Skip to main content

Prokaryotic Life Cycles

  • Reference work entry
The Prokaryotes

Abstract

While the normal consequence of bacterial growth is production of identical cells, many prokaryotes generate a cell with a different purpose than the parent. These new cell types have one of three specific functions, dormancy, nutrient acquisition, or dispersal. Quite surprisingly, no prokaryotic life cycles have been described that result in sexual reproduction. Analysis of prokaryotic life cycles has progressed to the point where many life cycles have been described, primarily in the domain Bacteria. Life cycles have been studied in rigorous detail to determine what environmental cues initiate the process or how the cellular transformation occurs. This chapter attempts to familiarize the reader with many of the wonderful systems that have been discovered. Space limitations do not permit comprehensive discussion of all the life cycles that have been described. This chapter also covers several model systems in detail to illustrate the relevant genetic and biochemical strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29(5):949–959

    Article  PubMed  CAS  Google Scholar 

  • Angert ER, Losick RM (1998) Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora. Proc Natl Acad Sci USA 95(17):10218–10223

    Article  PubMed  CAS  Google Scholar 

  • Angert ER, Brooks AE et al (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178(5):1451–1456

    PubMed  CAS  Google Scholar 

  • Bagwell CE, Bhat S et al (2008) Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS One 3(12):e3878

    Article  PubMed  Google Scholar 

  • Berleman JE, Bauer CE (2005) Involvement of a Che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol 56(6):1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Madigan MT (1988) Biology of microorganisms, 5th edn. Prentice-Hall, Englewood Cliffs, 722

    Google Scholar 

  • Campbell EL, Summers ML et al (2007) Global gene expression patterns of Nostoc punctiforme in steady-state dinitrogen-grown heterocyst-containing cultures and at single time points during the differentiation of akinetes and hormogonia. J Bacteriol 189(14):5247–5256

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268(5213):1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Curtis PD, Brun YV (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 74(1):13–41

    Article  PubMed  CAS  Google Scholar 

  • Curtis PD, Taylor RG et al (2007) Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol 189(24):9126–9130

    Article  PubMed  CAS  Google Scholar 

  • Cutlip RC (1970) Electron microscopy of cell cultures infected with a chlamydial agent causing polyarthritis of lambs. Infect Immun 1(5):499–502

    PubMed  CAS  Google Scholar 

  • de Hoon MJ, Eichenberger P et al (2010) Hierarchical evolution of the bacterial sporulation network. Curr Biol 20(17):R735–R745

    Article  PubMed  Google Scholar 

  • Dworkin M (1985) Developmental biology of the bacteria. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Evans KJ, Lambert C et al (2007) Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol 189(13):4850–4859

    Article  PubMed  CAS  Google Scholar 

  • Gimmestad M, Ertesvag H et al (2009) Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191(15):4845–4853

    Article  PubMed  CAS  Google Scholar 

  • Gode-Potratz CJ, Kustusch RJ et al (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 79(1):240–263

    Google Scholar 

  • Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6(6):557–563

    Article  PubMed  CAS  Google Scholar 

  • Hitchins VM, Sadoff HL (1970) Morphogenesis of cysts in Azotobacter vinelandii. J Bacteriol 104(1):492–498

    PubMed  CAS  Google Scholar 

  • Huntley S, Hamann N et al (2011) Comparative genomic analysis of fruiting body formation in myxococcales. Mol Biol Evol 28(2):1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Mella-Herrera RA et al (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4):a000315

    Article  PubMed  Google Scholar 

  • McCormick JR (2009) Cell division is dispensable but not irrelevant in Streptomyces. Curr Opin Microbiol 12(6):689–698

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66(1):94–121, Table of contents

    Article  PubMed  CAS  Google Scholar 

  • Moir A (2006) How do spores germinate? J Appl Microbiol 101(3):526–530

    Article  PubMed  CAS  Google Scholar 

  • Nichols JM, Adams DG (1982) Akinetes. In: Carr NG, Whitton BA (eds) The biology of the cyanobacteria. University of California Press, Berkeley, pp 387–412

    Google Scholar 

  • Olsson-Francis K, de la Torre R et al (2009) Survival of Akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions. Orig Life Evol Biosph 39:565–579

    Article  PubMed  Google Scholar 

  • Phillips RW, Wiegel J et al (2002) Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 52(Pt 3):933–938

    Article  PubMed  CAS  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295

    PubMed  CAS  Google Scholar 

  • Popham DL (2002) Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell Mol Life Sci 59(3):426–433

    Article  PubMed  CAS  Google Scholar 

  • Radajewski S, Duxbury T (2001) Motility responses and desiccation survival of zoospores from the Actinomycete Kineosporia sp. Strain SR11. Microb Ecol 41(3):233–244

    PubMed  CAS  Google Scholar 

  • Reed WM, Titus JA et al (1980) Structure of Methylosinus trichosporium exospores. J Bacteriol 141(2):908–913

    PubMed  CAS  Google Scholar 

  • Rendulic S, Jagtap P et al (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303(5658):689–692

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525

    Article  PubMed  CAS  Google Scholar 

  • Setubal JC, dos Santos P et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191(14):4534–4545

    Article  PubMed  CAS  Google Scholar 

  • Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539

    Article  PubMed  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD et al (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407(6806):897–900

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB, Stanier RY (1978) Patterns of growth and development in Pleurocapsalean cyanobacteria. Microbiol Rev 42(1):2–44

    PubMed  CAS  Google Scholar 

  • Whittenbury R, Dow CS (1977) Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriol Rev 41(3):754–808

    PubMed  CAS  Google Scholar 

  • Whittenbury R, Davies SL et al (1970) Exospores and cysts formed by methane-utilizing bacteria. J Gen Microbiol 61(2):219–226

    PubMed  CAS  Google Scholar 

  • Whitworth DE (2008) Myxobacteria: multicellularity and differentiation. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Willey JM, Willems A et al (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59(3):731–742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Science Foundation Grant MCB0742976.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Shimkets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Shimkets, L.J. (2013). Prokaryotic Life Cycles. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_54

Download citation

Publish with us

Policies and ethics