Life at Low Temperatures

  • Thilo M. Fuchs
  • Klaus Neuhaus
  • Siegfried Scherer


Bacterial life in cold habitats affects earth ecology with deep and often overseen implications for human beings. Here, we review the current knowledge on microbial diversity and ecology at low temperatures and highlight the fascinating research on manifold cold adaptation mechanisms including sensing and regulation; the conformation of ribosomes, enzymes, and membranes; the cold shock response; and the long-term acclimatization to cold conditions. Biotechnological applications and aspects relevant for food safety are also summarized.



Branched-chain amino acids


Cold shock protein




Initiation factor




Lactic acid bacteria


Major cold shock protein


Polynucleotide phosphorylase

PTS PEP-dependent

Phosphotransferase system


Two-component system


Unsaturated fatty acid


  1. Aguilar PS, Cronan JE Jr, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180(8):2194–2200PubMedGoogle Scholar
  2. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D (2001) Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20(7):1681–1691PubMedCrossRefGoogle Scholar
  3. Alam SI, Dixit A, Reddy GS, Dube S, Palit M, Shivaji S, Singh L (2006) Clostridium schirmacherense sp. nov., an obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. Int J Syst Evol Microbiol 56:715–720PubMedCrossRefGoogle Scholar
  4. Albers SV, van de Vossenberg JL, Driessen AJ, Konings WN (2000) Adaptations of the archaeal cell membrane to heat stress. Front Biosci 5:D813–D820PubMedCrossRefGoogle Scholar
  5. Allen EE, Bartlett DH (2002) Structure and regulation of the ω-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:1903–1913PubMedGoogle Scholar
  6. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65(4):1710–1720PubMedGoogle Scholar
  7. Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N, Dalin E, Martinez M, Lapidus A, Hauser L, Land M, Thomas T, Cavicchioli R (2009) The genome sequence of the psychrophilic archaeon, Methanococcoides burtonii: the role of genome evolution in cold adaptation. ISME J 3(9):1012–1035PubMedCrossRefGoogle Scholar
  8. Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 9:73PubMedGoogle Scholar
  9. Amato P, Christner BC (2009) Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Appl Environ Microbiol 75(3):711–718PubMedCrossRefGoogle Scholar
  10. Amato P, Doyle SM, Battista JR, Christner BC (2010) Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10(8):789–798PubMedCrossRefGoogle Scholar
  11. Ambily Nath IV, Loka Bharathi PA (2011) Diversity in transcripts and translational pattern of stress proteins in marine extremophiles. Extremophiles 15(2):129–153PubMedCrossRefGoogle Scholar
  12. Angelidis AS, Smith GM (2003) Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69(12):7492–7498PubMedCrossRefGoogle Scholar
  13. Angelidis AS, Smith LT, Hoffman LM, Smith GM (2002a) Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 68(6):2644–2650PubMedCrossRefGoogle Scholar
  14. Angelidis AS, Smith LT, Smith GM (2002b) Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Int J Food Microbiol 75(1–2):1–9PubMedCrossRefGoogle Scholar
  15. Arguedas-Villa C, Stephan R, Tasara T (2010) Evaluation of cold growth and related gene transcription responses associated with Listeria monocytogenes strains of different origins. Food Microbiol 27(5):653–660PubMedCrossRefGoogle Scholar
  16. Arnorsdottir J, Smaradottir RB, Magnusson OT, Gudmundur SH, Kristjansson MM (2002) Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species. Eur J Biochem 269(22):5536–5546PubMedCrossRefGoogle Scholar
  17. Auman AJ, Breezee JL, Gosink JJ, Kämpfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007PubMedCrossRefGoogle Scholar
  18. Auman AJ, Breezee JL, Gosink JJ, Schumann P, Barnes CR, Kämpfer P, Staley JT (2010) Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core. Int J Syst Evol Microbiol 60:84–92PubMedCrossRefGoogle Scholar
  19. Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410(2):234–240PubMedCrossRefGoogle Scholar
  20. Awano N, Rajagopal V, Arbing M, Patel S, Hunt J, Inouye M, Phadtare S (2010) Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol 192(5):1344–1352PubMedCrossRefGoogle Scholar
  21. Ayala-del-Rio HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76(7):2304–2312PubMedCrossRefGoogle Scholar
  22. Azizoglu RO, Osborne J, Wilson S, Kathariou S (2009) Role of growth temperature in freeze-thaw tolerance of Listeria spp. Appl Environ Microbiol 75(16):5315–5320PubMedCrossRefGoogle Scholar
  23. Badaoui Najjar M, Chikindas M, Montville TJ (2007) Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Appl Environ Microbiol 73(20):6429–6435PubMedCrossRefGoogle Scholar
  24. Bae W, Phadtare S, Severinov K, Inouye M (1999) Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 31(5):1429–1441PubMedCrossRefGoogle Scholar
  25. Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97(14):7784–7789PubMedCrossRefGoogle Scholar
  26. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at – 10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321–326PubMedCrossRefGoogle Scholar
  27. Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11(2):343–354PubMedCrossRefGoogle Scholar
  28. Bakermans C, Sloup RE, Zarka DG, Tiedje JM, Thomashow MF (2009) Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273–4. Extremophiles 13(1):21–30PubMedCrossRefGoogle Scholar
  29. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421PubMedCrossRefGoogle Scholar
  30. Baneyx F, Mujacic M (2003) Cold-inducible promoters for heterologous protein expression. Methods Mol Biol 205:1–18PubMedGoogle Scholar
  31. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888PubMedCrossRefGoogle Scholar
  32. Beckering CL, Steil L, Weber MH, Völker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184(22):6395–6402PubMedCrossRefGoogle Scholar
  33. Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C (2000) Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18. J Biol Chem 275(15):11147–11153PubMedCrossRefGoogle Scholar
  34. Beran RK, Simons RW (2001) Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation. Mol Microbiol 39(1):112–125PubMedCrossRefGoogle Scholar
  35. Beranova J, Mansilla MC, de Mendoza D, Elhottova D, Konopasek I (2010) Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. J Bacteriol 192(16):4164–4171PubMedCrossRefGoogle Scholar
  36. Bergholz PW, Bakermans C, Tiedje JM (2009) Psychrobacter arcticus 2734 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J Bacteriol 191(7):2340–2352PubMedCrossRefGoogle Scholar
  37. Bhakoo M, Herbert RA (1980) Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures. Arch Microbiol 126(1):51–55PubMedCrossRefGoogle Scholar
  38. Bidle KD, Manganelli M, Azam F (2002) Regulation of oceanic silicon and carbon preservation by temperature control on bacteria. Science 298(5600):1980–1984PubMedCrossRefGoogle Scholar
  39. Boerema JA, Broda DM, Bell RG (2003) Abattoir sources of psychrophilic clostridia causing blown pack spoilage of vacuum-packed chilled meats determined by culture-based and molecular detection procedures. Lett Appl Microbiol 36(6):406–411PubMedCrossRefGoogle Scholar
  40. Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68(12):7069–7077PubMedCrossRefGoogle Scholar
  41. Boziaris IS, Adams MR (2001) Temperature shock, injury and transient sensitivity to nisin in gram negatives. J Appl Microbiol 91(4):715–724PubMedCrossRefGoogle Scholar
  42. Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418CrossRefGoogle Scholar
  43. Brakstad OG, Lodeng AG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49(1):94–103PubMedCrossRefGoogle Scholar
  44. Brandi A, Spurio R, Gualerzi CO, Pon CL (1999) Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J 18(6):1653–1659PubMedCrossRefGoogle Scholar
  45. Brandl MT (2006) Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol 44:367–392PubMedCrossRefGoogle Scholar
  46. Braun Y, Smirnova AV, Schenk A, Weingart H, Burau C, Muskhelishvili G, Ullrich MS (2008) Component and protein domain exchange analysis of a thermoresponsive, two-component regulatory system of Pseudomonas syringae. Microbiology 154:2700–2708PubMedCrossRefGoogle Scholar
  47. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47(3):300–304PubMedCrossRefGoogle Scholar
  48. Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol 17:432–437CrossRefGoogle Scholar
  49. Bresolin G, Morgan JA, Ilgen D, Scherer S, Fuchs TM (2006a) Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59(2):503–512PubMedCrossRefGoogle Scholar
  50. Bresolin G, Neuhaus K, Scherer S, Fuchs TM (2006b) Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188(8):2945–2958PubMedCrossRefGoogle Scholar
  51. Brightwell G, Clemens R, Urlich S, Boerema J (2007) Possible involvement of psychrotolerant Enterobacteriaceae in blown pack spoilage of vacuum-packaged raw meats. Int J Food Microbiol 119(3):334–339PubMedCrossRefGoogle Scholar
  52. Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185(15):4305–4314PubMedCrossRefGoogle Scholar
  53. Broda DM, Saul DJ, Bell RG, Musgrave DR (2000a) Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium. Int J Syst Evol Microbiol 50:623–631PubMedCrossRefGoogle Scholar
  54. Broda DM, Saul DJ, Lawson PA, Bell RG, Musgrave DR (2000b) Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. Int J Syst Evol Microbiol 50:107–118PubMedCrossRefGoogle Scholar
  55. Broeze RJ, Solomon CJ, Pope DH (1978) Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol 134(3):861–874PubMedGoogle Scholar
  56. Budde I, Steil L, Scharf C, Völker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152:831–853PubMedCrossRefGoogle Scholar
  57. Bylund GO, Wipemo LC, Lundberg LA, Wikstrom PM (1998) RimM and RbfA are essential for efficient processing of 16 S rRNA in Escherichia coli. J Bacteriol 180(1):73–82PubMedGoogle Scholar
  58. Byun JS, Min JS, Kim IS, Kim JW, Chung MS, Lee M (2003) Comparison of indicators of microbial quality of meat during aerobic cold storage. J Food Prot 66(9):1733–1737PubMedGoogle Scholar
  59. Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA (2010) Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics 73(10):2021–2030PubMedCrossRefGoogle Scholar
  60. Cairrão F, Cruz A, Mori H, Arraiano CM (2003) Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol 50(4):1349–1360PubMedCrossRefGoogle Scholar
  61. Camardella L, Di Fraia R, Antignani A, Ciardiello MA, Di Prisco G, Coleman JK, Buchon L, Guespin J, Russell NJ (2002) The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+−dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol 131(3):559–567PubMedCrossRefGoogle Scholar
  62. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66(10):4514–4517PubMedCrossRefGoogle Scholar
  63. Carpentier B, Cerf O (2011) Review – persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145(1):1–8PubMedCrossRefGoogle Scholar
  64. Carty SM, Sreekumar KR, Raetz CR (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274(14):9677–9685PubMedCrossRefGoogle Scholar
  65. Casanueva A, Tuffin M, Cary C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol 18(8):374–381PubMedCrossRefGoogle Scholar
  66. Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2(3):281–292PubMedCrossRefGoogle Scholar
  67. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4(5):331–343PubMedCrossRefGoogle Scholar
  68. Cavicchioli R (2011) Archaea–timeline of the third domain. Nat Rev Microbiol 9(1):51–61PubMedCrossRefGoogle Scholar
  69. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13(3):253–261PubMedCrossRefGoogle Scholar
  70. Chablain PA, Philippe G, Groboillot A, Truffaut N, Guespin-Michel JF (1997) Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res Microbiol 148(2):153–161PubMedCrossRefGoogle Scholar
  71. Champagne CP, Laing RR, Roy D, Mafu AA, Griffiths MW (1994) Psychrotrophs in dairy products: their effects and their control. Crit Rev Food Sci Nutr 34(1):1–30PubMedCrossRefGoogle Scholar
  72. Chan YC, Wiedmann M (2009) Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit Rev Food Sci Nutr 49(3):237–253PubMedCrossRefGoogle Scholar
  73. Chan YC, Raengpradub S, Boor KJ, Wiedmann M (2007) Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol 73(20):6484–6498PubMedCrossRefGoogle Scholar
  74. Chassaing D, Auvray F (2007) The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature. FEMS Microbiol Lett 275(1):31–37PubMedCrossRefGoogle Scholar
  75. Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31(1):157–165PubMedCrossRefGoogle Scholar
  76. Chaturvedi P, Shivaji S (2006) Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 56:2765–2770PubMedCrossRefGoogle Scholar
  77. Chaturvedi P, Prabahar V, Manorama R, Pindi PK, Bhadra B, Begum Z, Shivaji S (2008) Exiguobacterium soli sp. nov., a psychrophilic bacterium from the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 58:2447–2453PubMedCrossRefGoogle Scholar
  78. Chihib NE, Ribeiro da Silva M, Delattre G, Laroche M, Federighi M (2003) Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. FEMS Microbiol Lett 218(1):155–160PubMedCrossRefGoogle Scholar
  79. Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJ, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci USA 107(17):7835–7840PubMedCrossRefGoogle Scholar
  80. Chou M, Matsunaga T, Takada Y, Fukunaga N (1999) NH4+ transport system of a psychrophilic marine bacterium, Vibrio sp strain ABE-1. Extremophiles 3(2):89–95PubMedCrossRefGoogle Scholar
  81. Chowdhury S, Ragaz C, Kreuger E, Narberhaus F (2003) Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 278(48):47915–47921PubMedCrossRefGoogle Scholar
  82. Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 degrees C. Appl Environ Microbiol 68(12):6435–6438PubMedCrossRefGoogle Scholar
  83. Christner BC (2010) Bioprospecting for microbial products that affect ice crystal formation and growth. Appl Microbiol Biotechnol 85(3):481–489PubMedCrossRefGoogle Scholar
  84. Clarke DJ, Dowds BC (1994) The gene coding for polynucleotide phosphorylase in Photorhabdus sp strain K122 is induced at low temperatures. J Bacteriol 176(12):3775–3784PubMedGoogle Scholar
  85. Claverie P, Vigano C, Ruysschaert JM, Gerday C, Feller G (2003) The precursor of a psychrophilic alpha-amylase: structural characterization and insights into cold adaptation. Biochim Biophys Acta 1649(2):119–122PubMedCrossRefGoogle Scholar
  86. Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277(38):35133–35139PubMedCrossRefGoogle Scholar
  87. Colquhoun DJ, Sorum H (2001) Temperature dependent siderophore production in Vibrio salmonicida. Microb Pathog 31(5):213–219PubMedCrossRefGoogle Scholar
  88. Cooley MB, Miller WG, Mandrell RE (2003) Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl Environ Microbiol 69(8):4915–4926PubMedCrossRefGoogle Scholar
  89. Cressy HK, Jerrett AR, Osborne CM, Bremer PJ (2003) A novel method for the reduction of numbers of Listeria monocytogenes cells by freezing in combination with an essential oil in bacteriological media. J Food Prot 66(3):390–395PubMedGoogle Scholar
  90. Cronan JE, Rock CO (1996) Biosynthesis of membrane lipids. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DCGoogle Scholar
  91. Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D (2004) Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 279(38):39340–39347PubMedCrossRefGoogle Scholar
  92. Cybulski LE, Martin M, Mansilla MC, Fernandez A, de Mendoza D (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20(17):1539–1544PubMedCrossRefGoogle Scholar
  93. D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357(1423):917–925PubMedCrossRefGoogle Scholar
  94. D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278(10):7891–7896PubMedCrossRefGoogle Scholar
  95. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7(4):385–389PubMedCrossRefGoogle Scholar
  96. Dalluge JJ, Hashizume T, Sopchik AE, McCloskey JA, Davis DR (1996) Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res 24(6):1073–1079PubMedCrossRefGoogle Scholar
  97. Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179(6):1918–1923PubMedGoogle Scholar
  98. Dame RT, Noom MC, Wuite GJ (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444(7117):387–390PubMedCrossRefGoogle Scholar
  99. Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16 S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9(5):626–637PubMedCrossRefGoogle Scholar
  100. Davlieva M, Shamoo Y (2009) Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:751–756PubMedCrossRefGoogle Scholar
  101. De Jonghe V, Coorevits A, De Block J, Van Coillie E, Grijspeerdt K, Herman L, De Vos P, Heyndrickx M (2010) Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int J Food Microbiol 136(3):318–325PubMedCrossRefGoogle Scholar
  102. Delille D, Coulon F (2008) Comparative mesocosm study of biostimulation efficiency in two different oil-amended sub-antarctic soils. Microb Ecol 56(2):243–252PubMedCrossRefGoogle Scholar
  103. DiRita VJ, Engleberg NC, Heath A, Miller A, Crawford JA, Yu R (2000) Virulence gene regulation inside and outside. Philos Trans R Soc Lond B Biol Sci 355(1397):657–665PubMedCrossRefGoogle Scholar
  104. Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69(1):130–138PubMedCrossRefGoogle Scholar
  105. Dommel MK, Frenzel E, Strasser B, Blochinger C, Scherer S, Ehling-Schulz M (2010) Identification of the main promoter directing cereulide biosynthesis in emetic Bacillus cereus and its application for real-time monitoring of ces gene expression in foods. Appl Environ Microbiol 76(4):1232–1240PubMedCrossRefGoogle Scholar
  106. Drouin P, Prevost D, Antoun H (2000) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv viciae associated with Lathyrus spp(1). FEMS Microbiol Ecol 32(2):111–120PubMedGoogle Scholar
  107. Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessieres P, Gibrat JF, Claverol S, Dumetz F, Le Henaff M, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25(7):763–769PubMedCrossRefGoogle Scholar
  108. Duilio A, Tutino ML, Matafora V, Sannia G, Marino G (2001) Molecular characterization of a recombinant replication protein (Rep) from the Antarctic bacterium Psychrobacter sp TA144. FEMS Microbiol Lett 198(1):49–55PubMedCrossRefGoogle Scholar
  109. Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic gram-negative bacteria. Methods Mol Biol 267:225–237PubMedGoogle Scholar
  110. Duplantis BN, Osusky M, Schmerk CL, Ross DR, Bosio CM, Nano FE (2010) Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc Natl Acad Sci USA 107(30):13456–13460PubMedCrossRefGoogle Scholar
  111. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hebraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250(2):253–261PubMedCrossRefGoogle Scholar
  112. Dykes GA, Moorhead SM (2001) The role of L-carnitine and glycine betaine in the survival and sub-lethal injury of non-growing Listeria monocytogenes cells during chilled storage. Lett Appl Microbiol 32(4):282–286PubMedCrossRefGoogle Scholar
  113. Edgcomb MR, Sirimanne S, Wilkinson BJ, Drouin P, Morse RD (2000) Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Biochim Biophys Acta 1463(1):31–42PubMedCrossRefGoogle Scholar
  114. Ehling-Schulz M, Knutsson R, Scherer S (2011) Bacillus cereus. In: Fratamico P, Liu Y, Kathariou S (eds) Genomes of foodborne and waterborne pathogens. ASM Press, Washington, DC, pp 147–164Google Scholar
  115. El-Sharoud WM, Graumann PL (2007) Cold shock proteins aid coupling of transcription and translation in bacteria. Sci Prog 90:15–27PubMedCrossRefGoogle Scholar
  116. Eriksson S, Hurme R, Rhen M (2002) Low-temperature sensors in bacteria. Philos Trans R Soc Lond B Biol Sci 357(1423):887–893PubMedCrossRefGoogle Scholar
  117. Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69(1):275–284PubMedCrossRefGoogle Scholar
  118. Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59(11):1902–1913PubMedCrossRefGoogle Scholar
  119. Etchegaray JP, Inouye M (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181(6):1827–1830PubMedGoogle Scholar
  120. Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol Microbiol 23(2):355–364PubMedCrossRefGoogle Scholar
  121. Fang L, Hou Y, Inouye M (1998) Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180(1):90–95PubMedGoogle Scholar
  122. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60(4):648–662PubMedCrossRefGoogle Scholar
  123. Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11(2):211–216PubMedCrossRefGoogle Scholar
  124. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev 1(1):200–208Google Scholar
  125. Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 276(34):31651–31656PubMedCrossRefGoogle Scholar
  126. Fernandez L, Marquez I, Guijarro JA (2004) Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system. Appl Environ Microbiol 70(9):5199–5207PubMedCrossRefGoogle Scholar
  127. Fong NJ, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56(5–6):750–756PubMedCrossRefGoogle Scholar
  128. Forster J (1887) Über einige Eigenschaften leuchtender Bakterien. Centr Bakteriol Parasitenk 2:337–340Google Scholar
  129. Francis KP, Stewart GSAB (1997) Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers. J Ind Microbiol Biotechnol 19:286–293PubMedCrossRefGoogle Scholar
  130. Franzmann PD, Hopfl P, Weiss N, Tindall BJ (1991) Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 156(4):255–262PubMedCrossRefGoogle Scholar
  131. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, de Conway Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47(4):1068–1072PubMedCrossRefGoogle Scholar
  132. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev Camb Philos Soc 80(1):45–72PubMedCrossRefGoogle Scholar
  133. Fuchs TM, Bresolin G, Marcinowski L, Schachtner J, Scherer S (2008) Insecticidal genes of Yersinia spp taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol 8:21CrossRefGoogle Scholar
  134. Galvez A, Lopez RL, Abriouel H, Valdivia E, Omar NB (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28(2):125–152PubMedCrossRefGoogle Scholar
  135. Gao H, Yang ZK, Wu L, Thompson DK, Zhou J (2006) Global transcriptome analysis of the cold shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold shock proteins. J Bacteriol 188(12):4560–4569PubMedCrossRefGoogle Scholar
  136. Gavaghan H (2002) Life in the deep freeze. Nature 415(6874):828–830PubMedCrossRefGoogle Scholar
  137. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28(1):25–42PubMedCrossRefGoogle Scholar
  138. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18(3):103–107PubMedCrossRefGoogle Scholar
  139. Giangrossi M, Giuliodori AM, Gualerzi CO, Pon CL (2002) Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol Microbiol 44(1):205–216PubMedCrossRefGoogle Scholar
  140. Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2 + −dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245(1):67–72PubMedCrossRefGoogle Scholar
  141. Giuliodori AM, Brandi A, Gualerzi CO, Pon CL (2004) Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10(2):265–276PubMedCrossRefGoogle Scholar
  142. Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CO, Pon CL (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37(1):21–33PubMedCrossRefGoogle Scholar
  143. Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87(1):283–287PubMedCrossRefGoogle Scholar
  144. Gonzalez B, Ceciliani F, Galizzi A (2003) Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol 101(2):173–180PubMedCrossRefGoogle Scholar
  145. Goodchild A, Saunders NF, Ertan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53(1):309–321PubMedCrossRefGoogle Scholar
  146. Gopal B, Haire LF, Gamblin SJ, Dodson EJ, Lane AN, Papavinasasundaram KG, Colston MJ, Dodson G (2001) Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution. J Mol Biol 314(5):1087–1095PubMedCrossRefGoogle Scholar
  147. Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 33–55Google Scholar
  148. Goverde RL, Huis in’t Veld JH, Kusters JG, Mooi FR (1998) The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5 degrees C). Mol Microbiol 28(3):555–569PubMedCrossRefGoogle Scholar
  149. Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–484CrossRefGoogle Scholar
  150. Granum PE, Lund T (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157(2):223–228PubMedCrossRefGoogle Scholar
  151. Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13(5):763–768PubMedCrossRefGoogle Scholar
  152. Graumann P, Marahiel MA (1996) A case of convergent evolution of nucleic acid binding modules. Bioessays 18(4):309–315PubMedCrossRefGoogle Scholar
  153. Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23(8):286–290PubMedCrossRefGoogle Scholar
  154. Graumann PL, Marahiel MA (1999) Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol 1(2):203–209PubMedGoogle Scholar
  155. Graumann P, Schröder K, Schmid R, Marahiel MA (1996) Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 178(15):4611–4619PubMedGoogle Scholar
  156. Graumann P, Wendrich TM, Weber MH, Schröder K, Marahiel MA (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25(4):741–756PubMedCrossRefGoogle Scholar
  157. Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8(6):475–488PubMedCrossRefGoogle Scholar
  158. Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331(3):527–539PubMedCrossRefGoogle Scholar
  159. Guillou C, Guespin-Michel JF (1996) Evidence for two domains of growth temperature for the psychrotrophic bacterium Pseudomonas fluorescens MF0. Appl Environ Microbiol 62(9):3319–3324PubMedGoogle Scholar
  160. Hallsworth JE, Heim S, Timmis KN (2003) Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 5(12):1270–1280PubMedCrossRefGoogle Scholar
  161. Hamasaki Y, Ayaki M, Fuchu H, Sugiyama M, Morita H (2003) Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl Environ Microbiol 69(6):3668–3671PubMedCrossRefGoogle Scholar
  162. Heath C, Hu XP, Cary SC, Cowan D (2009) Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from antarctic desert soil. Appl Environ Microbiol 75(13):4657–4659PubMedCrossRefGoogle Scholar
  163. Hebraud M, Guzzo J (2000) The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol Lett 190(1):29–34PubMedCrossRefGoogle Scholar
  164. Heermann R, Fuchs TM (2008) Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 9:40PubMedCrossRefGoogle Scholar
  165. Herbst K, Bujara M, Heroven AK, Opitz W, Weichert M, Zimmermann A, Dersch P (2009) Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog 5(5):e1000435PubMedCrossRefGoogle Scholar
  166. Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9(3):563–575PubMedCrossRefGoogle Scholar
  167. Hinsa-Leasure SM, Bhavaraju L, Rodrigues JL, Bakermans C, Gilichinsky DA, Tiedje JM (2010) Characterization of a bacterial community from a Northeast Siberian seacoast permafrost sample. FEMS Microbiol Ecol 74(1):103–113PubMedCrossRefGoogle Scholar
  168. Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willassen NP, Thomson NR (2008) The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 9:616PubMedCrossRefGoogle Scholar
  169. Hoe NP, Goguen JD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175(24):7901–7909PubMedGoogle Scholar
  170. Hogfors-Ronnholm E, Wiklund T (2010) Hemolytic activity in Flavobacterium psychrophilum is a contact-dependent, two-step mechanism and differently expressed in smooth and rough phenotypes. Microb Pathog 49(6):369–375PubMedCrossRefGoogle Scholar
  171. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64(12):1457–1470PubMedCrossRefGoogle Scholar
  172. Hu JM, Li H, Cao LX, Wu PC, Zhang CT, Sang SL, Zhang XY, Chen MJ, Lu JQ, Liu YH (2007) Molecular cloning and characterization of the gene encoding cold-active beta-galactosidase from a psychrotrophic and halotolerant Planococcus sp L4. J Agric Food Chem 55(6):2217–2224PubMedCrossRefGoogle Scholar
  173. Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188(1):240–248PubMedCrossRefGoogle Scholar
  174. Hurme R, Rhen M (1998) Temperature sensing in bacterial gene regulation–what it all boils down to. Mol Microbiol 30(1):1–6PubMedCrossRefGoogle Scholar
  175. Huston AL, Methe B, Deming JW (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34 H. Appl Environ Microbiol 70(6):3321–3328PubMedCrossRefGoogle Scholar
  176. Ideno A, Yoshida T, Iida T, Furutani M, Maruyama T (2001) FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins. Biochem J 357:465–471PubMedCrossRefGoogle Scholar
  177. Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278(14):12191–12198PubMedCrossRefGoogle Scholar
  178. Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Annu Rev Microbiol 29:445–465PubMedCrossRefGoogle Scholar
  179. Inouye M, Phadtare S (2004) Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci STKE 2004(237):pe26PubMedCrossRefGoogle Scholar
  180. Irwin JA (2010) Extremophiles and their application to veterinary medicine. Environ Technol 31(8–9):857–869PubMedCrossRefGoogle Scholar
  181. Irwin JA, Gudmundsson HM, Marteinsson VT, Hreggvidsson GO, Lanzetti AJ, Alfredsson GA, Engel PC (2001) Characterization of alanine and malate dehydrogenases from a marine psychrophile strain PA-43. Extremophiles 5(3):199–211PubMedCrossRefGoogle Scholar
  182. Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM, Shivaji S (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173(5–6):418–424PubMedCrossRefGoogle Scholar
  183. Jäger S, Evguenieva-Hackenberg E, Klug G (2004) Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. Microbiology 150:687–695PubMedCrossRefGoogle Scholar
  184. Jahns T, Kaltwasser H (1993) Properties of the cold-labile NAD(+)-specific glutamate dehydrogenase from Bacillus cereus DSM 31. J Gen Microbiol 139:775–780PubMedGoogle Scholar
  185. Janiyani KL, Ray MK (2002) Cloning, sequencing, and expression of the cold-inducible hutU gene from the antarctic psychrotrophic bacterium Pseudomonas syringae. Appl Environ Microbiol 68(1):1–10PubMedCrossRefGoogle Scholar
  186. Jay JM (2000) Low-temperature food preservation and characteristics of psychrotrophic microorganisms. In: Modern food microbiology, 6th edn. Aspen Publishers, Gaithersburg, pp 323–339CrossRefGoogle Scholar
  187. Jensen N, Varelis P, Whitfield FB (2001) Formation of guaiacol in chocolate milk by the psychrotrophic bacterium Rahnella aquatilis. Lett Appl Microbiol 33(5):339–343PubMedCrossRefGoogle Scholar
  188. Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, Kim SJ, Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81(5):865–874PubMedCrossRefGoogle Scholar
  189. Jiang W, Jones P, Inouye M (1993) Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J Bacteriol 175(18):5824–5828PubMedGoogle Scholar
  190. Jiang W, Fang L, Inouye M (1996a) The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178(16):4919–4925PubMedGoogle Scholar
  191. Jiang W, Fang L, Inouye M (1996b) Complete growth inhibition of Escherichia coli by ribosome trapping with truncated cspA mRNA at low temperature. Genes Cells 1(11):965–976PubMedCrossRefGoogle Scholar
  192. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272(1):196–202PubMedCrossRefGoogle Scholar
  193. Johansson PM, Wright SA (2003) Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads. Appl Environ Microbiol 69(11):6464–6474PubMedCrossRefGoogle Scholar
  194. Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110(5):551–561PubMedCrossRefGoogle Scholar
  195. Jones PG, Inouye M (1994) The cold-shock response–a hot topic. Mol Microbiol 11(5):811–818PubMedCrossRefGoogle Scholar
  196. Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095PubMedGoogle Scholar
  197. Jones PG, Cashel M, Glaser G, Neidhardt FC (1992a) Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol 174(12):3903–3914PubMedGoogle Scholar
  198. Jones PG, Krah R, Tafuri SR, Wolffe AP (1992b) DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol 174(18):5798–5802PubMedGoogle Scholar
  199. Jones PG, Mitta M, Kim Y, Jiang W, Inouye M (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93(1):76–80PubMedCrossRefGoogle Scholar
  200. Jones CE, Shama G, Jones D, Roberts IS, Andrew PW (1997) Physiological and biochemical studies on psychrotolerance in Listeria monocytogenes. J Appl Microbiol 83(1):31–35PubMedCrossRefGoogle Scholar
  201. Jones SL, Drouin P, Wilkinson BJ, Morse PD II (2002) Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol 177(3):217–222PubMedCrossRefGoogle Scholar
  202. Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34 H at subzero temperatures. Appl Environ Microbiol 69(7):4282–4284PubMedCrossRefGoogle Scholar
  203. Junge K, Eicken H, Deming JW (2004) Bacterial Activity at −2 to −20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70(1):550–557PubMedCrossRefGoogle Scholar
  204. Kaan T, Jürgen B, Schweder T (1999) Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet 262(2):351–354PubMedCrossRefGoogle Scholar
  205. Kaan T, Homuth G, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:3441–3455PubMedGoogle Scholar
  206. Kalinin A, Rak A, Shcherbakov D, Bayer P (2002) 1H, 13C and 15N resonance assignments of the ribosome-associated cold shock response protein Yfia of Escherichia coli. J Biomol NMR 23(4):335–336PubMedCrossRefGoogle Scholar
  207. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98CrossRefGoogle Scholar
  208. Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99(15):9727–9732PubMedCrossRefGoogle Scholar
  209. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55(2):288–302PubMedGoogle Scholar
  210. Karlsen C, Paulsen SM, Tunsjo HS, Krinner S, Sorum H, Haugen P, Willassen NP (2008) Motility and flagellin gene expression in the fish pathogen Vibrio salmonicida: effects of salinity and temperature. Microb Pathog 45(4):258–264PubMedCrossRefGoogle Scholar
  211. Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69(8):4910–4914PubMedCrossRefGoogle Scholar
  212. Kasai Y, Kishira H, Syutsubo K, Harayama S (2001) Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3(4):246–255PubMedCrossRefGoogle Scholar
  213. Kasana RC, Yadav SK (2007) Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr Microbiol 54(3):224–229PubMedCrossRefGoogle Scholar
  214. Kasana RC, Kaur B, Yadav SK (2008) Isolation and identification of a psychrotrophic Acinetobacter sp. CR9 and characterization of its alkaline lipase. J Basic Microbiol 48(3):207–212PubMedCrossRefGoogle Scholar
  215. Katayama T, Kato T, Tanaka M, Douglas TA, Brouchkov A, Fukuda M, Tomita F, Asano K (2009) Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. Int J Syst Evol Microbiol 59:482–486PubMedCrossRefGoogle Scholar
  216. Katayama T, Kato T, Tanaka M, Douglas TA, Brouchkov A, Abe A, Sone T, Fukuda M, Asano K (2010) Tomitella biformata gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from a permafrost ice wedge. Int J Syst Evol Microbiol 60:2803–2807PubMedCrossRefGoogle Scholar
  217. Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of psychrotrophic bacteria from oil-reservoir water and oil sands. Appl Microbiol Biotechnol 55(6):794–800PubMedCrossRefGoogle Scholar
  218. Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 11(6):819–826PubMedCrossRefGoogle Scholar
  219. Kazuoka T, Takigawa S, Arakawa N, Hizukuri Y, Muraoka I, Oikawa T, Soda K (2003) Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1. J Bacteriol 185(15):4483–4489PubMedCrossRefGoogle Scholar
  220. Kempler G, Ray B (1978) Nature of freezing damage on the lipopolysaccharide molecule of Escherichia coli B. Cryobiology 15(5):578–584PubMedCrossRefGoogle Scholar
  221. Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y, Valentine DL (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73(2):407–414PubMedCrossRefGoogle Scholar
  222. Kennedy J, Flemer B, Jackson SA, Lejon DP, Morrissey JP, O’Gara F, Dobson AD (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8(3):608–628PubMedCrossRefGoogle Scholar
  223. Khmelenina VN, Makutina VA, Kalyuzhnaya MG, Rivkina EM, Gilichinsky DA, Trotsenko Y (2002) Discovery of viable methanotrophic bacteria in permafrost sediments of northeast Siberia. Dokl Biol Sci 384:235–237PubMedCrossRefGoogle Scholar
  224. Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 58:817–820PubMedCrossRefGoogle Scholar
  225. Kirchman DL, Moran XA, Ducklow H (2009) Microbial growth in the polar oceans – role of temperature and potential impact of climate change. Nat Rev Microbiol 7(6):451–459PubMedGoogle Scholar
  226. Kjelleberg S (1993) Starvation in bacteria. Kluwer, DordrechtGoogle Scholar
  227. Klein W, Weber MH, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181(17):5341–5349PubMedGoogle Scholar
  228. Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66(16):2661–2676PubMedCrossRefGoogle Scholar
  229. Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1(5):457–467PubMedCrossRefGoogle Scholar
  230. Knoblauch C, Sahm K, Jorgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643PubMedCrossRefGoogle Scholar
  231. Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, Davy SK, Maas EW, Ryan KG (2010) Proteorhodopsin-bearing bacteria in Antarctic sea ice. Appl Environ Microbiol 76(17):5918–5925PubMedCrossRefGoogle Scholar
  232. Könneke M, Widdel F (2003) Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol 5(11):1064–1070PubMedCrossRefGoogle Scholar
  233. Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75(16):5345–5355PubMedCrossRefGoogle Scholar
  234. Krispin O, Allmansberger R (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett 134(2–3):129–135PubMedCrossRefGoogle Scholar
  235. LaFrentz BR, LaPatra SE, Call DR, Wiens GD, Cain KD (2009) Proteomic analysis of Flavobacterium psychrophilum cultured in vivo and in iron-limited media. Dis Aquat Organ 87(3):171–182PubMedCrossRefGoogle Scholar
  236. Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H (2009) Bacteria beneath the West Antarctic ice sheet. Environ Microbiol 11(3):609–615PubMedCrossRefGoogle Scholar
  237. Larsen MH, Koch AG, Ingmer H (2010) Listeria monocytogenes efficiently invades Caco-2 cells after low-temperature storage in broth and on deli meat. Foodborne Pathog Dis 7(9):1013–1018PubMedCrossRefGoogle Scholar
  238. Leblanc L, Leboeuf C, Leroi F, Hartke A, Auffray Y (2003) Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens. Curr Microbiol 46(3):157–162PubMedCrossRefGoogle Scholar
  239. Lechner S, Mayr R, Francis K, Prüß B, Kaplan T, Wießner-Gunkel E, Stewart GS, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48(Pt 4):1373–1378PubMedCrossRefGoogle Scholar
  240. Lee SJ, Xie A, Jiang W, Etchegaray JP, Jones PG, Inouye M (1994) Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11(5):833–839PubMedCrossRefGoogle Scholar
  241. Lee JH, Cho MH, Lee J (2010) 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 13(1):62–73CrossRefGoogle Scholar
  242. Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19(9):363–370PubMedCrossRefGoogle Scholar
  243. Li J, Kolling GL, Matthews KR, Chikindas ML (2003) Cold and carbon dioxide used as multi-hurdle preservation do not induce appearance of viable but non-culturable Listeria monocytogenes. J Appl Microbiol 94(1):48–53PubMedCrossRefGoogle Scholar
  244. Lillard JW Jr, Bearden SW, Fetherston JD, Perry RD (1999) The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 145:197–209PubMedCrossRefGoogle Scholar
  245. Lin C, Yu RC, Chou CC (2004) Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment. Int J Food Microbiol 92(2):207–215PubMedCrossRefGoogle Scholar
  246. Lipponen MT, Suutari MH, Martikainen PJ (2002) Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Res 36(17):4319–4329PubMedCrossRefGoogle Scholar
  247. Liu S, Graham JE, Bigelow L, Morse PD 2nd, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68(4):1697–1705PubMedCrossRefGoogle Scholar
  248. Liu S, Bayles DO, Mason TM, Wilkinson BJ (2006) A cold-sensitive Listeria monocytogenes mutant has a transposon insertion in a gene encoding a putative membrane protein and shows altered (p)ppGpp levels. Appl Environ Microbiol 72(6):3955–3959PubMedCrossRefGoogle Scholar
  249. Loepfe C, Raimann E, Stephan R, Tasara T (2010) Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes. Foodborne Pathog Dis 7(7):775–783PubMedCrossRefGoogle Scholar
  250. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543(1):1–10PubMedCrossRefGoogle Scholar
  251. Lonhienne T, Zoidakis J, Vorgias CE, Feller G, Gerday C, Bouriotis V (2001) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310(2):291–297PubMedCrossRefGoogle Scholar
  252. Lopez-Garcia P, Forterre P (1999) Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus. Mol Microbiol 33(4):766–777PubMedCrossRefGoogle Scholar
  253. Los DA (2004) The effect of low-temperature-induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol Biol (Noisy-le-Grand) 50(5):605–612Google Scholar
  254. Los DA, Murata N (1999) Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol 1(2):221–230PubMedGoogle Scholar
  255. Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B Biol Sci 357(1423):937–943PubMedCrossRefGoogle Scholar
  256. Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19(2):343–356PubMedCrossRefGoogle Scholar
  257. Lynch WH, Franklin M (1978) Effect of temperature on the uptake of glucose, gluconate, and 2-ketogluconate by Pseudomonas fluorescens. Can J Microbiol 24(1):56–62PubMedCrossRefGoogle Scholar
  258. Madan Babu M, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31(4):1234–1244PubMedCrossRefGoogle Scholar
  259. Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173(4):269–277PubMedCrossRefGoogle Scholar
  260. Männistö MK, Puhakka JA (2001) Temperature- and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria. Arch Microbiol 177(1):41–46PubMedCrossRefGoogle Scholar
  261. Mansfield BE, Dionne MS, Schneider DS, Freitag NE (2003) Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5(12):901–911PubMedCrossRefGoogle Scholar
  262. Mansilla MC, de Mendoza D (2005) The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch Microbiol 183(4):229–235PubMedCrossRefGoogle Scholar
  263. Maoz A, Mayr R, Bresolin G, Neuhaus K, Francis KP, Scherer S (2002) Sensitive in situ monitoring of a recombinant bioluminescent Yersinia enterocolitica reporter mutant in real time on Camembert cheese. Appl Environ Microbiol 68(11):5737–5740PubMedCrossRefGoogle Scholar
  264. Maraki S, Samonis G, Marnelakis E, Tselentis Y (1994) Surgical wound infection caused by Rahnella aquatilis. J Clin Microbiol 32(11):2706–2708PubMedGoogle Scholar
  265. Marceau M (2005) Transcriptional regulation in Yersinia: an update. Curr Issues Mol Biol 7(2):151–177PubMedGoogle Scholar
  266. Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol 45(4):281–285PubMedGoogle Scholar
  267. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13(2):257–262PubMedCrossRefGoogle Scholar
  268. Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982PubMedCrossRefGoogle Scholar
  269. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162(3):346–361PubMedCrossRefGoogle Scholar
  270. Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere 38(15):3463–3472PubMedCrossRefGoogle Scholar
  271. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663PubMedCrossRefGoogle Scholar
  272. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69(6):3085–3092PubMedCrossRefGoogle Scholar
  273. Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40(6):453–459PubMedCrossRefGoogle Scholar
  274. Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals–fundamental and applied aspects. Naturwissenschaften 94(2):77–99PubMedCrossRefGoogle Scholar
  275. Martínez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6(5):482–489PubMedCrossRefGoogle Scholar
  276. Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol (NY) 9(3):293–304CrossRefGoogle Scholar
  277. Mascarenhas J, Weber MH, Graumann PL (2001) Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep 2(8):685–689PubMedCrossRefGoogle Scholar
  278. Mastronicolis SK, German JB, Megoulas N, Petron E, Foka P, Smith GM (1998) Influence of cold shock on the fatty acid composition of different classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol 15:299–306CrossRefGoogle Scholar
  279. Mastronicolis SK, Boura A, Karaliota A, Magiatis P, Arvanitis N, Litos C, Tsakirakis A, Paraskevas P, Moustaka H, Heropoulos G (2006) Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Food Microbiol 23(2):184–194PubMedCrossRefGoogle Scholar
  280. Mathy N, Jarrige AC, Robert-Le Meur M, Portier C (2001) Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol. J Bacteriol 183(13):3848–3854PubMedCrossRefGoogle Scholar
  281. Maxwell A, Howells AJ (1999) Overexpression and purification of bacterial DNA gyrase. Methods Mol Biol 94:135–144PubMedGoogle Scholar
  282. Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335PubMedCrossRefGoogle Scholar
  283. Mendez MB, Orsaria LM, Philippe V, Pedrido ME, Grau RR (2004) Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 186(4):989–1000PubMedCrossRefGoogle Scholar
  284. Mendum ML, Smith LT (2002) Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 68(2):813–819PubMedCrossRefGoogle Scholar
  285. Michaux C, Massant J, Kerff F, Frere JM, Docquier JD, Vandenberghe I, Samyn B, Pierrard A, Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C beta-lactamase. FEBS J 275(8):1687–1697PubMedCrossRefGoogle Scholar
  286. Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M, Ono A, Yanagawa H (1999) Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150(8):787–796PubMedCrossRefGoogle Scholar
  287. Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol 46(4):905–915PubMedCrossRefGoogle Scholar
  288. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324(5925):397–400PubMedCrossRefGoogle Scholar
  289. Minakhin L, Severinov K (2003) On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended −10 galP1 promoter. J Biol Chem 278(32):29710–29718PubMedCrossRefGoogle Scholar
  290. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71(12):7806–7818PubMedCrossRefGoogle Scholar
  291. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213PubMedCrossRefGoogle Scholar
  292. Miyazaki M, Nogi Y, Fujiwara Y, Horikoshi K (2008) Psychromonas japonica sp. nov., Psychromonas aquimarina sp. nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov., psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:1709–1714PubMedCrossRefGoogle Scholar
  293. Mondino LJ, Asao M, Madigan MT (2009) Cold-active halophilic bacteria from the ice-sealed Lake Vida, Antarctica. Arch Microbiol 191(10):785–790PubMedCrossRefGoogle Scholar
  294. Monedero V, Maze A, Boel G, Zuniga M, Beaufils S, Hartke A, Deutscher J (2007) The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. J Mol Microbiol Biotechnol 12(1–2):20–32PubMedCrossRefGoogle Scholar
  295. Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432(7019):910–913PubMedCrossRefGoogle Scholar
  296. Moreno JM, Sorensen HP, Mortensen KK, Sperling-Petersen HU (2000) Macromolecular mimicry in translation initiation: a model for the initiation factor IF2 on the ribosome. IUBMB Life 50(6):347–354PubMedGoogle Scholar
  297. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167PubMedGoogle Scholar
  298. Morita RY, Albright LJ (1965) Cell yields of Vibrio marinus, an obligate psychrophile, at low temperature. Can J Microbiol 11:221–227PubMedCrossRefGoogle Scholar
  299. Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T (1999) Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev 13(6):655–665PubMedCrossRefGoogle Scholar
  300. Mountfort DO, Rainey FA, Burghardt J, Kaspar HF, Stackebrandt E (1998) Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, antarctica. Arch Microbiol 169(3):231–238PubMedCrossRefGoogle Scholar
  301. Mountfort DO, Kaspar HF, Asher RA, Sutherland D (2003) Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Appl Environ Microbiol 69(1):583–592PubMedCrossRefGoogle Scholar
  302. Mujacic M, Cooper KW, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238(2):325–332PubMedCrossRefGoogle Scholar
  303. Murakawa T, Yamagata H, Tsuruta H, Aizono Y (2002) Cloning of cold-active alkaline phosphatase gene of a psychrophile, Shewanella sp., and expression of the recombinant enzyme. Biosci Biotechnol Biochem 66(4):754–761PubMedCrossRefGoogle Scholar
  304. Nara T, Lee L, Imae Y (1991) Thermosensing ability of Trg and tap chemoreceptors in Escherichia coli. J Bacteriol 173(3):1120–1124PubMedGoogle Scholar
  305. Nara T, Kawagishi I, Nishiyama S, Homma M, Imae Y (1996) Modulation of the thermosensing profile of the Escherichia coli aspartate receptor tar by covalent modification of its methyl-accepting sites. J Biol Chem 271(30):17932–17936PubMedCrossRefGoogle Scholar
  306. Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30(1):3–16PubMedCrossRefGoogle Scholar
  307. Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30(2):101–111PubMedCrossRefGoogle Scholar
  308. Neuhaus KM (2000) Characterization of major cold shock protein genes of the psychrotolerant food pathogens Bacillus weihenstephanensis and Yersinia enterocolitica. Univ. Diss, Technical University Munich Hieronymus München. ISBN 3-89791-124-8Google Scholar
  309. Neuhaus K, Rapposch S, Francis KP, Scherer S (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182(11):3285–3288PubMedCrossRefGoogle Scholar
  310. Neuhaus K, Anastasov N, Kaberdin VR, Francis K, Miller VL, Scherer S (2003) The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature. Mol Microbiol 50(5):1629–1645PubMedCrossRefGoogle Scholar
  311. Nicodeme M, Perrin C, Hols P, Bracquart P, Gaillard JL (2004) Identification of an iron-binding protein of the Dps family expressed by Streptococcus thermophilus. Curr Microbiol 48(1):51–56PubMedCrossRefGoogle Scholar
  312. Nishiyama SI, Umemura T, Nara T, Homma M, Kawagishi I (1999) Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol 32(2):357–365PubMedCrossRefGoogle Scholar
  313. Nozhevnikova AN, Nekrasova VK, Kevbrina MV, Kotsyurbenko OR (2001a) Production and oxidation of methane at low temperature by the microbial population of municipal sludge checks situated in north-east Europe. Water Sci Technol 44(4):89–95PubMedGoogle Scholar
  314. Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR (2001b) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol 44(8):41–48PubMedGoogle Scholar
  315. Nozhevnikova AN, Zepp K, Vazquez F, Zehnder AJ, Holliger C (2003) Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes. Appl Environ Microbiol 69(3):1832–1835PubMedCrossRefGoogle Scholar
  316. O’Connell KP, Thomashow MF (2000) Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl Environ Microbiol 66(1):392–400PubMedCrossRefGoogle Scholar
  317. O’Connell KP, Gustafson AM, Lehmann MD, Thomashow MF (2000) Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon. Appl Environ Microbiol 66(1):401–405PubMedCrossRefGoogle Scholar
  318. O’Malley MA (2008) ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography. Stud Hist Philos Biol Biomed Sci 39(3):314–325PubMedGoogle Scholar
  319. Ochiai T, Fukunaga N, Sasaki S (1979) Purification and some properties of two NADP+ −specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1. J Biochem (Tokyo) 86(2):377–384Google Scholar
  320. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99(11):7663–7668PubMedCrossRefGoogle Scholar
  321. Ozcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Kramer R (2007) Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J Bacteriol 189(20):7485–7496PubMedCrossRefGoogle Scholar
  322. Panoff JM, Thammavongs B, Gueguen M, Boutibonnes P (1998) Cold stress responses in mesophilic bacteria. Cryobiology 36(2):75–83PubMedCrossRefGoogle Scholar
  323. Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127(2):199–210PubMedCrossRefGoogle Scholar
  324. Patel GB, Sprott GD (1999) Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 19(4):317–357PubMedCrossRefGoogle Scholar
  325. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69(2):143–157PubMedCrossRefGoogle Scholar
  326. Perrot F, Hebraud M, Junter GA, Jouenne T (2000) Protein synthesis in Escherichia coli at 4 degrees C. Electrophoresis 21(8):1625–1629PubMedCrossRefGoogle Scholar
  327. Perrot F, Hebraud M, Charlionet R, Junter GA, Jouenne T (2001) Cell immobilization induces changes in the protein response of Escherichia coli K-12 to a cold shock. Electrophoresis 22(10):2110–2119PubMedCrossRefGoogle Scholar
  328. Pfennig PL, Flower AM (2001) BipA is required for growth of Escherichia coli K12 at low temperature. Mol Genet Genomics 266(2):313–317PubMedCrossRefGoogle Scholar
  329. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136PubMedGoogle Scholar
  330. Phadtare S, Inouye M (1999) Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol Microbiol 33(5):1004–1014PubMedCrossRefGoogle Scholar
  331. Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186(20):7007–7014PubMedCrossRefGoogle Scholar
  332. Phadtare S, Severinov K (2010) RNA remodeling and gene regulation by cold shock proteins. RNA Biol 7(6)Google Scholar
  333. Polissi A, De Laurentis W, Zangrossi S, Briani F, Longhi V, Pesole G, Deho G (2003) Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154(8):573–580PubMedCrossRefGoogle Scholar
  334. Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53(1):103–115PubMedCrossRefGoogle Scholar
  335. Ponder MA, Thomashow MF, Tiedje JM (2008) Metabolic activity of Siberian permafrost isolates, Psychrobacter arcticus and Exiguobacterium sibiricum, at low water activities. Extremophiles 12(4):481–490PubMedCrossRefGoogle Scholar
  336. Potier P, Drevet P, Gounot AM, Hipkiss AR (1990) Temperature-dependent changes in proteolytic activities and protein composition in the psychrotrophic bacterium Arthrobacter globiformis S1-55. J Gen Microbiol 136:283–291Google Scholar
  337. Prakash JS, Sinetova M, Zorina A, Kupriyanova E, Suzuki I, Murata N, Los DA (2009) DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol Biosyst 5(12):1904–1912PubMedCrossRefGoogle Scholar
  338. Prévost, D, Drouin P, Antoun H (1999) The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 161–176Google Scholar
  339. Price PB (2009) Microbial genesis, life and death in glacial ice. Can J Microbiol 55(1):1–11PubMedCrossRefGoogle Scholar
  340. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101(13):4631–4636PubMedCrossRefGoogle Scholar
  341. Prud’homme-Genereux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54(5):1409–1421PubMedCrossRefGoogle Scholar
  342. Prüß BM, Francis KP, von Stetten F, Scherer S (1999) Correlation of 16 S ribosomal DNA signature sequences with temperature- dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol 181(8):2624–2630PubMedGoogle Scholar
  343. Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69(6):3181–3191PubMedCrossRefGoogle Scholar
  344. Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22(7):877–882PubMedCrossRefGoogle Scholar
  345. Qoronfleh MW, Debouck C, Keller J (1992) Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bacteriol 174(24):7902–7909PubMedGoogle Scholar
  346. Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2004) Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia. Int J Syst Evol Microbiol 54:1921–1926PubMedCrossRefGoogle Scholar
  347. Rajkumari K, Gowrishankar J (2001) In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress. J Bacteriol 183(22):6543–6550PubMedCrossRefGoogle Scholar
  348. Rak A, Kalinin A, Shcherbakov D, Bayer P (2002) Solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli. Biochem Biophys Res Commun 299(5):710–714PubMedCrossRefGoogle Scholar
  349. Ramstein J, Hervouet N, Coste F, Zelwer C, Oberto J, Castaing B (2003) Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J Mol Biol 331(1):101–121PubMedCrossRefGoogle Scholar
  350. Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52(11):1036–1045PubMedCrossRefGoogle Scholar
  351. Ray MK, Sitaramamma T, Seshu Kumar G, Shivaji S (1999) Transcriptional activity at supraoptimal temperature growth in the antarctic psychrotrophic bacterium Pseudomonas syringae. Curr Microbiol 38:143–150PubMedCrossRefGoogle Scholar
  352. Reddy GS, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. Int J Syst Evol Microbiol 60:866–870PubMedCrossRefGoogle Scholar
  353. Repoila F, Gottesman S (2003) Temperature sensing by the dsrA promoter. J Bacteriol 185(22):6609–6614PubMedCrossRefGoogle Scholar
  354. Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, Tümmler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188(11):4079–4092PubMedCrossRefGoogle Scholar
  355. Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9:210PubMedCrossRefGoogle Scholar
  356. Ritz M, Jugiau F, Federighi M, Chapleau N, de Lamballerie M (2008) Effects of high pressure, subzero temperature, and pH on survival of Listeria monocytogenes in buffer and smoked salmon. J Food Prot 71(8):1612–1618PubMedGoogle Scholar
  357. Riva A, Delorme MO, Chevalier T, Guilhot N, Henaut C, Henaut A (2004) Characterization of the GATC regulatory network in E. coli. BMC Genomics 5(1):48PubMedCrossRefGoogle Scholar
  358. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233PubMedCrossRefGoogle Scholar
  359. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33(8):1215–1221PubMedCrossRefGoogle Scholar
  360. Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61(1):1–15PubMedCrossRefGoogle Scholar
  361. Rotert KR, Toste AP, Steiert JG (1993) Membrane fatty acid analysis of Antarctic bacteria. FEMS Microbiol Lett 114(3):253–257PubMedCrossRefGoogle Scholar
  362. Rudolph C, Wanner G, Huber R (2001) Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67(5):2336–2344PubMedCrossRefGoogle Scholar
  363. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 326(1237):595–608, discussion 608–611PubMedCrossRefGoogle Scholar
  364. Russell NJ (1997) Psychrophilic bacteria–molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118(3):489–493PubMedCrossRefGoogle Scholar
  365. Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21PubMedGoogle Scholar
  366. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4(2):83–90PubMedCrossRefGoogle Scholar
  367. Russell NJ (2002) Bacterial membranes: the effects of chill storage and food processing. An overview. Int J Food Microbiol 79(1–2):27–34PubMedCrossRefGoogle Scholar
  368. Saito R, Nakayama A (2004) Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 5710. FEMS Microbiol Lett 233(1):165–172PubMedCrossRefGoogle Scholar
  369. Sakamoto T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5(2):208–210PubMedCrossRefGoogle Scholar
  370. Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA (1997) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp PCC 7002. FEMS Microbiol Lett 152(2):313–320PubMedCrossRefGoogle Scholar
  371. Sardesai N, Babu CR (2000) Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains. Folia Microbiol (Praha) 45(2):177–182CrossRefGoogle Scholar
  372. Sato N (1994) A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Mol Biol 24(5):819–823PubMedCrossRefGoogle Scholar
  373. Sato Y, Watanabe S, Yamaoka N, Takada Y (2008) Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme. Extremophiles 12(1):107–117PubMedCrossRefGoogle Scholar
  374. Sattley WM, Madigan MT (2010) Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense, sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica. Extremophiles 14(4):357–366PubMedCrossRefGoogle Scholar
  375. Saunders NF, Thomas T, Curmi PM, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13(7):1580–1588PubMedCrossRefGoogle Scholar
  376. Scheyhing CH, Hörmann S, Ehrmann MA, Vogel RF (2004) Barotolerance is inducible by preincubation under hydrostatic pressure, cold-, osmotic- and acid-stress conditions in Lactobacillus sanfranciscensis DSM 20451 T. Lett Appl Microbiol 39(3):284–289PubMedCrossRefGoogle Scholar
  377. Schiefner A, Breed J, Bösser L, Kneip S, Gade J, Holtmann G, Diederichs K, Welte W, Bremer E (2004) Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J Biol Chem 279(7):5588–5596PubMedCrossRefGoogle Scholar
  378. Schikora A, Carreri A, Charpentier E, Hirt H (2008) The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 3(5):e2279PubMedCrossRefGoogle Scholar
  379. Schlösser A, Lipski A, Schmalfuss J, Kugler F, Beckmann G (2008) Oceaniserpentilla haliotis gen. nov., sp. nov., a marine bacterium isolated from haemolymph serum of blacklip abalone. Int J Syst Evol Microbiol 58:2122–2125PubMedCrossRefGoogle Scholar
  380. Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T (2009) Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol 75(6):1621–1627PubMedCrossRefGoogle Scholar
  381. Schmidt M, Prieme A, Stougaard P (2006) Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum bacteroidetes isolated from Greenland. Int J Syst Evol Microbiol 56:2887–2892PubMedCrossRefGoogle Scholar
  382. Schumann W (2007) Thermosensors in eubacteria: role and evolution. J Biosci 32(3):549–557PubMedCrossRefGoogle Scholar
  383. Secades P, Alvarez B, Guijarro JA (2003) Purification and properties of a new psychrophilic metalloprotease (Fpp 2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol Lett 226(2):273–279PubMedCrossRefGoogle Scholar
  384. Shahjee HM, Banerjee K, Ahmad F (2002) Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses. J Biosci 27(5):515–520PubMedCrossRefGoogle Scholar
  385. Shivaji S, Prakash JS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192(2):85–95PubMedCrossRefGoogle Scholar
  386. Shivers RP, Dineen SS, Sonenshein AL (2006) Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol Microbiol 62(3):811–822PubMedCrossRefGoogle Scholar
  387. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  388. Sifri CD, Begun J, Ausubel FM (2005) The worm has turned–microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13(3):119–127PubMedCrossRefGoogle Scholar
  389. Simankova MV, Kotsyurbenko OR, Lueders T, Nozhevnikova AN, Wagner B, Conrad R, Friedrich MW (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26(2):312–318PubMedCrossRefGoogle Scholar
  390. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526PubMedCrossRefGoogle Scholar
  391. Sinensky M (1974) Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71(2):522–525PubMedCrossRefGoogle Scholar
  392. Smirnova A, Li H, Weingart H, Aufhammer S, Burse A, Finis K, Schenk A, Ullrich MS (2001) Thermoregulated expression of virulence factors in plant-associated bacteria. Arch Microbiol 176(6):393–399PubMedCrossRefGoogle Scholar
  393. Smirnova AV, Wang L, Rohde B, Budde I, Weingart H, Ullrich MS (2002) Control of temperature-responsive synthesis of the phytotoxin coronatine in Pseudomonas syringae by the unconventional two-component system CorRPS. J Mol Microbiol Biotechnol 4(3):191–196PubMedGoogle Scholar
  394. Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72(2):1445–1451PubMedCrossRefGoogle Scholar
  395. Smyth CP, Lundback T, Renzoni D, Siligardi G, Beavil R, Layton M, Sidebotham JM, Hinton JC, Driscoll PC, Higgins CF, Ladbury JE (2000) Oligomerization of the chromatin-structuring protein H-NS. Mol Microbiol 36(4):962–972PubMedCrossRefGoogle Scholar
  396. Soares A, Guieysse B, Delgado O, Mattiasson B (2003) Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25(9):731–738PubMedCrossRefGoogle Scholar
  397. Srikumar S, Fuchs TM (2011) Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 77(1):281–290PubMedCrossRefGoogle Scholar
  398. Stasiewicz MJ, Wiedmann M, Bergholz TM (2010) The combination of lactate and diacetate synergistically reduces cold growth in brain heart infusion broth across Listeria monocytogenes lineages. J Food Prot 73(4):631–640PubMedGoogle Scholar
  399. Stefanidi E, Vorgias CE (2008) Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles 12(4):541–552PubMedCrossRefGoogle Scholar
  400. Straley SC, Perry RD (1995) Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbiol 3(8):310–317PubMedCrossRefGoogle Scholar
  401. Stülke J (2002) Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch Microbiol 177(6):433–440PubMedCrossRefGoogle Scholar
  402. Suetin SV, Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Suzina NE, Lysenko AM, Gilichinsky DA (2009) Clostridium tagluense sp. nov., a psychrotolerant, anaerobic, spore-forming bacterium from permafrost. Int J Syst Evol Microbiol 59:1421–1426PubMedCrossRefGoogle Scholar
  403. Suutari M, Laakso S (1992) Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim Biophys Acta 1126(2):119–124PubMedCrossRefGoogle Scholar
  404. Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19(6):1327–1334PubMedCrossRefGoogle Scholar
  405. Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. Eur J Biochem 271(7):1372–1381PubMedCrossRefGoogle Scholar
  406. Takeuchi S, Mandai Y, Otsu A, Shirakawa T, Masuda K, Chinami M (2003) Differences in properties between human alphaA- and alphaB-crystallin proteins expressed in Escherichia coli cells in response to cold and extreme pH. Biochem J 375:471–475PubMedCrossRefGoogle Scholar
  407. Tanabe H, Goldstein J, Yang M, Inouye M (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol 174(12):3867–3873PubMedGoogle Scholar
  408. Taormina PJ (2010) Implications of salt and sodium reduction on microbial food safety. Crit Rev Food Sci Nutr 50(3):209–227PubMedCrossRefGoogle Scholar
  409. Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15(23):6416–6425PubMedGoogle Scholar
  410. Tendeng C, Krin E, Soutourina OA, Marin A, Danchin A, Bertin PN (2003) A Novel H-NS-like protein from an antarctic psychrophilic bacterium reveals a crucial role for the N-terminal domain in thermal stability. J Biol Chem 278(21):18754–18760PubMedCrossRefGoogle Scholar
  411. Thomas DN, Dieckmann GS (2002) Antarctic Sea ice–a habitat for extremophiles. Science 295(5555):641–644PubMedCrossRefGoogle Scholar
  412. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ Microbiol 12(10):2658–2676PubMedGoogle Scholar
  413. Tobe T, Yoshikawa M, Mizuno T, Sasakawa C (1993) Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 175(19):6142–6149PubMedGoogle Scholar
  414. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131PubMedCrossRefGoogle Scholar
  415. Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53(1):15–26PubMedCrossRefGoogle Scholar
  416. Tse-Dinh YC, Qi H, Menzel R (1997) DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol 5(8):323–326PubMedCrossRefGoogle Scholar
  417. Tsuruta H, Tamura J, Yamagata H, Aizono Y (2004) Specification of amino acid residues essential for the catalytic reaction of cold-active protein-tyrosine phosphatase of a psychrophile, Shewanella sp. Biosci Biotechnol Biochem 68(2):440–443PubMedCrossRefGoogle Scholar
  418. Tutino ML, Duilio A, Parrilli R, Remaut E, Sannia G, Marino G (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5(4):257–264PubMedCrossRefGoogle Scholar
  419. Tyler HL, Triplett EW (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 46:53–73PubMedCrossRefGoogle Scholar
  420. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43PubMedCrossRefGoogle Scholar
  421. Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6(4):302–313PubMedCrossRefGoogle Scholar
  422. Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J Biol Chem 278(9):7531–7539PubMedCrossRefGoogle Scholar
  423. VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87(15):5589–5593PubMedCrossRefGoogle Scholar
  424. Vandieken V, Mussmann M, Niemann H, Jorgensen BB (2006) Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139PubMedCrossRefGoogle Scholar
  425. Varkonyi Z, Masamoto K, Debreczeny M, Zsiros O, Ughy B, Gombos Z, Domonkos I, Farkas T, Wada H, Szalontai B (2002) Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: an FTIR spectroscopic study. Proc Natl Acad Sci USA 99(4):2410–2415PubMedCrossRefGoogle Scholar
  426. Veldhuizen EJ, Creutzberg TO, Burt SA, Haagsman HP (2007) Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. J Food Prot 70(9):2127–2132PubMedGoogle Scholar
  427. Vidovic S, Mangalappalli-Illathu AK, Korber DR (2011) Prolonged cold stress response of Escherichia coli O157 and the role of rpoS. Int J Food Microbiol 146(2):163–169PubMedCrossRefGoogle Scholar
  428. Vila-Sanjurjo A, Schuwirth BS, Hau CW, Cate JH (2004) Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol 11(11):1054–1059PubMedCrossRefGoogle Scholar
  429. Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R, Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348(5):1211–1224PubMedCrossRefGoogle Scholar
  430. von Stetten F, Francis K, Lechner S, Neuhaus K, Scherer S (1998) Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16 S rDNA. J Microbiol Methods 34:99–106CrossRefGoogle Scholar
  431. von Stetten F, Mayr R, Scherer S (1999) Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil. Environ Microbiol 1(6):503–515CrossRefGoogle Scholar
  432. Vorachek-Warren MK, Carty SM, Lin S, Cotter RJ, Raetz CR (2002) An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. J Biol Chem 277(16):14186–14193PubMedCrossRefGoogle Scholar
  433. Walker D, Rolfe M, Thompson A, Moore GR, James R, Hinton JC, Kleanthous C (2004) Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity. J Bacteriol 186(3):866–869PubMedCrossRefGoogle Scholar
  434. Walter EH, Kabuki DY, Esper LM, Sant’Ana AS, Kuaye AY (2009) Modelling the growth of Listeria monocytogenes in fresh green coconut (Cocos nucifera L.) water. Food Microbiol 26(6):653–657PubMedCrossRefGoogle Scholar
  435. Wang JY, Syvanen M (1992) DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol 6(14):1861–1866PubMedCrossRefGoogle Scholar
  436. Wang W, Sun M, Liu W, Zhang B (2008) Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Can J Microbiol 54(10):823–828PubMedCrossRefGoogle Scholar
  437. Watanabe S, Yamaoka N, Takada Y, Fukunaga N (2002) The cold-inducible icl gene encoding thermolabile isocitrate lyase of a psychrophilic bacterium, Colwellia maris. Microbiology 148(Pt 8):2579–2589PubMedGoogle Scholar
  438. Waterfield NR, Wren BW, Ffrench-Constant RH (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2(10):833–841PubMedCrossRefGoogle Scholar
  439. Weber MH, Marahiel MA (2003) Bacterial cold shock responses. Sci Prog 86:9–75PubMedCrossRefGoogle Scholar
  440. Weber MH, Klein W, Müller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39(5):1321–1329PubMedCrossRefGoogle Scholar
  441. Wemekamp-Kamphuis HH, Sleator RD, Wouters JA, Hill C, Abee T (2004a) Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 70(5):2912–2918PubMedCrossRefGoogle Scholar
  442. Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PP, Hain T, Chakraborty T, Abee T (2004b) Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol 70(6):3457–3466PubMedCrossRefGoogle Scholar
  443. White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166PubMedCrossRefGoogle Scholar
  444. Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45PubMedGoogle Scholar
  445. Williams RM, Rimsky S (1997) Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol Lett 156(2):175–185PubMedCrossRefGoogle Scholar
  446. Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM, Abee T (2000a) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66(9):3686–3691PubMedCrossRefGoogle Scholar
  447. Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T (2000b) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 23(2):165–173PubMedCrossRefGoogle Scholar
  448. Xia B, Etchegaray JP, Inouye M (2001a) Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli. J Biol Chem 276(38):35581–35588PubMedCrossRefGoogle Scholar
  449. Xia B, Ke H, Inouye M (2001b) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40(1):179–188PubMedCrossRefGoogle Scholar
  450. Xia B, Ke H, Jiang W, Inouye M (2002) The Cold Box stem-loop proximal to the 5′-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature. J Biol Chem 277(8):6005–6011PubMedCrossRefGoogle Scholar
  451. Xia B, Ke H, Shinde U, Inouye M (2003) The role of RbfA in 16 S rRNA processing and cell growth at low temperature in Escherichia coli. J Mol Biol 332(3):575–584PubMedCrossRefGoogle Scholar
  452. Xing W, Zhao Y, Zuo JE (2010) Microbial activity and community structure in a lake sediment used for psychrophilic anaerobic wastewater treatment. J Appl Microbiol 109(5):1829–1837PubMedGoogle Scholar
  453. Xu Y, Feller G, Gerday C, Glansdorff N (2003a) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185(7):2161–2168PubMedCrossRefGoogle Scholar
  454. Xu Y, Feller G, Gerday C, Glansdorff N (2003b) Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature? J Bacteriol 185(18):5519–5526PubMedCrossRefGoogle Scholar
  455. Yamanaka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27(2):247–255PubMedCrossRefGoogle Scholar
  456. Yamanaka K, Inouye M, Inouye S (1999a) Identification and characterization of five cspA homologous genes from Myxococcus xanthus. Biochim Biophys Acta 1447(2–3):357–365PubMedGoogle Scholar
  457. Yamanaka K, Mitta M, Inouye M (1999b) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181(20):6284–6291PubMedGoogle Scholar
  458. Yang SH, Kwon KK, Lee HS, Kim SJ (2006) Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 56:2879–2882PubMedCrossRefGoogle Scholar
  459. Yang SH, Lee JH, Ryu JS, Kato C, Kim SJ (2007) Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int J Syst Evol Microbiol 57:208–212PubMedCrossRefGoogle Scholar
  460. Yang X, Lin X, Fan T, Bian J, Huang X (2008) Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp.2-5-10-1. Curr Microbiol 56(2):194–198PubMedCrossRefGoogle Scholar
  461. Ygberg SE, Clements MO, Rytkonen A, Thompson A, Holden DW, Hinton JC, Rhen M (2006) Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 74(2):1243–1254PubMedCrossRefGoogle Scholar
  462. Yi H, Chun J (2006) Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 56:1239–1244PubMedCrossRefGoogle Scholar
  463. Yu Y, Xin YH, Liu HC, Chen B, Sheng J, Chi ZM, Zhou PJ, Zhang DC (2008) Sporosarcina antarctica sp. nov., a psychrophilic bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 58:2114–2117PubMedCrossRefGoogle Scholar
  464. Zangrossi S, Briani F, Ghisotti D, Regonesi ME, Tortora P, Deho G (2000) Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol Microbiol 36:1470–1480PubMedCrossRefGoogle Scholar
  465. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006a) Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 56:2921–2925PubMedCrossRefGoogle Scholar
  466. Zhang DC, Yu Y, Chen B, Wang HX, Liu HC, Dong XZ, Zhou PJ (2006b) Glaciecola psychrophila sp. nov., a novel psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 56:2867–2869PubMedCrossRefGoogle Scholar
  467. Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008a) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466PubMedCrossRefGoogle Scholar
  468. Zhang DC, Li HR, Xin YH, Liu HC, Chi ZM, Zhou PJ, Yu Y (2008b) Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1384–1387PubMedCrossRefGoogle Scholar
  469. Zhang DC, Liu HC, Xin YH, Yu Y, Zhou PJ, Zhou YG (2008c) Salinibacterium xinjiangense sp. nov., a psychrophilic bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 58:2739–2742PubMedCrossRefGoogle Scholar
  470. Zhang GI, Hwang CY, Kang SH, Cho BC (2009) Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 59:1455–1459PubMedCrossRefGoogle Scholar
  471. Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F, Margesin R (2010a) Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61:587–591PubMedCrossRefGoogle Scholar
  472. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010b) Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1640–1643PubMedCrossRefGoogle Scholar
  473. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010c) Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:1581–1584PubMedCrossRefGoogle Scholar
  474. Zhang DC, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010d) Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60:2618–2622PubMedCrossRefGoogle Scholar
  475. Zhang DC, Redzic M, Schinner F, Margesin R (2010e) Glaciimonas immobilis gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 61(Pt 9):2186–2190PubMedGoogle Scholar
  476. Zhang DC, Schumann P, Liu HC, Xin YH, Zhou YG, Schinner F, Margesin R (2010f) Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 60:2149–2153PubMedCrossRefGoogle Scholar
  477. Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F, Margesin R (2011) Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 61:859–863PubMedCrossRefGoogle Scholar
  478. Zhao JS, Manno D, Thiboutot S, Ampleman G, Hawari J (2007) Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int J Syst Evol Microbiol 57:2155–2162PubMedCrossRefGoogle Scholar
  479. Zhao JS, Deng Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 5(2):e9109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thilo M. Fuchs
    • 1
    • 2
  • Klaus Neuhaus
    • 1
    • 2
  • Siegfried Scherer
    • 1
    • 2
  1. 1.Lehrstuhl für Mikrobielle Ökologie, Department für Biowissenschaftliche Grundlagen, Wissenschaftszentrum WeihenstephanTechnische Universität MünchenFreisingGermany
  2. 2.Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung MikrobiologieTechnische Universität MünchenFreisingGermany

Personalised recommendations