Skip to main content

The Family Spiroplasmataceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Spiroplasmataceae is one of two in the order Entomoplasmatales. The family contains a single genus, Spiroplasma, whose members are regularly associated with arthropod or plant hosts. Spiroplasma species can be traced to a common ancestor; however, this lineage also includes the nonhelical Entomoplasma, Mesoplasma, and mycoides group (Mycoplasma) descendants. Spiroplasma cells are characterized by their helical shape, which is most common during exponential growth, and by their lack of a cell wall. They are motile due to a unique linear motor that allows for rotatory, flexional, and translational motility. Genome sizes range from 780 to 2,220 kbp in these AT-rich organisms (24–31 mol% G+C) that commonly harbor viral sequences in large areas of repetitive sequence. Spiroplasmas are chemo-organotrophic, generally fermenting glucose through the phosphoenolpyruvate-dependent sugar transferase system. Most strains require rich media for initial isolation and/or maintenance, and all spiroplasmas are resistant to penicillin. Temperature ranges (5–41 °C), growth optima, and doubling times are species specific. Due to motility, colonies are diffuse and range in size from 0.1 to 4.0 mm. Historically, Spiroplasma classification relied on surface serology as a surrogate for DNA-DNA hybridization assays, resulting in 49 reported serogroups and 15 subgroups. There are a total of 38 described Spiroplasma species, as not all serogroup/subgroup type strains have been fully characterized. Most host relationships are commensal, but cases of mutualism and pathogenicity have been reported. For example, spiroplasma infections cause citrus stubborn disease, corn stunt disease, sex ratio disorders, and honey bee mortality; spiroplasmas are pathogenic for suckling rodents and/or chicken embryos under experimental conditions.

This chapter is a modified and updated version of previous family descriptions (Williamson DL, Gasparich GE, Regassa LB, Saillard C, Renaudin J, Bové JM, Whitcomb RF (2010) Family II. Spiroplasmataceae. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s Manual of Systematic Bacteriology, vol 4. Springer, New York, pp 654–686; Brown DR, Bradbury JM, Whitcomb RF (2010) Order II. Entomoplasmatales. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s Manual of Systematic Bacteriology, vol 4. Springer, New York, pp 644–645)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalain-Colloc ML, Williamson DL, Carle P, Abalain JH, Bonnet F, Tully JG, Konai M, Whitcomb RF, Bové JM, Chastel C (1993) Division of group XVI spiroplasmas into subgroups. Int J Syst Bacteriol 43:342–346

    Google Scholar 

  • Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, Selezneva O, Akopian T, Prichodko E, Kondratov I, Chukin M, Demina I, Galyamina M, Kamashev D, Vanyushkina A, Ladygina V, Levitskii S, Lazarev V, Govorun V (2012) Application of Spiroplasma melliferum proteogenomic profiling for the discovery of virulence factors and pathogenicity mechanisms in host-associated spiroplasmas. J Proteome Res 11:224–236

    PubMed  CAS  Google Scholar 

  • Alexeeva I, Elliott EJ, Rollins S, Gasparich GE, Lazar J, Rohwer RG (2006) Absence of Spiroplasma or other bacterial 16s rRNA genes in brain tissue of hamsters with scrapie. J Clin Microbiol 44:91–97

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alivizatos AS (1988) Isolation and culture of corn stunt spiroplasma in serum-free medium. J Phytopathol 122:68–75

    Google Scholar 

  • Altamiranda JM, Salazar MV, Briñez BR (2011) Presencia de Spiroplasma penaei en plancton, bentos y fauna acompañante en fincas camaroneras de Colombia. Rev MVZ Córdoba 16:2576–2583

    Google Scholar 

  • Amikam D, Razin S, Glaser G (1982) Ribosomal RNA genes in Mycoplasma. Nucleic Acids Res 10:4215–4222

    PubMed  CAS  PubMed Central  Google Scholar 

  • Amikam D, Glaser G, Razin S (1984) Mycoplasmas (Mollicutes) have a low number of rRNA genes. J Bacteriol 158:376–378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ammar E, Hogenhout SA (2005) Use of immunofluorescence confocal laser scanning microscopy to study distribution of the bacterium corn stunt spiroplasma in vector leafhoppers (Hemiptera : Cicadellidae) and in host plants. Ann Entomol Soc Am 98:820–826

    Google Scholar 

  • Ammar E-D, Gasparich GE, Hall DG, Hogenhout SA (2011) Spiroplasma-like organisms closely associated with the gut in five leafhopper species (Hemiptera: Cicadellidae). Arch Microbiol 193:35–44

    CAS  Google Scholar 

  • Anbutsu H, Fukatsu T (2003) Population dynamics of male-killing and non-male-killing spiroplasmas in Drosophila melanogaster. Appl Environ Microbiol 69:1428–1434

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anbutsu H, Fukatsu T (2010) Evasion, suppression and tolerance of Drosophila innate immunity by a male-killing Spiroplasma endosymbiont. Insect Mol Biol 19:481–488

    PubMed  CAS  Google Scholar 

  • Archer DB, Best J, Barber C (1981) Isolation and restriction mapping of a spiroplasma plasmid. J Gen Microbiol 126:511–514

    CAS  Google Scholar 

  • Bai X, Hogenhout SA (2002) A genome sequence survey of the mollicute corn stunt spiroplasma Spiroplasma kunkelii. FEMS Microbiol Lett 210:7–17

    PubMed  CAS  Google Scholar 

  • Baseman JB, Tully JG (1997) Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3:21–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bastian FO (1979) Spiroplasma-like inclusions in Creutzfeldt-Jakob Disease. Arch Pathol Lab Med 103:665–669

    PubMed  CAS  Google Scholar 

  • Bastian FO, Foster JW (2001) Spiroplasma sp. 16S rDNA in Creutzfeldt-Jakob disease and scrapie as shown by PCR and DNA sequence analysis. J Neuropathol Exp Neurol 60:613–620

    PubMed  CAS  Google Scholar 

  • Bastian FO, Dash S, Garry RF (2004) Linking chronic wasting disease to scrapie by comparison of Spiroplasma mirum ribosomal DNA sequences. Exp Mol Pathol 77:49–56

    PubMed  CAS  Google Scholar 

  • Bastian FO, Sanders DE, Forbes WA, Hagius SD, Walker JV, Henk WG, Enright FM, Elzer PH (2007) Spiroplasma sp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants. J Med Microbiol 56:1235–1242

    PubMed  Google Scholar 

  • Bébéar CM, Aullo P, Bové JM, Renaudin J (1996) Spiroplasma citri virus SpV1: characterization of viral sequences present in the spiroplasma host chromosome. Curr Microbiol 32:134–140

    Google Scholar 

  • Bévén L, Wróblewski H (1997) Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res Microbiol 148:163–175

    PubMed  Google Scholar 

  • Bévén L, Le Henaff M, Fontenelle C, Wróblewski H (1996) Inhibition of spiralin processing by the lipopeptide antibiotic globomycin. Curr Microbiol 33:317–322

    PubMed  Google Scholar 

  • Bévén L, Duval D, Rebuffat S, Riddell FG, Bodo B, Wróblewski H (1998) Membrane permeabilisation and antimycoplasmic activity of the 18-residue peptaibols, trichorzins PA. Biochim Biophys Acta 1372:78–90

    PubMed  Google Scholar 

  • Bi K, Huang H, Gu W, Wang J, Wang W (2008) Phylogenetic analysis of Spiroplasmas from three freshwater crustaceans (Eriocheir sinensis, Procambarus clarkia and Penaeus vannamei) in China. J Invertebr Pathol 99:57–65

    PubMed  CAS  Google Scholar 

  • Bové JM (1993) Molecular features of mollicutes. Clin Infect Dis 17(suppl 1):S10–S31

    PubMed  Google Scholar 

  • Bové JM, Saillard C (1979) Cell biology of spiroplasmas. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 3. Academic, New York, pp 83–153

    Google Scholar 

  • Bové JM, Carle P, Garnier M, Laigret F, Renaudin J, Saillard C (1989) Molecular and cellular biology of spiroplasmas. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic, New York, pp 243–364

    Google Scholar 

  • Bové JM, Renaudin J, Saillard C, Foissac X, Garnier M (2003) Spiroplasma citri, a plant pathogenic molligute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol 41:483–500

    PubMed  Google Scholar 

  • Bowyer JW, Calavan EC (1974) Antibiotic sensitivity in vitro of the mycoplasmalike organism associated with citrus stubborn disease. Phytopathology 64:346–349

    CAS  Google Scholar 

  • Breton M, Duret S, Arricau-Bouvery N, Bévén L, Renaudin J (2008) Characterizing the replication and stability regions of Spiroplasma citri identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. Microbiology 154:3232–3244

    PubMed  CAS  Google Scholar 

  • Breton M, Duret S, Danet LJ-L, Dubrana M-P, Renaudin J (2010a) Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 76:3198–3205

    PubMed  CAS  PubMed Central  Google Scholar 

  • Breton M, Sagné E, Duret S, Béven L, Citti C, Renaudin J (2010b) First report of a tetracycline-inducible gene expression system for mollicutes. Microbiology 156:198–205

    PubMed  CAS  Google Scholar 

  • Brown DR, Whitcomb RF, Bradbury JM (2007) Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 57:2703–2719

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calavan EC, Bové JM (1989) Ecology of Spiroplasma citri. In: Whitcomb RF, Tully JG (eds) The mycoplasmas. Academic, San Diego

    Google Scholar 

  • Carle P, Tully JG, Whitcomb RF, Bové JM (1990) Size of the spiroplasmal genome and guanosine plus cytosine content of spiroplasmal DNA. Zentbl Bakteriol Suppl. 20:926–931

    Google Scholar 

  • Carle P, Laigret F, Tully JG, Bove JM (1995) Heterogeneity of genome sizes within the genus Spiroplasma. Int J Syst Bacteriol 45:178–181

    PubMed  CAS  Google Scholar 

  • Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové J-M, Renaudin J, Foissac X (2010) Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 76:3420–3426

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carpane P, Melcher U, Wayadande A, Giminez MP, Laguna G, Dolezal W, Fletcher J (2012) An analysis of the genomic variability of the phytopathogenic mollicute Spiroplasma kunkelii. Phytopathology Sep 16 [Epub ahead of print]

    Google Scholar 

  • Chang CJ (1989) Nutrition and cultivation of spiroplasmas. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic, New York, pp 201–241

    Google Scholar 

  • Chang CJ, Chen TA (1982) Spiroplasma: cultivation in chemically defined medium. Science 215:1121–1122

    PubMed  CAS  Google Scholar 

  • Chastel C, Humphery-Smith I (1991) Mosquito spiroplasmas. Adv Dis Vector Res 7:149–205

    Google Scholar 

  • Chastel C, Gilot B, Goff FL, Divau B, Kerdraon G, Humphery-Smith I, Gruffaz R, Flohic AMS-L (1990) New developments in the ecology of mosquito spiroplasmas. Zentbl Bakteriol Suppl. 20:455–460

    Google Scholar 

  • Chen TA, Liao CH (1975) Corn stunt spiroplasma: isolation, cultivation, and proof of pathogenicity. Science 188:1015–1017

    PubMed  CAS  Google Scholar 

  • Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS, McKenna R (1998) Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 6:135–145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Christiansen C, Askaa G, Freundt EA, Whitcomb RF (1979) Nucleic-acid hybridization experiments with Spiroplasma citri and the corn stunt and suckling mouse cataract spiroplasmas. Curr Microbiol 2:323–326

    CAS  Google Scholar 

  • Citti C, Marechal-Drouard L, Saillard C, Weil JH, Bové JM (1992) Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J Bacteriol 174:6471–6478

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clark TB (1977) Spiroplasma sp., a new pathogen in honey bees. J Invertebr Pathol 29:112–113

    Google Scholar 

  • Clark TB (1978) Honey bee spiroplasmosis, a new problem for beekeepers. Am Bee J 118:18–23

    Google Scholar 

  • Clark TB (1982) Spiroplasmas: diversity of arthropod reservoirs and host-parasite relationships. Science 217:57–59

    PubMed  CAS  Google Scholar 

  • Clark H, Rorke LB (1979) Spiroplasmas of tick origin and their pathogenicity. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 3. Academic, New York, pp 155–174

    Google Scholar 

  • Cohen AJ, Williamson DL (1988) Yeast supported growth of Drosophila species spiroplasmas. In: Abstracts of the 7th international organization for mycoplasmology, Vienna

    Google Scholar 

  • Cohen AJ, Williamson DL, Brink PR (1989) A motility mutant of Spiroplasma melliferum induced with nitrous-acid. Curr Microbiol 18:219–222

    CAS  Google Scholar 

  • Cohen-Krausz S, Cabahug PC, Trachtenberg S (2011) The monomeric, tetrameric, and fibrillar organization of Fib: the dynamic building block of the bacterial linear motor of Spiroplasma melleferum BC3. J Mol Biol 410:194–213

    PubMed  CAS  Google Scholar 

  • Cole RM (1979) Mycoplasma and spiroplasma viruses: ultrastructure. In: Barile MF, Razin S (eds) The mycoplasmas, vol 1. Academic, New York, pp 385–410

    Google Scholar 

  • Cole RM, Tully JG, Popkin TJ, Bové JM (1973) Morphology, ultrastructure, and bacteriophage infection of the helical mycoplasma-like organism (Spiroplasma citri gen. nov., sp. nov.) cultured from “stubborn” disease of citrus. J Bacteriol 115:367–384

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cole RM, Tully JG, Popkin TJ (1974) Virus-like particles in Spiroplasma citri. Colloq Inst Natl Santé Rech Med 33:125–132

    Google Scholar 

  • Cole RM, Mitchell WO, Garon CF (1977) Spiroplasma citri 3: propagation, purification, proteins, and nucleic acid. Science 198:1262–1263

    PubMed  CAS  Google Scholar 

  • Dally EL, Barros TSL, Zhao Y, Lin S, Roe BA, Davis RE (2006) Physical and genetic map of the Spiroplasma kunkelii CR2-3x chromosome. Can J Microbiol 52:857–867

    PubMed  CAS  Google Scholar 

  • Daniels MJ, Longland JM (1984) Chemotactic behavior of spiroplasmas. Curr Microbiol 10:191–193

    CAS  Google Scholar 

  • Daniels MJ, Longland JM, Gilbart J (1980) Aspects of motility and chemotaxis in spiroplasmas. J Gen Microbiol 118:429–436

    CAS  Google Scholar 

  • Davis RE (1978) Spiroplasma associated with flowers of the tulip tree (Liriodendron tulipifera L.). Can J Microbiol 24:954–959

    PubMed  CAS  Google Scholar 

  • Davis RE, Worley JF (1973) Spiroplasma: motile helical microorganism associated with corn stunt disease. Phytopathology 63:403–408

    Google Scholar 

  • Davis RE, Worley JF, Whitcomb RF, Ishijima T, Steere RL (1972a) Helical filaments produced by a mycoplasma-like organism associated with corn stunt disease. Science 176:521–523

    PubMed  Google Scholar 

  • Davis RE, Whitcomb RF, Chen TA, Granados RR (1972b) Current status of the aetiology of corn stunt disease. In: Elliott K, Birch J (eds) Pathogenic mycoplasmas. Elsevier Excerpta Medica, Amsterdam, pp 205–214

    Google Scholar 

  • Davis RE, Dally EL, Jomantiene R, Zhao Y, Roe B, Lin S, Shao J (2005) Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. Plasmid 53:179–190

    PubMed  CAS  Google Scholar 

  • Dickinson MJ, Townsend R (1984) Characterization of the genome of a rod-shaped virus infecting Spiroplasma citri. J Gen Virol 65:1607–1610

    CAS  Google Scholar 

  • Du J, Ou J, Li W, Ding Z, Wu T, Meng Q, Gu W, Wang W (2012) Primary hemocyte culture of the freshwater prawn Macrobrachium rosenbergii and its susceptibility to the novel pathogen spiroplasma strain MR-1008. Aquaculture 330–333:21–28

    Google Scholar 

  • Duret S, Danet JL, Garnier M, Renaudin J (1999) Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 181:7449–7456

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-D A, Fulton D, Bai X, Meulia T, Hogenhout SA (2004) An attachment tip and pili-like structures in insect- and plant-pathogenic spiroplasmas of the class Mollicutes. Arch Microbiol 18:97–105

    Google Scholar 

  • Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, Kondratov IG, Zhukova NA, Serebryakova MV, Demina IA, Govorun VM (2011) Core proteome of the minimal cell: comparative proteomics of three mollicute species. PLoS One 6:e21964

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fletcher J, Schultz GA, Davis RE, Eastman EC, Goodman RM (1981) Brittle root disease of horseradish: evidence for an etiological role of Spiroplasma citri. Phytopathology 71:1073–1080

    Google Scholar 

  • French FE, Whitcomb RF, Tully JG, Hackett KJ, Clark EA, Henegar RB, Wagner AG, Rose DL (1990) Tabanid spiroplasmas of the southeast USA: new groups and correlation with host life history strategy. Zbl Bakteriol (Suppl) 20:919–922

    Google Scholar 

  • French FE, Whitcomb RF, Tully JG, Williamson DL, Henegar RB (1996) Spiroplasmas of Tabanus lineola. IOM Lett 4:211–212

    Google Scholar 

  • French FE, Whitcomb RF, Tully JG, Carle P, Bové JM, Henegar RB, Adams JR, Gasparich GE, Williamson DL (1997) Spiroplasma lineolae sp. nov., from the horsefly Tabanus lineola (Diptera: Tabanidae). Int J Syst Bacteriol 47:1078–1081

    PubMed  CAS  Google Scholar 

  • Gadeau AP, Mouches C, Bové JM (1986) Probable insensitivity of mollicutes to rifampin and characterization of spiroplasmal DNA-dependent RNA polymerase. J Bacteriol 166:824–828

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garnier M, Clerc M, Bové JM (1981) Growth and division of spiroplasmas: morphology of Spiroplasma citri during growth in liquid medium. J Bacteriol 147:642–652

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garnier M, Clerc M, Bové JM (1984) Growth and division of Spiroplasma citri: elongation of elementary helices. J Bacteriol 158:23–28

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, Saillard C, Bové JM (2001) Mycoplasmas, plants, insect vectors: a matrimonial triangle. Comp Rend Acad Sci Paris Ser III 324:923–928

    CAS  Google Scholar 

  • Gasparich GE (2010) Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals 38:193–203

    PubMed  CAS  Google Scholar 

  • Gasparich GE, Hackett KJ (1994) Characterization of a cryptic extrachromosomal element isolated from the mollicute Spiroplasma taiwanense. Plasmid 32:342–343

    PubMed  CAS  Google Scholar 

  • Gasparich GE, Saillard C, Clark EA, Konai M, French FE, Tully JG, Hackett KJ, Whitcomb RF (1993a) Serologic and genomic relatedness of group VIII and group XVII spiroplasmas and subdivision of spiroplasma group VIII into subgroups. Int J Syst Bacteriol 43:338–341

    Google Scholar 

  • Gasparich GE, Hackett KJ, Clark EA, Renaudin J, Whitcomb RF (1993b) Occurrence of extrachromosomal deoxyribonucleic acids in spiroplasmas associated with plants, insects, and ticks. Plasmid 29:81–93

    PubMed  CAS  Google Scholar 

  • Gasparich GE, Whitcomb RF, Dodge D, French FE, Glass J, Williamson DL (2004) The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol 54:893–918

    PubMed  CAS  Google Scholar 

  • Gaurivaud P, Laigret F, Bové JM (1996) Insusceptibility of members of the class Mollicutes to rifampin: studies of the spiroplasma citri RNA polymerase beta-subunit gene. Antimicrob Agents Chemother 40:858–862

    PubMed  CAS  PubMed Central  Google Scholar 

  • Granett AL, Blue RL, Harjung MK, Calavan EC, Gumpf DG (1976) Occurrence of Spiroplasma citri in periwinkle in California. Calif Agric 30:18–19

    Google Scholar 

  • Grau O, Laigret F, Bové JM (1988) Analysis of ribosomal RNA genes in two spiroplasmas, one acholeplasma and one unclassified mollicute. Zentbl Bakteriol Suppl. 20:895–897

    Google Scholar 

  • Grulet O, Humpherysmith I, Sunyach C, Legoff F, Chastel C (1993) “Spiromed”: a rapid and inexpensive spiroplasma isolation technique. J Microbiol Method 17:123–128

    Google Scholar 

  • Hackett KJ, Clark TB (1989) Spiroplasma ecology. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic, San Diego

    Google Scholar 

  • Hackett KJ, Lynn DE (1985) Cell-assisted growth of a fastidious spiroplasma. Science 230:825–827

    PubMed  CAS  Google Scholar 

  • Hackett KJ, Lynn DE, Williamson DL, Ginsberg AS, Whitcomb RF (1986) Cultivation of the Drosophila sex-ratio spiroplasma. Science 232:1253–1255

    PubMed  CAS  Google Scholar 

  • Hackett KJ, Whitcomb RF, Henegar RB, Wagner AG, Clark EA, Tully JG, Green F, McKay WH, Santini P, Rose DL, Anderson JJ, Lynn DE (1990) Mollicute diversity in arthropod hosts. Zentbl Bakteriol Suppl. 20:441–454

    Google Scholar 

  • Hackett KJ, Hackett RH, Clark EA, Gasparich GE, Pollack JD, Whitcomb RF (1994) Development of the first completely defined medium for a spiroplasma, Spiroplasma clarkii strain CN-5. IOM Lett 3:446–447

    Google Scholar 

  • Hackett KJ, Clark EA, Whitcomb RF, Camp M, Tully JG (1996) Amended data on arginine utilization by Spiroplasma species. Int J Syst Bacteriol 46:912–915

    CAS  Google Scholar 

  • Hamir AN, Greenlee JJ, Stanton TB, Smith JD, Doucette S, Kunkle RA, Stasko JA, Richt JA, Kehrli ME Jr (2011) Experimental inoculation of raccoons (Procyon lotor) with Spiroplasma mirum and transmissible mink encephalopathy (TME). Can J Vet Res 75:18–24

    PubMed  PubMed Central  Google Scholar 

  • Haselkorn TS (2010) The spiroplasma heritable bacterial endosymbiont of Drosophila. Fly 4:80–87

    PubMed  CAS  Google Scholar 

  • Haselkorn TS, Markow TA, Moran NA (2009) Multiple introductions of the spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol 18:1294–1305

    PubMed  CAS  Google Scholar 

  • Henning K, Greiner-Fischer S, Hotzel H, Ebsen M, Theegarten D (2006) Isolation of Spiroplasma sp from an Ixodes tick. Int J Med Microbiol 296:157–161

    PubMed  CAS  Google Scholar 

  • Heres A, Lightner DV (2010) Phylogenetic analysis of the pathogenic bacteria Spiroplasma penaei based on multilocus sequence analysis. J Invertebr Pathol 103:30–35

    PubMed  CAS  Google Scholar 

  • Herren JK, Lemaitre B (2011) Spiroplasma and host immunity: activation of humoral immue responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster. Cell Microbiol 13:1385–1396

    PubMed  CAS  Google Scholar 

  • Hurst GD, Jiggins FM (2000) Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 6:329–336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hurst GD, Graf von der Schulenburg JH, Majerus TM, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stouthamer R, Majerus ME (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139

    PubMed  CAS  Google Scholar 

  • Hurst GD, Anbutsu H, Kutsukake M, Fukatsu T (2003) Hidden from the host: spiroplasma bacteria infecting Drosophila do not cause an immune response, but are suppressed by ectopic immune activation. Insect Mol Biol 12:93–97

    PubMed  CAS  Google Scholar 

  • ICSB (1984) Minutes of the interim meeting. 30 Aug and 6 Sept 1982. Tokyo. Int J Syst Bacteriol 34: 361–365

    Google Scholar 

  • ICSB Subcommittee on the Taxonomy of Mollicutes (1995) Revised minimal standards for descriptions of new species of the class Mollicutes (Division Tenericutes). Int J Syst Bacteriol 45:605–612

    Google Scholar 

  • ICSP Subcommittee on the Taxonomy of Mollicutes (2013) Minutes of the meetings July 15th and 19th 2012, Toulouse, France. Int J Syst Evol Microbiol 63:2361–2364

    Google Scholar 

  • Jacob C, Nouzieres F, Duret S, Bové JM, Renaudin J (1997) Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol 179:4802–4810

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic spiroplasma by mites. Biol Lett 3:23–25

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jaenike J, Stahlhut JK, Boelia LM, Unckless RL (2010a) Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutalism? Mol Ecol 19:414–425

    PubMed  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010b) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    PubMed  CAS  Google Scholar 

  • Jiggins FM, Hurst GD, Jiggins CD, v d Schulenburg JH, Majerus ME (2000) The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 120:439–446

    PubMed  Google Scholar 

  • Johansson KE (2002) Taxonomy of Mollicutes. In: Razin S, Herrmann R (eds) Molecular biology and pathogenicity of mycoplasmas. Kluwer Academic/Plenum, New York, pp 1–29

    Google Scholar 

  • Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods in general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 656–682

    Google Scholar 

  • Joshi BD, Berg M, Rogers J, Fletcher J, Melcher U (2005) Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii: implications for plasmid evolution. BMC Genomics 6:175

    PubMed  PubMed Central  Google Scholar 

  • Junca P, Saillard C, Tully J, Garcia-Jurado O, Degorce-Dumas JR, Mouches C, Vignault JC, Vogel R, McCoy R, Whitcomb R, Williamson D, Latrille J, Bové JM (1980) Caractérization de spiroplasmes isolaté d’ insectes et fleurs de France continentale, de Corse et du Maroc. Propossition pour une classification des spiroplasmes. Compt Rend Acad Sci Paris Ser 290:1209–1212

    CAS  Google Scholar 

  • Kageyama D, Anbutsu H, Watada M, Hosokawa T, Shimada M, Fukatsu T (2006) Prevalence of a non-male-killing spiroplasma in natural populations of Drosophila hydei. Appl Environ Microbiol 72:6667–6673

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kersting U, Sengonca C (1992) Detection of insect vectors of the citrus stubborn disease pathogen, Spiroplasma citri Saglio et al., in the citrus growing area of south Turkey. J Appl Entomol 113:356–364

    Google Scholar 

  • Killiny N, Batailler B, Foissac X, Saillard C (2006) Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 152:1221–1230

    PubMed  CAS  Google Scholar 

  • Konai M, Clark EA, Camp M, Koeh AL, Whitcomb RF (1996) Temperature ranges, growth optima, and growth rates of Spiroplasma (Spiroplasmataceae, class Mollicutes) species. Curr Microbiol 32:314–319

    PubMed  CAS  Google Scholar 

  • Kotani H, Butler GH, McGarrity GJ (1990) Malignant transformation by Spiroplasma mirum. Zbl Bakteriol Suppl. 20:145–152

    Google Scholar 

  • Le Goff F, Humphery-Smith I, Leclerq M, Chastel C (1991) Spiroplasmas from European Tabanidae. Med Vet Entomol 5:143–144

    PubMed  Google Scholar 

  • Le Goff F, Marjolet M, Humphery-Smith I, Leclercq M, Helias C, Suplisson F, Chastel C (1993) Tabanid spiroplasmas from France: characterization, ecology and experimental study. Ann Parasitol Hum Comp 68:150–153

    Google Scholar 

  • Lee IM, Davis RE (1980) DNA homology among diverse spiroplasma strains representing several serological groups. Can J Microbiol 26:1356–1363

    PubMed  CAS  Google Scholar 

  • Lee IM, Bottner KD, Munyaneza JE, Davis RE, Crosslin JM, du Toit LJ, Crosby T (2006) Carrot purple leaf: a new spiroplasmal disease associated with carrots in Washington state. Plant Dis 90:989–993

    CAS  Google Scholar 

  • Liang T, Li X, Du J, Yao W, Sun G, Dong X, Liu Z, Ou J, Meng Q, Gu W, Wang W (2011) Identification and isolation of a spiroplasma pathogen from diseased freshwater prawns, Macrobrachium rosenbergii, in China: a new freshwater crustacean host. Aquaculture 318:1–6

    Google Scholar 

  • Liang T, Ji H, Du J, Ou J, Li W, Wu T, Meng Q, Gu W, Wang W (2012) Primary culture of hemocytes from Eriocheir sinensis and their immune effects to the novel crustacean pathogen Spiroplasma eriocheiris. Mol Biol Rep 39:9747–9754

    PubMed  CAS  Google Scholar 

  • Liao CH, Chen TA (1977) Culture of corn stunt spiroplasma in a simple medium. Phytopathology 67:802–807

    Google Scholar 

  • Liao CH, Chen TA (1981a) In vitro susceptibility and resistance of two spiroplasmas to antibiotics. Phytopathology 71:442–445

    CAS  Google Scholar 

  • Liao CH, Chen TA (1981b) Deoxyribonucleic acid hybridization between Spiroplasma citri and the corn stunt spiroplasma. Curr Microbiol 5:83–86

    CAS  Google Scholar 

  • Liao CH, Chang CJ, Chen TA (1979) Spiroplasmastatic action of plant tissue extracts. In: Proceedings of the R.O.C. U.S. Coop. Sci. Semin. Mycoplasma Dis. Plants, NSC Symp. Ser. I, Natl Sci Council, Taipei, pp 99–103

    Google Scholar 

  • Markham PG, Townsend R, Bar-Joseph M, Daniels MJ, Plaskitt A, Meddins BM (1974) Spiroplasmas are the causal agents of citrus little-leaf disease. Ann Appl Biol 78:49–57

    PubMed  CAS  Google Scholar 

  • Markham PG, Clark TB, Whitcomb RF (1983) Culture techniques for spiroplasmas from arthropods. In: Tully JG, Razin S (eds) Methods in mycoplasmology, vol 2. Academic, New York, pp 217–223

    Google Scholar 

  • McCoy RE, Williams DS, Thomas DL (1979) Isolation of mycoplasmas from flowers. In: Proceedings of the US-ROC plant mycoplasma seminar. National Science Council, Taipei pp 75–81

    Google Scholar 

  • McElwain MC, Chandler DKF, Barile MF, Young TF, Tryon VV, Davis JW, Petzel JP, Chang CJ, Williams MV, Pollack JD (1988) Purine and pyrimidine metabolism in Mollicutes species. Int J Syst Bacteriol 38:417–423

    CAS  Google Scholar 

  • McIntosh MA, Deng JZG, Ferrell RV (1992) Repetitive DNA sequences. In: Maniloff J (ed) Mycoplasmas, molecular biology and pathogenesis. American Society for Microbiology, Wahington, DC, pp 363–376

    Google Scholar 

  • Melcher U, Fletcher J (1999) Genetic variation in Spiroplasma citri. Eur Plant Pathol 105:519–533

    CAS  Google Scholar 

  • Mello AFS, Yokomi RK, Melcher U, Chen JC, Fletcher J (2010) Citrus stubborn severity is associated with Spiroplasma citri titer but not with bacterial genotype. Plant Dis 94:75–82

    CAS  Google Scholar 

  • Miles RJ (1992) Catabolism in Mollicutes. J Gen Microbiol 138:1773–1783

    PubMed  CAS  Google Scholar 

  • Montenegro H, Solferini VN, Klaczko LB, Hurst GDD (2005) Male-killing spiroplasma naturally infecting Drosophila melanogaster. Insect Mol Biol 14:281–287

    PubMed  CAS  Google Scholar 

  • Mouches C, Bové JM, Albisetti J, Clark TB, Tully JG (1982) A spiroplasma of serogroup IV causes a May-disease-like disorder of honeybees in Southwestern France. Microbial Ecol 8:387–399

    CAS  Google Scholar 

  • Mouches C, Bové JM, Tully JG, Rose DL, McCoy RE, Carle-Junca P, Garnier M, Saillard C (1983) Spiroplasma apis, a new species from the honey-bee Apis mellifera. Ann Microbiol (Inst Pasteur) 134A:383–397

    CAS  Google Scholar 

  • Mouches C, Barroso G, Gadeau A, Bové JM (1984) Characterization of two cryptic plasmids from Spiroplasma citri and occurrence of their DNA sequences among various spiroplasmas. Ann Microbiol (Inst Pasteur) 135A:17–24

    CAS  Google Scholar 

  • Nault LR (1980) Maize bushy stunt and corn stunt: a comparison of disease symptons, pathogen host ranges, and vectors. Phytopathology 70:659–662

    Google Scholar 

  • Navas-Castillo J, Laigret F, Tully JG, Bové JM (1992) The mollicute Acholeplasma florum possesses a gene of phosphoenolpyruvate sugar phosphotransferase system and uses UGA as tryptophan codon. Compt Rend Acad Sci Paris Ser III 315:43–48

    CAS  Google Scholar 

  • Nunan LM, Pantoja CR, Salazar M, Aranguren F, Lightner DV (2004) Characterization and molecular methods for detection of a novel spiroplasma pathogenic to Penaeus vannamei. Dis Aquat Organ 62:255–264

    PubMed  CAS  Google Scholar 

  • Nunan LM, Lightner DV, Oduori MA, Gasparich GE (2005) Spiroplasma penaei sp. nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. Int J Syst Evol Microbiol 55:2317–2322

    PubMed  CAS  Google Scholar 

  • Nur I, Glaser G, Razin S (1986) Free and integrated plasmid DNA in spiroplasmas. Curr Microbiol 14:169–176

    CAS  Google Scholar 

  • Nur I, LeBlanc DJ, Tully JG (1987) Short, interspersed, and repetitive DNA sequences in Spiroplasma species. Plasmid 17:110–116

    PubMed  CAS  Google Scholar 

  • Oishi K, Poulson DF, Williamson DL (1984) Virus-mediated change in clumping properties of Drosophila SR spiroplasmas. Curr Microbiol 10:153–158

    Google Scholar 

  • Ou J, Meng Q, Li Y, Xiu Y, Du J, Gu W, Wu T, Li W, Ding Z, Wang W (2012) Identification and comparative analysis of the Eriocheir sinensis microRNA transcriptome response to Spiroplasma eriocheiris infection using a deep sequencing approach. Fish Shellfish Immunol 32:345–352

    PubMed  CAS  Google Scholar 

  • Özbek E, Miller SA, Meulia T, Hogenhout SA (2003) Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. J Invertebr Pathol 82:167–175

    PubMed  Google Scholar 

  • Pollack JD (2002a) Central carbohydrate pathways: metabolic flexibility and the extra role of some “housekeeping enzymes”. In: Razin S, Herrmann R (eds) Molecular biology and pathogenicity of mycoplasmas. Kluwer Academic/Plenum, New York, pp 163–199

    Google Scholar 

  • Pollack JD (2002b) The necessity of combining genomic and enzymatic data to infer metabolic function and pathways in the smallest bacteria: amino acid, purine and pyrimidine metabolism in Mollicutes. Front Biosci 7:d1762–d1781 (Internet Journal)

    PubMed  CAS  Google Scholar 

  • Pollack JD, Mcelwain MC, Desantis D, Manolukas JT, Tully JG, Chang CJ, Whitcomb RF, Hackett KJ, Williams MV (1989) Metabolism of members of the Spiroplasmataceae. Int J Syst Bacteriol 39:406–412

    CAS  Google Scholar 

  • Pollack JD, Williams MV, McElhaney RN (1997) The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol 23:269–354

    PubMed  CAS  Google Scholar 

  • Poulson DF, Sakaguchi B (1961) Nature of “sex-ratio” agent in Drosophila. Science 133:1489–1490

    PubMed  CAS  Google Scholar 

  • Pyle LE, Finch LR (1988) A physical map of the genome of Mycoplasma mycoides subspecies mycoides Y with some functional loci. Nucleic Acids Res 16:6027–6039

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rahimian H, Gumpf DJ (1980) Deoxyribonucleic acid relationship between Spiroplasma citri and the corn stunt spiroplasma. Int J Syst Bacteriol 30:605–608

    CAS  Google Scholar 

  • Ranhand JM, Mitchell WO, Popkin TJ, Cole RM (1980) Covalently closed circular deoxyribonucleic acids in spiroplasmas. J Bacteriol 143:1194–1199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Razin S (1983) Urea hydrolysis. In: Razin S, Tully JG (eds) Methods in mycoplasmology, vol 1. Academic, New York

    Google Scholar 

  • Razin S (1985) Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol Rev 49:419–455

    PubMed  CAS  PubMed Central  Google Scholar 

  • Regassa LB, Gasparich GE (2006) Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 11:2983–3002 (Internet Journal)

    PubMed  CAS  Google Scholar 

  • Regassa LB, Stewart KM, Murphy AC, French FE, Lin T, Whitcomb RF (2004) Differentiation of group VIII Spiroplasma strains with sequences of the 16S-23S rDNA intergenic spacer region. Can J Microbiol 50:1061–1067

    PubMed  CAS  Google Scholar 

  • Regassa LB, Murphy AC, Zarzuela AB, Jandhyam HL, Bostick DS, Bates CR, Gasparich GE, Whitcomb RF, French FE (2009) An Australian environmental survey reveals moderate Spiroplasma biodiversity: characterization of four new serogroups and a continental variant. Can J Microbiol 55:1347–1354

    PubMed  CAS  Google Scholar 

  • Regassa LB, French FE, Stewart KM, Murphy AC, Jandhyam HL, Beati L (2011) A Costa Rican bacterial spiroplasma biodiversity survey in tabanid flies reveals new serogroups and extends United States ranges. Int J Biodivers Conserv 3:338–344

    Google Scholar 

  • Renaudin J, Bové JM (1994) SpV1 and SpV4, spiroplasma viruses with circular, single-stranded DNA genomes, and their contribution to the molecular biology of spiroplasmas. Adv Virus Res 44:429–463

    PubMed  CAS  Google Scholar 

  • Renaudin J, Pascarel MC, Garnier M, Carle P, Bové JM (1984a) Characterization of spiroplasma virus group 4 (SV4). Isr J Med Sci 20:797–799

    PubMed  CAS  Google Scholar 

  • Renaudin J, Pascarel MC, Garnier M, Carle-Junca P, Bové JM (1984b) SpV4, a new spiroplasma virus with circular, single-stranded DNA. Ann Virol 135E:343–361

    Google Scholar 

  • Ricard B, Garnier M, Bové JM (1982) Characterization of spiroplasmal virus-3 from spiroplasmas and discovery of a new spiroplasmal virus (Spv4). Rev Infect Dis 4:S275

    Google Scholar 

  • Rodwell A, Whitcomb RF (1983) Methods for direct and indirect measurement of mycoplasma growth. In: Razin S, Tully JG (eds) Methods in mycoplasmology, vol 1. Academic, New York, pp 185–196

    Google Scholar 

  • Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR, Tanner RS, Robinson IM, Stahl DA, Olsen G, Leach RH (1985) Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci USA 82:1160–1164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rose DL, Tully JG, Bové JM, Whitcomb RF (1993) A test for measuring growth responses of mollicutes to serum and polyoxyethylene sorbitan. Int J Syst Bacteriol 43:527–532

    PubMed  CAS  Google Scholar 

  • Rosengarten R, Wise KS (1990) Phenotypic switching in mycoplasmas: phase variation of diverse surface lipoproteins. Science 247:315–318

    PubMed  CAS  Google Scholar 

  • Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    PubMed  CAS  Google Scholar 

  • Saglio P, Laflèche D, Bonissol C, Bové JM (1971) Isolement, culture et observation au microscope électronique des structures de type mycoplasme associées à la maladie du Stubborn des agrumes et leur comparaison avec les structures observées dans le cas de la maladie du Greening des agrumes. Physiol Vég 9:569–582

    Google Scholar 

  • Saglio P, Lhospital M, Laflèche D, Dupont G, Bové JM, Tully JG, Freundt EA (1973) Spiroplasma citri gen. and sp. n.: a mycoplasma-like organism associated with “stubborn” disease of citrus. Int J Syst Bacteriol 23:191–204

    CAS  Google Scholar 

  • Saillard C, Vignault JC, Bové JM, Raie A, Tully JG, Williamson DL, Fos A, Garnier M, Gadeau A, Carle P, Whitcomb RF (1987) Spiroplasma phoeniceum sp. nov., a new plant-pathogenic species from Syria. Int J Syst Bacteriol 37:106–115

    CAS  Google Scholar 

  • Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N, Carrére S, Gouzy J, Bové JM, Renaudin J, Foissac X (2008) The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome. BMC Genomics 9:195

    PubMed  PubMed Central  Google Scholar 

  • Sha Y, Melcher U, Davis RE, Fletcher J (1995) Resistance of Spiroplasma citri lines to the virus SVTS2 is associated with integration of viral DNA sequences into host chromosomal and extrachromosomal DNA. Appl Environ Microbiol 61:3950–3959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sha Y, Melcher U, Davis RE, Fletcher J (2000) Common elements of spiroplasma plectroviruses revealed by nucleotide sequence of SVTS2. Virus Genes 20:47–56

    PubMed  CAS  Google Scholar 

  • Skripal IG (1974) On improvement in the systematics of the class Mollicutes and the establishment in the order Mycoplasmatales of a new family Spiroplasmataceae fam. nova. Mikrobiologii Zhurnal (Kiev) 36:462–467

    CAS  Google Scholar 

  • Skripal IG (1983) Revival of the name Spiroplasmataceae fam. nova., nom. Rev., omitted from the 1980 Approved Lists of Bacterial Names. Int J Syst Bacteriol 33:408

    Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossellό-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    PubMed  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  CAS  Google Scholar 

  • Tabata J, Hattori Y, Sakamoto H, Yukuhiro F, Fujii T, Kugimiya S, Mochizuki A, Ishikawa Y, Kageyama D (2011) Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb Ecol 61:254–263

    PubMed  Google Scholar 

  • Taroura S, Shimada Y, Sakata Y, Miyama T, Hiraoka H, Watanabe M, Itamoto K, Okuda M, Inokuma H (2005) Detection of DNA of ‘Candidatus Mycoplasma haemominutum’ and Spiroplasma sp. in unfed ticks collected from vegetation in Japan. J Vet Med Sci 67:1277–1279

    PubMed  CAS  Google Scholar 

  • Townsend R, Markham PG, Plaskitt KA, Daniels MJ (1977) Isolation and Characterization of a non-helical strain of Spiroplasma citri. J Gen Microbiol 100:15–21

    Google Scholar 

  • Townsend R, Burgess J, Plaskitt KA (1980) Morphology and ultrastructure of helical and nonhelical strains of Spiroplasma citri. J Bacteriol 142:973–981

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trachtenberg S (2006) The cytoskeleton of spiroplasma: a complex linear motor. J Mol Microbiol Biotechnol 11:265–283

    PubMed  CAS  Google Scholar 

  • Tully JG, Whitcomb RF, Clark HF, Williamson DL (1977) Pathogenic mycoplasmas: cultivation and vertebrate pathogenicity of a new spiroplasma. Science 195:892–894

    PubMed  CAS  Google Scholar 

  • Tully JG, Rose DL, Yunker CE, Cory J, Whitcomb RF, Williamson DL (1981) Helical mycoplasmas (spiroplasmas) from Ixodes ticks. Science 212:1043–1045

    PubMed  CAS  Google Scholar 

  • Tully JG, Whitcomb RF, Rose DL, Bové JM (1982) Spiroplasma mirum, a new species from the rabbit tick (Haemaphysalis leporispalustris). Int J Syst Bacteriol 32:92–100

    Google Scholar 

  • Tully JG, Rose DL, Clark E, Carle P, Bové JM, Henegar RB, Whitcomb RF, Colflesh DE, Williamson DL (1987) Revised group classification of the genus Spiroplasma (class Mollicutes), with proposed new groups XII to XXIII. Int J Syst Bacteriol 37:357–364

    Google Scholar 

  • Tully JG, Rose DL, Yunker CE, Carle P, Bové JM, Williamson DL, Whitcomb RF (1995) Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. Int J Syst Bacteriol 45:23–28

    PubMed  CAS  Google Scholar 

  • Vaughn EE, de Vos WM (1995) Identification and characterization of the insertion element IS 1070 from Leuconostoc lactis NZ6009. Gene 155:95–100

    Google Scholar 

  • Vazeille-Falcoz M, Hélias C, Goff FL, Rodhain F, Chastel C (1997) Three spiroplasmas isolated from Haematopota sp. (Diptera:Tabanidae) in France. J Med Entomol 34:238–241

    PubMed  CAS  Google Scholar 

  • Ventura IM, Martins AB, Lyra ML, Andrade CAC, Carvalho KA, Klaczko LB (2012) Spiroplasma in Drosophila melanogaster populations: prevalence, male-killing, molecular identification, and no association with Wolbachia. Microb Ecol 64:794–801

    PubMed  Google Scholar 

  • Wang W (2011) Bacterial diseases of crabs: a review. J Invertebr Pathol 106:18–26

    PubMed  CAS  Google Scholar 

  • Wang W, Rong L, Gu W, Du K, Chen J (2003) Study on experimental infections of Spiroplasma from the Chinese mitten crab in crayfish, mice and embryonated chickens. Res Microbiol 154:677–680

    PubMed  Google Scholar 

  • Wang W, Wen B, Gasparich GE, Zhu N, Rong L, Chen J, Xu Z (2004a) A spiroplasma associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). Microbiology 150:3035–3040

    PubMed  CAS  Google Scholar 

  • Wang W, Chen J, Du K, Xu Z (2004b) Morphology of spiroplasmas in the Chinese mitten crab Eriocheir sinensis associated with tremor disease. Res Microbiol 155:630–635

    PubMed  CAS  Google Scholar 

  • Wang W, Gu W, Ding Z, Ren Y, Chen J, Hou Y (2005) A novel spiroplasma pathogen causing systemic infection in the crayfish Procambarus clarkii (Crustacea: Decapod), in China. FEMS Microbiol Lett 249:131–137

    PubMed  CAS  Google Scholar 

  • Wang W, Gu W, Gasparich GE, Bi K, Ou J, Meng Q, Liang T, Feng Q, Zhang J, Zhang Y (2011) Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis. Int J Syst Evol Microbiol 61:703–708

    PubMed  CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467

    PubMed  CAS  PubMed Central  Google Scholar 

  • Whitcomb RF (1983) Culture media for spiroplasmas. In: Razin S, Tully JG (eds) Methods in mycoplasmology, vol 1. Academic, New York, pp 147–158

    Google Scholar 

  • Whitcomb, R. F. 1989. The biology of Spiroplasma kunkelii. In: Whitcomb and Tully (Ed.) The Mycoplasmas, vol. 5. Academic Press, New York, NY 487–544.

    Google Scholar 

  • Whitcomb RF, Tully JG, Bové JM, Saglio P (1973) Spiroplasmas and acholeplasmas: multiplication in insects. Science 182:1251–1253

    PubMed  CAS  Google Scholar 

  • Whitcomb RF, Tully JG, McCawley P, Rose DL (1982) Application of the growth inhibition test to Spiroplasma taxonomy. Int J Syst Bacteriol 32:387–394

    Google Scholar 

  • Whitcomb RF, Hackett KJ, Tully JG, Clark EA, French FE, Henegar RB, Rose DL, Wagner AC (1990) Tabanid spiroplasmas as a model for mollicute biogeography. Zbl Bakt Suppl. 20:931–933

    Google Scholar 

  • Whitcomb RF, French FE, Tully JG, Carle P, Henegar R, Hackett KJ, Gasparich GE, Williamson DL (1997) Spiroplasma species, groups, and subgroups from north American Tabanidae. Curr Microbiol 35:287–293

    CAS  Google Scholar 

  • Whitcomb RF, Tully JG, Gasparich GE, Regassa LB, Williamson DL, French FE (2007) Spiroplasma species in the Costa Rican highlands: implications for biogeography and biodiversity. Biodivers Conserv 16:3877–3894

    Google Scholar 

  • Williamson DL (1969) The sex ratio spirochete in Drosophila robusta. Jpn J Genet 44:36–41

    Google Scholar 

  • Williamson DL (1983) The combined deformation metabolism inhibition test. Method Mycoplasmol 1:477–483

    Google Scholar 

  • Williamson DL, Poulson DF (1979) Sex ratio organisms (spiroplasmas) of Drosophila. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 3. Academic, New York, pp 175–208

    Google Scholar 

  • Williamson DL, Whitcomb RF (1974) Helical wall-free prokaryotes in Drosophila, leafhoppers and plants. Colloq Inst Natl Santé Rech Med 33:283–290

    Google Scholar 

  • Williamson DL, Whitcomb RF (1975) Plant Mycoplasmas: a cultivable spiroplasma causes corn stunt disease. Science 188:1018–1020

    PubMed  CAS  Google Scholar 

  • Williamson DL, Whitcomb RF, Tully JG (1978) The spiroplasma deformation test, a new serological method. Curr Microbiol 1:203–207

    Google Scholar 

  • Williamson DL, Tully JG, Whitcomb RF (1979) Serological relationships of spiroplasmas as shown by combined deformation and metabolism inhibition tests. Int J Syst Bacteriol 29:345–351

    Google Scholar 

  • Williamson DL, Tully JG, Whitcomb RF (1989) The genus Spiroplasma. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic, San Diego, pp 71–111

    Google Scholar 

  • Williamson DL, Whitcomb RF, Tully JG, Gasparich GE, Rose DL, Carle P, Bové JM, Hackett KJ, Adams JR, Henegar RB, Konai M, Chastel C, French FE (1998) Revised group classification of the genus Spiroplasma. Int J Syst Bacteriol 48:1–12

    PubMed  Google Scholar 

  • Williamson DL, Sakaguchi B, Hackett KJ, Whitcomb RF, Tuly JG, Carle P, Bové JM, Adams JR, Konai M, Henegar RB (1999) Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly. Int J Syst Bacteriol 49:611–618

    PubMed  Google Scholar 

  • Williamson DL, Gasparich GE, Regassa LB, Saillard C, Renaudin J, Bové JM, Whitcomb RF (2010) Family II. Spiroplasmataceae. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s manual of systematic bacteriology, vol 4. Springer, New York, pp 654–686

    Google Scholar 

  • Woese CR, Maniloff J, Zablen LB (1980) Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci USA 77:494–498

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xie J, Vilchez I, Mateos M (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5:e12149

    PubMed  PubMed Central  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    PubMed  CAS  Google Scholar 

  • Ye F, Laigret F, Whitley JC, Citti C, Finch LR, Carle P, Renaudin J, Bové JM (1992) A physical and genetic map of the Spiroplasma citri genome. Nucleic Acids Res 20:1559–1565

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye FC, Laigret F, Bové JM (1994) A physical and genomic map of the prokaryote Spiroplasma melliferum and its comparison with the Spiroplasma citri map. Compt Rend Acad Sci Ser III 317:392–398

    CAS  Google Scholar 

  • Ye FC, Laigret F, Carle P, Bové JM (1995) Chromosomal heterogeneity among various strains of Spiroplasma citri. Int J Syst Bacteriol 45:729–734

    CAS  Google Scholar 

  • Ye F, Melcher U, Rascoe JE, Fletcher J (1996) Extensive chromosome aberrations in Spiroplasma citri Strain BR3. Biochem Genet 34:269–286

    PubMed  CAS  Google Scholar 

  • Yogev D, Rosengarten R, Watson-McKown R, Wise KS (1991) Molecular basis of mycoplasma surface antigenic variation: a novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5′ regulatory sequences. EMBO J 10:4069–4079

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Hammond RW, Jomantiene R, Dally EL, Lee IM, Jia H, Wu H, Lin S, Zhang P, Kenton S, Najar FZ, Hua A, Roe BA, Fletcher J, Davis RE (2003) Gene content and organization of an 85-kb DNA segment from the genome of the phytopathogenic mollicute Spiroplasma kunkelii. Mol Genet Genomics 269:592–602

    PubMed  CAS  Google Scholar 

  • Zhao Y, Wang H, Hammond RW, Jomantiene R, Liu Q, Lin S, Roe BA, Davis RE (2004a) Predicted ATP-binding cassette systems in the phytopathogenic mollicute Spiroplasma kunkelii. Mol Genet Genomics 271:325–338

    PubMed  CAS  Google Scholar 

  • Zhao Y, Hammond RW, Lee IM, Roe BA, Lin S, Davis RE (2004b) Cell division gene cluster in Spiroplasma kunkelii: functional characterization of ftsZ and the first report of ftsA in mollicutes. DNA Cell Biol 23:127–134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Regassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Regassa, L.B. (2014). The Family Spiroplasmataceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_389

Download citation

Publish with us

Policies and ethics