Skip to main content

Planktonic Versus Sessile Life of Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

Because of the extremely small size of most prokaryotic organisms, the limits on what is meant by the terms planktonic and sessile require definition. According to the Oxford English Dictionary, planktonic refers to “drifting or floating organic life found at various depths in the ocean or fresh water.” At the micrometer level, a planktonic habitat for prokaryotes can also encompass water films around soil particles, saliva in the mouth, fluids in the intestinal lumen, serum in blood vessels, and urine in the bladder and urinary tract. Sessile, on the other hand, means “immediately attached, without a footstalk.” Again, one can extend this definition to include those prokaryotes directly adhering to surfaces, those attaching by means of a holdfast at the end of a prostheca (e.g., Caulobacter), those embedded in biofilms developing as a result of extracellular polymer production by bacteria colonizing surfaces, and those colonizing mucus excreted by higher organisms (as in the gastrointestinal tract and the mucigel of plant roots).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46:90–97

    PubMed  CAS  Google Scholar 

  • Alldredge AL (1989) The significance of suspended detrital aggregates of marine snow as microhabitats in the pelagic zone of the ocean. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 108–112

    Google Scholar 

  • Angles ML (1988) Microbial colonization of Zostera capricorni in Botany Bay. B.Sc. (honors) thesis, University of New South Wales

    Google Scholar 

  • Azam F, Hodson RE (1977) Size distribution and activity of marine microheterotrophs. Limnol Oceanogr 22:492–501

    Article  CAS  Google Scholar 

  • Baier RE (1980) Substrate influence on adhesion of microorganisms and their resultant new surface properties. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 59–104

    Google Scholar 

  • Beachey EH (ed) (1980) Bacterial adherence. Chapman and Hall, London

    Google Scholar 

  • Belas MR, Colwell RR (1982) Adsorption kinetics of laterally and polarly flagellated Vibrio. J Bacteriol 151:1568–1580

    PubMed  CAS  Google Scholar 

  • Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–218

    PubMed  CAS  Google Scholar 

  • Berman T (1975) Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake Mar. Biol 33:215–220

    Google Scholar 

  • Berman T, Stiller M (1977) Simultaneous measurement of phosphorus and carbon uptake in Lake Kinneret by multiple isotopic labeling and differential filtration. Microb Ecol 3:279–288

    Article  CAS  Google Scholar 

  • Bitton G, Marshall KC (eds) (1980) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York

    Google Scholar 

  • Bott TL, Brock TD (1970) Growth and metabolism of periphytic bacteria: methodology. Limnol Oceanogr 15:333–342

    Article  Google Scholar 

  • Bowden GHW, Ellwood DC, Hamilton IR (1979) Microbial ecology of the oral cavity. Adv Microb Ecol 3:135–217

    Article  Google Scholar 

  • Bright JJ, Fletcher M (1983) Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl Environ Microbiol 45:818–825

    PubMed  CAS  Google Scholar 

  • Brock TD (1971) Microbial growth rates in nature. Bacteriol Rev 35:39–58

    PubMed  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Rev 46:165–173

    Article  CAS  Google Scholar 

  • Busscher HJ, Uyen MHMJC, Weerkamp AH, Postma AH, Arends J (1986) Reversibility of adhesion of oral streptococci to solids. FEMS Microbiol Lett 35:303–306

    Article  CAS  Google Scholar 

  • Caldwell DE, Germida JJ (1985) Evaluation of difference imagery for visualizing and quantitating microbial growth. Can J Microbiol 31:35–44

    Article  Google Scholar 

  • Campbell PGC, Baker JH (1978) Estimation of bacterial production in freshwaters by the simultaneous measurement of [35S] sulfate and D-[3H] glucose uptake in the dark. Can J Microbiol 24:939–946

    Article  PubMed  CAS  Google Scholar 

  • Characklis WG (1980) Biofilm development and destruction, U.S. Report. Electric Power Research Institute, Palo Alto, CA, 902–1

    Google Scholar 

  • Characklis WG (1981a) Fouling biofilm development: a process analysis. Biotechnol Bioeng 23:1923–1960

    Article  CAS  Google Scholar 

  • Characklis WG (1981b) Microbial fouling: a process analysis. In: Somerscales EFC, Knudsen JG (eds) Fouling of heat transfer equipment. Hemisphere, Washington, DC, pp 251–291

    Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley-Interscience, New York, pp 3–15

    Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley-Interscience, New York, pp 93–130

    Google Scholar 

  • Corpe WA (1973) Microfouling: the role of primary film-forming bacteria. In: Acker RF, Brown BF, de Palma JR, Iverson WP (eds) Proceedings of the third international congress on marine corrosion and fouling. Northwestern University Press, Evanston, IL, pp 598–609

    Google Scholar 

  • Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 105–144

    Google Scholar 

  • Costerton JW, Irvin RJ, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324

    Article  PubMed  CAS  Google Scholar 

  • Dawson MP, Humphrey BA, Marshall KC (1981) Adhesion, a tactic in the survival strategy of a marine vibrio during starvation. Curr Microbiol 6:195–198

    Article  Google Scholar 

  • De Boer WE, Golten C, Scheffers WA (1975) Effects of some physical factors on flagellation and swarming of Vibrio alginolyticus. Neth J Sea Res 9:197–213

    Article  Google Scholar 

  • Dempsey MJ (1981) Marine bacterial fouling: a scanning electron microscope study. Mar Biol 61:305–315

    Article  Google Scholar 

  • Dexter SC, Sullivan JD Jr, Williams J III, Watson SW (1975) Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl Microbiol 30:298–308

    PubMed  CAS  Google Scholar 

  • Duxbury T (1977) A microperfusion chamber for studying the growth of bacterial cells. J Appl Bacteriol 42:247–251

    Google Scholar 

  • Ellwood DC, Keevil CW, Marsh PD, Brown CM, Wardell JN (1982) Surface associated growth. Philos Trans R Soc Lond B297:517–532

    Article  Google Scholar 

  • Fattom A, Shilo M (1984) Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl Environ Microbiol 47:135–143

    PubMed  CAS  Google Scholar 

  • Fenchel T (1986) The ecology of heterotrophic microflagellates. Adv Microb Ecol 9:57–97

    Google Scholar 

  • Fenchel T, Jørgensen BB (1977) Detritus food chains of aquatic environments. Adv Microb Ecol 1:1–58

    Article  CAS  Google Scholar 

  • Ferguson RL, Palumbo AV (1979) Distribution of suspended bacteria in neritic waters south of Long Island during stratified conditions. Limnol Oceanogr 24:697–705

    Article  Google Scholar 

  • Fletcher M (1979) A microautoradiographic study of the activity of attached and free-living bacteria. Arch Microbiol 122:271–274

    Article  Google Scholar 

  • Fletcher M (1980) The question of passive versus active attachment mechanisms in non-specific bacterial adhesion. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, pp 197–210

    Google Scholar 

  • Fletcher M (1984) Comparative physiology of attached and free-living bacteria. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 223–232

    Chapter  Google Scholar 

  • Fletcher M (1986) Measurement of glucose utilization by Pseudomonas fluorescens that are free living and that are attached to surfaces. Appl Environ Microbiol 52:672–676

    PubMed  CAS  Google Scholar 

  • Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030

    PubMed  CAS  Google Scholar 

  • Fletcher M, Floodgate GD (1973) An electron microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J Gen Microbiol 74:325–334

    CAS  Google Scholar 

  • Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    PubMed  CAS  Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23:1733–1736

    Article  PubMed  CAS  Google Scholar 

  • Geesey GG, Mutch R, Costerton JW, Green RB (1978) Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol Oceanogr 23:1214–1223

    Article  CAS  Google Scholar 

  • Gerchakov SM, Marszalek DS, Roth FJ, Udey LR (1977) Succession of periphytic microorganisms on metal and glass surfaces 203–211 V. In: Romanovsky I (ed) Proceedings of the 4th International Congress on Marine Corrosion and Fouling. Centre de Recherches et d’Etudes Oceangraphiques, Boulogne, France

    Google Scholar 

  • Golten C, Scheffers WA (1975) Marine vibrios isolated from water along the Dutch coast. Neth J Sea Res 9:351–364

    Article  Google Scholar 

  • Gordon AS, Milero FJ (1985) Adsorption mediated decrease in the biodegradation rate of organic compounds. Microb Ecol 11:289–298

    Article  CAS  Google Scholar 

  • Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  PubMed  CAS  Google Scholar 

  • Guckert JB, Antworth CB, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Hanson RB, Wiebe WJ (1977) Heterotrophic activity associated with particulate size fractions in a Spartina alterniflora salt-marsh estuary, Sapelo Island, Georgia, U.S.A., and the continental shelf waters. Mar Biol 42:321–330

    Article  Google Scholar 

  • Harris PJ (1972) Micro-organisms in surface films from soil crumbs. Soil Biol Biochem 4:105–106

    Article  Google Scholar 

  • Hermansson M, Marshall KC (1985) Utilization of surface localized substrate by non-adhesive marine bacteria. Microb Ecol 11:91–105

    Article  CAS  Google Scholar 

  • Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  • Humphrey BA, Marshall KC (1984) The triggering effect of surfaces and surfactants on heat output, oxygen consumption and size reduction of a starving marine Vibrio. Arch Microbiol 140:166–170

    Article  PubMed  CAS  Google Scholar 

  • Humphrey BA, Kjelleberg S, Marshall KC (1983) Responses of marine bacteria under starvation conditions at a solid-water interface. Appl Environ Microbiol 45:43–47

    PubMed  CAS  Google Scholar 

  • Jannasch HW (1958) Studies on planktonic bacteria by means of a direct membrane filter method. J Gen Microbiol 18:609–620

    PubMed  CAS  Google Scholar 

  • Jordan TL, Staley JT (1976) Electron microscopic study of succession in the periphyton communities of Lake Washington. Microb Ecol 2:241–251

    Article  Google Scholar 

  • Kefford B, Kjelleberg S, Marshall KC (1982) Bacterial scavenging: utilization of fatty acids localized at a solid–liquid interface. Arch Microbiol 133:257–260

    Article  CAS  Google Scholar 

  • Kirchman D, Mitchell R (1982) Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl Environ Microbiol 43:200–209

    PubMed  CAS  Google Scholar 

  • Kjelleberg S, Humphrey BA, Marshall KC (1982) The effect of interfaces on small starved marine bacteria. Appl Environ Microbiol 43:1166–1172

    PubMed  CAS  Google Scholar 

  • Kjelleberg S, Humphrey BA, Marshall KC (1983) Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46:978–984

    PubMed  CAS  Google Scholar 

  • Kölbel-Boelke J, Hirsch P (1989) Comparative physiology of biofilm and suspended organisms in the groundwater environment. In: Characklis WG, Wilderer PA (eds) Structure and function of biofilms Dahlem Konferenzen. Wiley, New York, pp 221–238

    Google Scholar 

  • La Motta EJ (1976) Kinetics of growth and substrate uptake in a biological film system. Appl Environ Microbiol 31:286–293

    PubMed  Google Scholar 

  • Lawrence JR, Caldwell DE (1987) Behavior of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 14:15–27

    Article  Google Scholar 

  • Lee A (1980) Normal flora of animal intestinal surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 145–173

    Google Scholar 

  • Lee A (1985) Neglected niches: the microbial ecology of the gastrointestinal tract. Adv Microb Ecol 8:115–162

    Article  Google Scholar 

  • Little BJ, Wagner PA, Characklis WG, Lee W (1990) Microbial corrosion. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley-Interscience, New York, pp 635–670

    Google Scholar 

  • Loeb GI (1980) Measurement of microbial marine fouling films by light section microscopy. Mar Tech Soc J 14:17–30

    Google Scholar 

  • Lupton FS, Marshall KC (1981) Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance. Appl Environ Microbiol 42:1085–1092

    PubMed  CAS  Google Scholar 

  • Mack WN, Mack JP, Ackerson AO (1975) Microbial film development in a trickling filter. Microb Ecol 2:215–226

    Article  Google Scholar 

  • Marshall KC (1975) Clay mineralogy in relation to survival of soil bacteria. Ann Rev Phytopathol 13:357–373

    Article  Google Scholar 

  • Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Marshall KC (ed) (1984) Microbial adhesion and aggregation. Springer, Berlin

    Google Scholar 

  • Marshall KC (1985) Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage DC, Fletcher M (eds) Bacterial adhesion: mechanisms and physiological significance. Plenum Press, New York, pp 131–161

    Google Scholar 

  • Marshall KC (1986a) Adsorption and adhesion processes in microbial growth at interfaces. Adv Colloid Interface Sci 25:59–86

    Article  PubMed  CAS  Google Scholar 

  • Marshall KC (1986b) Microscopic methods for the study of bacterial behavior at inert surfaces. J Microbiol Methods 4:217–227

    Article  Google Scholar 

  • Marshall KC, Cruickshank RH (1973) Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch Mikrobiol 91:29–40

    Article  PubMed  CAS  Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971a) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    CAS  Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971b) Selective sorption of bacteria from seawater. Can J Microbiol 17:1413–1416

    Article  PubMed  CAS  Google Scholar 

  • Marszalek DS, Gerchakov SM, Udey LR (1979) Influence of substrate composition on marine microfouling. Appl Environ Microbiol 38:987–995

    PubMed  CAS  Google Scholar 

  • McEldowney S, Fletcher M (1986) Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. J Gen Microbiol 132:513–523

    CAS  Google Scholar 

  • Moriarty DJW (1977) Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecolgia 26:317–323

    Article  Google Scholar 

  • Moriarty DJW (1986) Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. Adv Microb Ecol 9:245–292

    CAS  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microb Ecol 6:171–198

    Article  Google Scholar 

  • Neihof R, Loeb G (1974) Dissolved organic matter in seawater and the electric charge of immersed surfaces. J Mar Res 32:5–12

    CAS  Google Scholar 

  • Newman HN (1980) Retention of bacteria on oral surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 207–251

    Google Scholar 

  • Nichols PD, Henson JM, Guckert JB, Nivens DE, White DC (1985) Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteria polymer mixtures and biofilms. J Microbiol Methods 4:79–94

    Article  PubMed  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55

    CAS  Google Scholar 

  • Paerl HW (1980) Attachment of microorganisms to living and detrital surfaces in freshwater systems. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 375–402

    Google Scholar 

  • Paerl HW, Merkel SM (1982) Differential phosphorus assimilation in attached vs. unattached microorganisms. Arch Hydrobiol 93:125–134

    Google Scholar 

  • Pedros-Alio C, Brock TD (1983) The importance of attachment to particles for planktonic bacteria. Arch Hydrobiol 98:354–379

    Google Scholar 

  • Perfil’ev BV, Gabe DR (1969) Capillary methods of investigating micro-organisms. University of Toronto Press, Toronto (translated from Russian by J. M. Shewan)

    Google Scholar 

  • Pethica BA (1980) Microbial and cell adhesion. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, pp 19–45

    Google Scholar 

  • Phillips MW, Lee A (1983) Isolation and characterization of a spiral bacterium from the crypts of rodent gastrointestinal tracts. Appl Environ Microbiol 45:675–683

    PubMed  CAS  Google Scholar 

  • Power K, Marshall KC (1988) Cellular growth and reproduction of marine bacteria on surface-bound substrate. Biofouling 1:163–174

    Article  Google Scholar 

  • Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces Appl. Environ Microbiol 45:811–817

    CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:252–293

    Google Scholar 

  • Riemann B (1978) Differentiation between heterotrophic and photosynthetic plankton by size fractionation, glucose uptake ATP, and chlorophyll content. Oikos 31:358–367

    Article  CAS  Google Scholar 

  • Roper MM, Marshall KC (1974) Modification of the interaction between Escherichia coli and bacteriophage in saline sediment. Microb Ecol 1:1–14

    Article  Google Scholar 

  • Roper MM, Marshall KC (1978) Effects of a clay mineral on microbial predation and parasitism on Escherichia coli. Microb Ecol 4:279–289

    Article  Google Scholar 

  • Rosenberg E, Gottlieb A, Rosenberg M (1983) Inhibition of bacterial adherence to epithelial cells and hydrocarbons by emulsan. Infect Immun 39:1024–1028

    PubMed  CAS  Google Scholar 

  • Rovira AD, Foster RD, Martin JK (1979) Note on terminology: Origin, nature and nomenclature of the organic materials in the rhizosphere. In: Harley JL, Russell RS (eds) The soil root interface. Academic, London, pp 1–4

    Google Scholar 

  • Rutter PR, Vincent B (1980) The adhesion of microorganisms to surfaces: physico-chemical aspects. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, pp 79–93

    Google Scholar 

  • Savage DC (1980) Colonization by and survival of pathogenic bacteria on intestinal mucosal surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley-Interscience, New York, pp 175–206

    Google Scholar 

  • Savage DC (1984) Activities of microorganisms attached to living surfaces. In: Marshall KC (ed) Microbial adhesion and aggregation Dahlem Konferenzen. Springer, Berlin, pp 233–249

    Chapter  Google Scholar 

  • Savage DC, Fletcher MM (eds) (1985) Bacterial adhesion: mechanisms and physiological significance. Plenum Press, New York

    Google Scholar 

  • Silverman M, Belas R, Simon M (1984) Genetic control of bacterial adhesion. In: Marshall KC (ed) Microbial adhesion and aggregation. Springer, Berlin, pp 95–107

    Chapter  Google Scholar 

  • Skerman VBD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297

    PubMed  CAS  Google Scholar 

  • Staley JT (1971) Growth rates of algae determined in situ using an immersed microscope. J Phycol 7:13–17

    Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, Soil Science Society of America Special Publication No. 17. Soil Science Society of America, Madison, WI, pp 305–428

    Google Scholar 

  • Switalski L, Höök M, Beachey E (eds) (1989) Molecular mechanisms of microbial adhesion. Springer, New York

    Google Scholar 

  • Szewzyk U, Schink B (1988) Surface colonization by and life cycle of Pelobacter acidigallici studied in a continuous flow microchamber. J Gen Microbiol 134:183–190

    Google Scholar 

  • Weller R, Ward DM (1989) Selective recovery of 16SrRNA sequences from natural microbial communities in the form of cDNA. Appl Environ Microbiol 55:1818–1822

    PubMed  CAS  Google Scholar 

  • ZoBell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39–56

    PubMed  CAS  Google Scholar 

  • Zvyagintsev DG (1962) Adsorption of microorganisms by soil particles. Soviet Soil Sci 140–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

∗Deceased

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Marshall*, K.C. (2013). Planktonic Versus Sessile Life of Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_49

Download citation

Publish with us

Policies and ethics