Skip to main content

The Anaerobic Way of Life

  • Reference work entry
The Prokaryotes

Abstract

Molecular oxygen in appreciable amounts is found only in those areas on earth that are in direct contact with air or are inhabited by organisms carrying out oxygenic photosynthesis. The solubility of oxygen in water is low. In equilibrium with air at 1.013 bar and at 20 °C, pure water will contain approximately 9 mg/l of dissolved oxygen. In aqueous systems, aerobic organisms rapidly consume dissolved oxygen so that deeper layers of many waters and soils (especially if they are rich in organic compounds), as well as mud and sludge, are practically anaerobic. Nevertheless, these areas are inhabited by numerous organisms that fulfill the important ecological role of converting insoluble organic material to soluble compounds and gases that can circulate back into aerobic regions. Other important anaerobic habitats are the rumen, the intestinal tract, and man-made anaerobic digesters of sewage treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cell fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369

    Article  PubMed  CAS  Google Scholar 

  • Andreesen JR (1994) Glycine metabolism in anaerobes. Ant v Leeuwenhoek 66:223–227

    Article  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    PubMed  CAS  Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214

    Article  PubMed  CAS  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50:23–40

    Article  PubMed  CAS  Google Scholar 

  • Bauer CE, Elsen S, Bird TH (1999) Mechanisms for redox control of gene expression. Ann Rev Microbiol 53:495–523

    Article  CAS  Google Scholar 

  • Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppemeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei Gö1 is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973

    Article  PubMed  Google Scholar 

  • Beinert H, Kiley PJ (1999) Fe-S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3:152–157

    Article  PubMed  CAS  Google Scholar 

  • Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199

    PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jörgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234:921–933

    Article  PubMed  CAS  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1: demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 36:222–229

    Article  Google Scholar 

  • Brüggemann H, Falinski F, Deppenmeier U (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267:5810–5814

    Article  PubMed  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    PubMed  CAS  Google Scholar 

  • Buckel W (1980) Analysis of fermentation pathways of clostridia using double labelled glutamate. Arch Microbiol 127:167–169

    Article  PubMed  CAS  Google Scholar 

  • Buckel W (1996) Unusual dehydrations in anaerobic bacteria: considering ketyls (radical anions) as reactive intermediates in enzymatic reactions. FEBS Lett 389:20–24

    Article  PubMed  CAS  Google Scholar 

  • Buckel W, Golding BT (1996) Glutamate and 2-methyleneglutarate mutase: from microbial curiosities to paradigms for coenzyme B12-dependent enzymes. Chem Soc Rev 25:329–337

    Article  CAS  Google Scholar 

  • Buckel W, Golding BT (1999) Radical species in the catalytic pathways of enzymes from anaerobes. FEMS Microbiol Rev 22:523–541

    Article  Google Scholar 

  • Cannio R, D’angelo A, Rossi M, Bartolucci S (2000a) A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. Eur J Biochem 267:235–243

    Article  PubMed  CAS  Google Scholar 

  • Cannio R, Fiorentino G, Morana A, Rossi M, Bartolucci S (2000b) Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. Front Biosci 5:768–779

    Article  Google Scholar 

  • Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC (1999) Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase. Curr Opin Struct Biol 9:663–669

    Article  PubMed  CAS  Google Scholar 

  • Cruz Ramos H, Boursier L, Moszer I, Kunst F, Danchin A, Glaser P (1995) Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and-independent regulatory mechanisms. EMBO J 14:5984–5994

    PubMed  CAS  Google Scholar 

  • Daniel R, Bobik TA, Gottschalk G (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic Archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  • Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEEBS Lett 457:291–297

    Article  CAS  Google Scholar 

  • Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim Biophys Acta 1318:11–51

    Article  PubMed  CAS  Google Scholar 

  • Dimroth P, Schink B (1998) Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol 170:69–77

    Article  PubMed  CAS  Google Scholar 

  • Feigel BJ, Knackmuss HJ (1993) Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two species bacterial culture. Arch Microbiol 159:124–130

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors 6:25–35

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38

    Article  PubMed  CAS  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  CAS  Google Scholar 

  • Fischer HM (1996) Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol 4:317–320

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M, Laderer U, Schink B (1991) Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch Microbiol 156:398–404

    Article  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Article  CAS  Google Scholar 

  • Gerlach D, Reichardt W, Vettermann S (1998) Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol Lett 160:217–224

    Article  PubMed  CAS  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G, Perutz MF (1995) Kinase activity of oxygen sensor FixL depends on the spin state of its heme iron. Biochemistry 34:232–236

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk G, Chowdhury AA (1969) Pyruvate synthesis from acetyl coenzyme A and carbon dioxide with NADH2 or NADPH2 as electron donors. FEBS Lett 2:342–344

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk G, Thauer RK (2001) The Na+ translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Theis F, Kröger A (1998) Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch Microbiol 170:50–58

    Article  PubMed  CAS  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London Ser A 147:332–352

    Article  CAS  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Ant v Leeuwenhoek 66:165–185

    Article  CAS  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458

    Article  Google Scholar 

  • Hatchikian EC, Henry YA (1977) An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie 59:153–161

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Article  Google Scholar 

  • Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478

    PubMed  CAS  Google Scholar 

  • Hidalgo E, Bollinger JM Jr, Bradley TM, Walsh CT, Demple B (1995) Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 270:20908–20914

    Article  PubMed  CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    Article  Google Scholar 

  • Hormann K, Andreesen JR (1989) Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch Microbiol 153:50–59

    Article  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz J, Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol Rev 87:383–390

    Article  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York/London, pp 117–132

    Google Scholar 

  • Jansen M, Hansen TA (1998) Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria. Arch Microbiol 169:84–87

    Article  PubMed  CAS  Google Scholar 

  • Jenney FE Jr, Verhagen MF, Cui X, Adams MW (1999) Anaerobic microbes: oxygen detoxification without super oxide dismutase. Science 286:306–309

    Article  PubMed  CAS  Google Scholar 

  • Jones G (1961) The Markovnikov rule. J Chem Educ 38:297–300

    Article  CAS  Google Scholar 

  • Jungermann K, Thauer RK, Rupprecht E, Ohrloff C, Decker K (1969) Ferredoxin-mediated hydrogen formation from NADH in a cell-free system of Clostridium kluyveri. FEBS Lett 3:144–146

    Article  PubMed  CAS  Google Scholar 

  • Kargalioglu Y, Imlay JA (1994) Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J Bacteriol 176:7653–76538

    PubMed  CAS  Google Scholar 

  • Khoroshilova N, Popescu C, Munck E, Beinert H, Kiley PJ (1997) Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 94:6087–6092

    Article  PubMed  CAS  Google Scholar 

  • Kiley PJ, Beinert H (1998) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22:341–352

    Article  PubMed  CAS  Google Scholar 

  • Kirby TW, Lancaster JR Jr, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210:140–148

    Article  PubMed  CAS  Google Scholar 

  • Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81:1332–1335

    Article  PubMed  CAS  Google Scholar 

  • Konings WN, Lokema SJ, van Veen HW, Poolman B, Driessen AJM (1997) The role of transport processes in survival of lactic acid bacteria. Ant v Leeuwenhoek 71:117–128

    Article  CAS  Google Scholar 

  • Kröger A, Geißler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158:311–314

    Article  Google Scholar 

  • Lancaster RCD, Kröger A (2000) Succinate: quinone oxidoreductases: new insights from X-ray crystal structures. Biochim Biophys Acta 1459:422–431

    Article  PubMed  CAS  Google Scholar 

  • Lazazzera BA, Beinert H, Khoroshilova N, Kennedy MC, Kiley PJ (1996) DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. Biol Chem 271:2762–2768

    Article  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988a) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate oxidizing coculture. Arch Microbiol 150:513–518

    Article  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988b) Isolation and characterization of a thermophilic bacterium, which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54:124–129

    PubMed  CAS  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hörth P, Hachnel W, Schlitz E, Schägger H, Heider J (1998) Biochemical and genetic characterisation of benzylsuccinate synthase from Thauera aromatica: a new glycyl-radical enzyme catalysing the first step in anaerobic toluene degradation. Molec Microbiol 28:615–628

    Article  CAS  Google Scholar 

  • Licht S, Gerfen GJ, Stubbe J (1996) Thiyl radicals in ribonucleotide reductases. Science 271:477–481

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450

    Article  CAS  Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Synthrophomonas wolfei gen. nov. sp. nov., an anaerobic, synthrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    PubMed  CAS  Google Scholar 

  • Meile L, Fischer K, Leisinger T (1995) Characterization of the superoxide dismutase gene and its upstream region from Methanobacterium thermoautotrophicum Marburg. FEMS Microbiol Lett 128:247–253

    Article  PubMed  CAS  Google Scholar 

  • Melville SB, Gunsalus RP (1996) Isolation of an oxygen-sensitive FNR protein of Escherichia coli: interaction at activator and repressor sites of FNR-controlled genes. Proc Natl Acad Sci USA 93:1226–1231

    Article  PubMed  CAS  Google Scholar 

  • Menon S, Ragsdale SW (1999) The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J Biol Chem 274:11513–11518

    Article  PubMed  CAS  Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Article  Google Scholar 

  • Möller-Zinkhahn D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368

    Article  Google Scholar 

  • Morris JG (1976) Oxygen and the obligate anaerobes. J Appl Bacteriol 40:229–244

    Article  PubMed  CAS  Google Scholar 

  • Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256

    Article  CAS  Google Scholar 

  • Naumann E, Hippe H, Gottschalk G (1983) Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483

    PubMed  CAS  Google Scholar 

  • Niimura Y, Nishiyama Y, Saito D, Tsuji H, Hidaka M, Miyaji T, Watanabe T, Massey V (2000) A hydrogen peroxide-forming NADH oxidase that functions as an alkyl hydroperoxide reductase in Amphibacillus xylanus. J Bacteriol 182:5046–5051

    Article  PubMed  CAS  Google Scholar 

  • Philipp B, Schink B (1998) Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. J Bacteriol 180:3644–3649

    PubMed  CAS  Google Scholar 

  • Philipp B, Schink B (2000) Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Arch Microbiol 173:91–96

    Article  PubMed  CAS  Google Scholar 

  • Pianzzola MJ, Soubes M, Touati D (1996) Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 178:6736–6742

    PubMed  CAS  Google Scholar 

  • Roy F, Samain E, Dubourgier HC, Albagnac G (1986) Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147

    Article  CAS  Google Scholar 

  • Saunders NF, Houben EN, Koefoed S, deWeert S, Reijnders WN, Westerhoff HV, DeBoer AP, VanSpanning RJ (1999) Transcription regulation of the nir gene cluster encoding nitrite reductase of Paracoccus denitrificans involves NNR and NirI, a novel type of membrane protein. Molec Microbiol 34:24–36

    Article  CAS  Google Scholar 

  • Schink B (1984) Fermentation of 2.3-butanediol by Pelobacter carbinolyticus sp. nov. and Pelobacter propionicus, sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41

    Article  CAS  Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe. Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molec Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schink B, Thauer RK (1987) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hilshoff CW (eds) Granular anaerobic sludge: microbiology and technology. Proceedings of the GASMAT-Workshop, Lunteren, The Netherlands Puduc Wageningen, The Netherlands, pp 5–17

    Google Scholar 

  • Schink B, Philipp B, Müller J (2000) Anaerobic degradation of phenolic compounds. Naturwissenschaften 87:12–23

    Article  PubMed  CAS  Google Scholar 

  • Shanmugasundaram T, Ragsdale SW, Wood HG (1988) Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium Acetobacterium woodii. Biofactors 1:147–152

    PubMed  CAS  Google Scholar 

  • Shieh J, Whitman WB (1988) Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis. J Bacteriol 170:3072–3079

    PubMed  CAS  Google Scholar 

  • Spiro S (1994) The FNR family of transcriptional regulators. Ant v Leeuwenhoek 66:23–36

    Article  CAS  Google Scholar 

  • Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150:374–380

    Article  CAS  Google Scholar 

  • Stams AJ (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Ant v Leeuwenhoek 66:271–294

    Article  CAS  Google Scholar 

  • Takao M, Yasui A, Oikawa A (1991) Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 266:14151–14154

    PubMed  CAS  Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1998) 1998 Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Marjory Stephenson Prize Lecture. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann Rev Microbiol 43:43–67

    Article  CAS  Google Scholar 

  • Uyeda R, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. III: purification and properties of the enzyme. J Biol Chem 246:3111–3119

    PubMed  CAS  Google Scholar 

  • Vollack KU, Härtig E, Korner H, Zumft WG (1999) Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Molec Microbiol 31:1681–1694

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Synthrophomonas pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Whittaker MM, Whittaker JW (1998) A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem 273:22188–22193

    Article  PubMed  CAS  Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway or autotrophic growth. FEMS Microbiol Rev 39:345–362

    Article  CAS  Google Scholar 

  • Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996a) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896

    PubMed  CAS  Google Scholar 

  • Youn HD, Youn H, Lee JW, Yim YI, Lee JK, Hah YC, Kang SO (1996b) Unique isozymes of superoxide dismutase in Streptomyces griseus. Arch Biochem Biophys 334:341–348

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microbiol Physiol 24:215–293

    Article  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  PubMed  CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic synthrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schmitz, R.A., Daniel, R., Deppenmeier, U., Gottschalk, G. (2013). The Anaerobic Way of Life. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_52

Download citation

Publish with us

Policies and ethics