterium, Sanguibacter antarcticus KOPRI 21702. Appl Microbiol Biotechnol 89:613–621

    Article  CAS  PubMed  Google Scholar 

  • Hasuo T, Yamamoto N, Saito K, Tadenuma M (1984) Isolation of a yeast-lysing microorganism from activated sludge and its characteristics. J Brew Soc Jpn 79:510–516

    Article  Google Scholar 

  • Herranen M, Kariluoto S, Edelmann M, Piironen V, Ahvenniemi K, Iivonen V, Salovaara H, Korhola M (2010) Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int J Food Microbiol 142:277–285

    Article  CAS  PubMed  Google Scholar 

  • Hong SG, Lee YK, Yim JH, Chun J, Lee HK (2008) Sanguibacter antarcticus sp. nov., isolated from Antarctic sea sand. Int J Syst Evol Microbiol 58:50–52

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Dai X, He L, Wang YN, Wang BJ, Liu Z, Liu SJ (2005) Sanguibacter marinus sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 55:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N, Sikorski J, Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, Tice H, Cheng JF, Bruce D, Goodwin L, Pitluck S, Pati A, Mavromatis K, Chen A, Palaniappan K, D’haeseleer P, Chain P, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Göker M, Pukall R, Klenk HP, Kyrpides NC (2009) Complete genome sequence of Sanguibacter keddieii type strain (ST-74). Stand Genomic Sci 1:110–118

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim MK, Pulla RK, Kim SY, Yi TH, Soung NK, Yang DC (2008) Sanguibacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:538–541

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Lagacé L, Pitre M, Jacques M, Roy D (2004) Identification of the bacterial community of maple sap by using amplified ribosomal DNA (rDNA) restriction analysis and rDNA sequencing. Appl Environ Microbiol 70:2052–2060

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee SG, Koh HY, Han SJ, Park H, Na DC, Kim IC, Lee HK, Yim JH (2010) Expression of recombinant endochitinase from the Antarctic bacterium, Sanguibacter antarcticus KOPRI 21702 in Pichia pastoris by codon optimization. Protein Expr Purif 71:108–114

    Article  CAS  PubMed  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  • Pascual Ramos C, Fernández-Garayzábal JF (2012) Family XV. Sanguibacteraceae. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1027–1034

    Google Scholar 

  • Pascual Ramos C, Collins MD, Grimont PA, Dominguez L, Fernández-Garayzábal JF (1996) Sanguibacter inulinus sp. nov. Int J Syst Bacteriol 46:811–813

    Article  Google Scholar 

  • Schleifer K-H, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schumann P (2011) Peptidoglycan structure. In: Rainey F, Oren A (eds) Taxonomy of prokaryotes, methods in microbiology, vol 38. Academic, London, pp 101–129

    Chapter  Google Scholar 

  • Shimoi H, Tadenuma M (1991) Characterization of Rarobacter faecitabidus protease I, a yeast-lytic serine protease having mannose-binding activity. J Biochem 110:608–613

    CAS  PubMed  Google Scholar 

  • Shimoi H, Iimura Y, Obata T, Tadenuma M (1992) Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having mannose-binding activity. J Biol Chem 267:25189–25195

    CAS  PubMed  Google Scholar 

  • Shimoi H, Iimura Y, Obata T (1995) Molecular cloning of CWP1: a gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabidus protease I. J Biochem 118:302–311

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Schumann P (2000) Description of Bogoriellaceae fam nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 50:279–1285

    Article  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Tabares P, Pimentel-Elardo SM, Schirmeister T, Hunig T, Hentschel U (2011) Anti-protease and immunomodulatory activities of bacteria associated with Caribbean sponges. Mar Biotechnol 13:883–892

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Jin H, Long ZF, Zhang L, Ding XQ, Tao K, Liu SG (2006) Cloning and expression of a chitinase gene from Sanguibacter sp. C4. Yi Chuan Xue Bao 33:1037–1046

    CAS  PubMed  Google Scholar 

  • Vardhan Reddy PV, Shiva Nageswara Rao SS, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Radha Srinivas TN, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midtre Lovenbreen glacier, an Arctic glacier. Res Microbiol 160:538–546

    Article  PubMed  Google Scholar 

  • Yamamoto N, Sato SI, Saito K, Hasuo T, Tadenuma M, Suzuki KI, Tamaoka J, Komagata K (1988) Rarobacter faecitabidus gen. nov., sp. nov., a yeast-lysing coryneform bacterium. Int J Syst Bacteriol 38:7–11

    Article  CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yong T, Zhangfu L, Jing X, Hong J, Hongyan R, Ke T, Shaorong G, Kun L, Shigui L (2005) Identification of a chitinase-producing bacterium C4 and histopathologic study on locusts. Pest Manag Sci 61:159–165

    Article  CAS  PubMed  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  PubMed  Google Scholar 

  • ZoBell CE (1946) Marine microbiology: a monograph on hydrobacteriology. Chronica Botanica, Waltham

    Google Scholar 

Download references

Acknowledgments

This chapter has been prepared under the EMbaRC project (EU Seventh Framework Programme Research Infrastructures INFRA-2008-1.1.2.9: Biological Resources Centres (BRCs) for microorganisms (Grant agreement number: FP7-228310)) to support science in BRCs. We wish to thank Rüdiger Pukall, Cathrin Spröer, Ulrike Steiner, Nicole Mrotzek and Anika Wasner (all DSMZ) for molecular analysis on S. inulinus and Peter Green (NCIMB), Ed Moore (CCUG), and Takuji Kudo (JCM) for their input in solving the authenticity problem of its type strain. We are deeply grateful to Rie Homma (Sapporo, Japan) for the translation of the Hasuo et al. (1984) article, originally printed in Japanese.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schumann, P., Stackebrandt, E. (2014). The Families Sanguibacteraceae and Rarobacteraceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30138-4_174

Download citation

Publish with us

Policies and ethics