Skip to main content

The Family Acholeplasmataceae (Including Phytoplasmas)

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Acholeplasmataceae was originally established to accommodate the genus Acholeplasma, comprising the mollicutes that could be cultivated without the supplement of cholesterol and that use UGA as a stop codon instead of coding for tryptophan. It was later shown that the phytoplasmas, a large group of uncultivable, wall-less, non-helical mollicutes that are associated with plants and insects, shared taxonomically relevant properties with members of the genus Acholeplasma. Being not cultivable in vitro in axenic culture, the phytoplasmas could not be classified using the standards used for other mollicutes and are named using the category of Candidatus, as “Ca. Phytoplasma.”

Although phytoplasmas are associated with habitats and ecology different from acholeplasmas, the two genera Acholeplasma and “Candidatus Phytoplasma” are phylogenetically related and form a distinct clade within the Mollicutes. The persisting inability to grow the phytoplasmas in vitro hinders the identification of their distinctive phenotypic traits, important criteria for mollicute classification. Until supplemental phenotypic traits become available, the genus “Candidatus Phytoplasma” is designated, on the basis of phylogeny, as a tentative member in the family Acholeplasmataceae. Phylogenetic analysis based on gene sequences, in particular, ribosomal sequences, has provided the major supporting evidence for the composition and taxonomic subdivision of this group of organisms with diverse habitats and ecology and has become the mainstream for the Acholeplasmataceae systematics. However, without the ability to determine phenotypic properties, the circumscription of related species among the non culturable members of the family remains a major issue.

The genus Acholeplasma comprises 14 species predominantly associated with animals and isolated from mammalian fluids but regarded as not normally pathogenic. Conversely, the genus “Ca. Phytoplasma” includes plant pathogens of major economic relevance worldwide. To date, 36 “Ca. Phytoplasma species” have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad JA, Randall C, Moyer JW (1997) Genomic diversity and molecular characterization of poinsettia phytoplasmas. Phytopathology 87:S1

    Google Scholar 

  • Abou-Jawdah Y, Karakashian A, Sobh H, Martini M, Lee I-M (2002) An epidemic of almond witches’-broom in Lebanon: classification and phylogenetic relationships of the associated phytoplasma. Plant Dis 86:477–484

    CAS  Google Scholar 

  • Abou-Jawdah Y, Sobh H, Akkary M (2009) First report of almond witches’ broom phytoplasma (‘Candidatus Phytoplasma phoenicium’) causing a severe disease on nectarine and peach in Lebanon. Bull OEPP/EPPO Bull 39:94–98

    Google Scholar 

  • Akhtar KP, Shah TM, Atta BM, Dickinson M, Hodgetts J, Khan RA, Haq MA, Hameed S (2009a) Symptomatology, etiology and transmission of chickpea phyllody disease in Pakistan. J Plant Pathol 91:649–653

    Google Scholar 

  • Akhtar KP, Sarwar G, Dickinson M, Ahmad M, Haq MA, Hameed S, Iqbal MJ (2009b) Sesame phyllody disease: its symptomatology, etiology, and transmission in Pakistan. Turk J Agric For 33:477–486

    Google Scholar 

  • Al-Aubaidi JM, Dardiri AH, Muscoplatt CC, McCauley EH (1973) Identification and characterization of Acholeplasma oculusi spec. nov. from the eyes of goats with keratoconjunctivitis. Cornell Vet 63:117–129

    PubMed  CAS  Google Scholar 

  • Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 176:792–804

    CAS  Google Scholar 

  • Alfaro-Fernández A, Ali MA, Abdelraheem FM, Saeed EAE, Font San Ambrosio MI (2012) Molecular identification of 16SrII-D subgroup phytoplasmas associated with chickpea and faba bean in Sudan. Eur J Plant Pathol 133:791–795

    Google Scholar 

  • Aljanabi S, Parmessur Y, Moutia Y, Saumtally S, Dookun A (2001) Further evidence of the association of a phytoplasma and a virus with yellow leaf syndrome in sugarcane. Plant Pathol 50:628–636

    Google Scholar 

  • Alma A, Bosco D, Danielli A, Bertaccini A, Vibio M, Arzone A (1997) Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus ball reared on healthy plants. Insect Mol Biol 6:115–121

    PubMed  CAS  Google Scholar 

  • Al-Saady NA, Al-Subhi AM, Al-Nabhani A, Khan AJ (2006) First report of a group 16SrII phytoplasma infecting chickpea in Oman. Plant Dis 90:973

    Google Scholar 

  • Al-Saady NA, Khan AJ, Calari A, Al-Subhi AM, Bertaccini A (2008) ‘Candidatus Phytoplasma omanense’, associated with witches’-broom of Cassia italica (Mill.) Spreng. in Oman. Int J Syst Evol Microbiol 58:461–466

    PubMed  CAS  Google Scholar 

  • Al-Sakeiti MA, Al-Subhi AM, Al-Saady NA, Deadman ML (2005) First report of witches’-broom disease of sesame (Sesamum indicum) in Oman. Plant Dis 89:530

    Google Scholar 

  • Al-Subhi M, Al-Saady NA, Khan AJ, Deadman ML (2011) First report of a group 16SrII phytoplasma associated with witches'-broom of eggplant in Oman. Plant Dis 95:360

    Google Scholar 

  • Al-Zadjali AD, Natsuaki T, Okuda S (2007) Detection, identification and molecular characterization of a phytoplasma associated with Arabian jasmine (Jasminum sambac L.) witches’ broom in Oman. J Phytopathol 155:211–219

    CAS  Google Scholar 

  • Al-Zadjali AD, Al-Sadi AM, Deadman ML, Okuda S, Natsuki T, Al-Zadjali TS (2012) Detection, identification and molecular characterization of a phytoplasma associated with beach naupaka witches’-broom. J Plant Pathol 94:379–385

    Google Scholar 

  • Andersen MT, Longmore J, Liefting LW, Wood GA, Sutherland PW, Beck DL, Forster RLS (1998) Phormium yellow leaf phytoplasma is associated with strawberry lethal yellows disease in New Zealand. Plant Dis 82:606–609

    Google Scholar 

  • Andersen MT, Beever RE, Sutherland PW, Forster RLS (2001) Association of ‘Candidatus Phytoplasma australiense’ with sudden decline of cabbage tree in New Zealand. Plant Dis 85:462–469

    Google Scholar 

  • Angelini E, Clair D, Borgo M, Bertaccini A, Boudon-Padieu E (2001) Flavescence dorée in France and Italy – occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 40:79–86

    CAS  Google Scholar 

  • Angelini E, Squizzato F, Lucchetta G, Borgo M (2004) Detection of a phytoplasma associated with grapevine Flavescence dorée in Clematis vitalba. Eur J Plant Pathol 110:193–201

    CAS  Google Scholar 

  • Angulo AF, Reijgers R, Brugman J, Kroesen I, Hekkens FEN, Carle P, Bové JM, Tully JG, Hill AC, Schouls LM, Schot CS, Roholl PJM, Polak-Vogelzang AA (2000) Acholeplasma vituli sp. nov., from bovine serum and cell cultures. Int J Syst Evol Microbiol 50:1125–1131

    PubMed  CAS  Google Scholar 

  • Arismendi N, Gonzàlez F, Zamorano A, Andrade N, Pino AM, Fiore N (2011) Molecular identification of ‛Candidatus Phytoplasma fraxini’ in murta and peony in Chile. Bull Insect 64(Suppl):S95–S96

    Google Scholar 

  • Arocha Rosete Y, Jones P (2010) Phytoplasma diseases of the gramineae. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford/Oxfordshire, UK, pp 170–187

    Google Scholar 

  • Arocha Y, González L, Peralta E, Jones P (1999) First report of virus and phytoplasma pathogens associated with yellow leaf syndrome of sugarcane in Cuba. Plant Dis 83:1171

    Google Scholar 

  • Arocha Y, Horta D, Peralta E (2003) First report on molecular detection of phytoplasmas in papaya in Cuba. Plant Dis 87:1148

    Google Scholar 

  • Arocha Y, Piñol B, Fernández M, Picornell S, Almeida R, Palenzuela I, Wilson MR, Jones P (2005a) ‘Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int J Syst Evol Microbiol 55:2451–2463

    PubMed  CAS  Google Scholar 

  • Arocha Y, López M et al (2005b) Transmission of sugarcane yellow leaf phytoplasma by the delphacid leafhopper Saccharosydne saccharivora, a new vector of sugarcane yellow leaf disease. Plant Pathol 54:634–642

    CAS  Google Scholar 

  • Arocha Y, Antesana O, Montellano E, Franco P, Plata G, Jones P (2007) ‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. Int J Syst Evol Microbiol 57:1704–1710

    PubMed  Google Scholar 

  • Aryamanesh N, Al-Subhi AM, Snowball R, Yan G, Siddique KHM (2011) First report of Bituminaria witches’-broom in Australia caused by a 16SrII phytoplasma. Plant Dis 95

    Google Scholar 

  • Atobe H, Watabe J, Ogata M (1983) Acholeplasma parvum, a new species from horses. Int J Syst Bacteriol 33:344–349

    Google Scholar 

  • Aulakh GS, Stephens EB, Rose DL, Tully JG, Barile MF (1983) Nucleic acid relationships among Acholeplasma species. J Bacteriol 153:1338–1341

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ayman FO, Foissac X (2012) Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. Eur J Plant Pathol 133:353–360

    Google Scholar 

  • Bai X, Correa VR, Toruño TY, Ammar E-D, Kamoun S, Hogenhout SA (2009) AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant Microbe Interact 22:18–30

    PubMed  CAS  Google Scholar 

  • Baker WL (1949) Notes on the transmission of the virus causing phloem necrosis of American elm, with notes on the biology of its insect vector. J Econ Entomol 42:729–732

    Google Scholar 

  • Balakishiyeva G, Qurbanov M, Mammadov A, Bayramov S, Aliyev J, Foissac X (2011) Detection of ‘Candidatus Phytoplasma brasiliense’ in a new geographic region and existence of two genetically distinct populations’. Eur J Plant Pathol 130:457–462

    Google Scholar 

  • Barros TSL, Davis RE, Resende RO, Dally EL (2002) Erigeron witches’-broom phytoplasma in Brazil represents new subgroup VII-B in 16S rRNA gene group VII, the ash yellows phytoplasma group. Plant Dis 86:1142–1148

    CAS  Google Scholar 

  • Batlle A, Altabella N, Sabaté J, Laviña A (2009) Study of the transmission of stolbur phytoplasma to different crop species, by Macrosteles quadripunctulatus. Ann Appl Biol 152:235–242

    Google Scholar 

  • Beever RE, Wood GA, Andersen MT, Pennycook SR, Sutherland PW, Forster RLS (2004) ‘Candidatus phytoplasma australiense’ in Coprosma robusta in New Zealand. New Zeal J Bot 42:663–675

    Google Scholar 

  • Bekele B, Abeysinghe S, Hoat TX, Hodgetts J, Dickinson M (2011) Development of specific secA-based diagnostics for 16SrXI and 16SrXIV phytoplasmas of the Gramineae. Bull Insect 64(suppl):15–16

    Google Scholar 

  • Belli G, Bianco PA, Conti M (2010) Grapevine yellows: past, present, and future. J Plant Pathol 92:303–326

    Google Scholar 

  • Berger J, Schweigkofler W, Kerschbamer C, Roschatt C, Dalla Via J, Baric S (2009) Occurrence of Stolbur phytoplasma in the vector Hyalesthes obsoletus, herbaceous host plants and grapevine in South Tyrol (Northern Italy). Vitis 48:185–192

    Google Scholar 

  • Bertamini M, Nedunchezhian N, Tomasi F, Grando MS (2003) Phytoplasma [Stolbur-subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant P 61:357–366

    Google Scholar 

  • Bové JM, Dannet JL, Hassanzadeh N, Bananej K, Salehi M, Taghizadeh M, Garnier M (2000) Witches’-Broom disease of lime (WBDL) in Iran. In: Proceedings of the 14th International Organization of Citrus Virologists (IOCV), Riverside, pp 207–215

    Google Scholar 

  • Bové JM, Garnier M, Mjeni AM, Khayrallah A (1988) Witches’ broom disease of small fruited acid lime trees in Oman: first MLO disease of citrus. In: Proceedings of the 10th International Organization of Citrus Virologists (IOCV), Riverside, pp 307–309

    Google Scholar 

  • Bové JM, Navarro L, Bonnet P, Zreik L, Garnier M (1996) Reaction of citrus cultivars to graft-inoculation of phytoplasma aurantifolia-infected lime shoots. In: Proceedings of the 13th International Organization of Citrus Virologists (IOCV), Riverside, pp 249–251

    Google Scholar 

  • Bowyer W, Atherton G, Teakle D, Ahern GA (1969) Mycoplasma-like bodies in plants affected by legume little leaf, tomato big bud, and lucerne witches’ broom diseases. Aust J Biol Sci 22:271–274

    Google Scholar 

  • Bradbury JM (1978) Acholeplasma equifetale in broiler chickens. Vet Rec 102:516

    PubMed  CAS  Google Scholar 

  • Braun EJ, Sinclair WA (1976) Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66:598–607

    Google Scholar 

  • Braun EJ, Sinclair WA (1978) Translocation in phloem necrosis-diseased American elm seedlings. Phytopathology 68:1733–1737

    CAS  Google Scholar 

  • Brcak J (1979) Leafhopper, planthopper vectors of plant disease agents in central and southern Europe. In: Maramorosch K, Harris KF (eds) Leafhopper vectors and plant disease agents. Academic, London, pp 97–146

    Google Scholar 

  • Bressan A, Clair D, Séméty O, Boudon-Padieu É (2005a) Effect of two strains of flavescence dorée phytoplasma on the survival and fecundity of the experimental leafhopper vector Euscelidius variegatus kirschbaum. J Invertebr Pathol 89:144–149

    PubMed  Google Scholar 

  • Bressan A, Girolami V, Boudon-Padieu E (2005b) Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to flavescence dorée phytoplasma. Entomol Exp Appl 115:283–290

    Google Scholar 

  • Březíková M, Linhartová S (2007) First report of potato stolbur phytoplasma in hemipterans in southern Moravia. Plant Prot Sci 43:73–76

    Google Scholar 

  • Brown DR, Whitcomb RF, Bradbury JM (2007) Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int J Syst Evol Microbiol 57:2703–2719

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brown DR, Bradbury JM, Johansson K-E (2010) Genus I. Acholeplasma. In: Garrity GM et al (eds) Bergey’s manual of systematic bacteriology: volume 4: the bacteroidetes, spirochaetes, tenericutes (mollicutes), acidobacteria, fibrobacteres, fusobacteria, dictyoglomi, gemmatimonadetes, lentisphaerae, verrucomicrobia, chlamydiae, and planctomycetes. Springer, New York, pp 688–696

    Google Scholar 

  • Canale MC, Bedendo IP (2013) ‘Candidatus Phytoplasma brasiliense’ (16SrXV-A subgroup) associated with cauliflower displaying stunt symptoms in Brazil. Plant Dis 97(3):419

    Google Scholar 

  • Carginale V, Maria G, Capasso C, Ionata E, La Cara F, Pastore M, Bertaccini A, Capasso A (2004) Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 33(2):29–34

    Google Scholar 

  • Carraro L, Loi N, Ermacora P, Gregoris A, Osler R (1998a) Transmission of pear decline by using naturally infected Cacopsylla pyri L. Acta Hortic 472:665–668

    Google Scholar 

  • Carraro L, Osler R, Loi N, Ermacora P, Refatti E (1998b) Transmission of European stone fruit yellows phytoplasma by Cacopsylla pruni. J Plant Pathol 80:233–239

    Google Scholar 

  • Carraro L, Ferrini F, Ermacora P, Loi N (2004a) Transmission of stone fruit yellows phytoplasma to Prunus species by using vector and graft transmission. Acta Hortic 657:449–453

    Google Scholar 

  • Carraro L, Ferrini F, Ermacora P, Loi N, Martini M, Osler R (2004b) Macropsis mendax as a vector of elm yellows phytoplasma of Ulmus species. Plant Pathol 53:90–95

    Google Scholar 

  • Casati P, Quaglino F, Stern AR, Tedeschi R, Alma A, Bianco PA (2011) Multiple gene analyses reveal extensive genetic diversity among ‘Candidatus Phytoplasma mali’ populations. Ann Appl Biol 158:257–266

    CAS  Google Scholar 

  • Catlin PB, Olsson EA, Beutel JA (1975) Reduced translocation of carbon and nitrogen from leaves with symptoms of pear curl. J Am Soc Hortic Sci 100:184–187

    CAS  Google Scholar 

  • Cettul E, Firrao G (2011) Development of phytoplasma-induced flower symptoms in Arabidopsis thaliana. Physiol Mol Plant P 76:204–211

    CAS  Google Scholar 

  • Chen W-Y, Lin C-P (2011) Characterization of Catharanthus roseus genes regulated differentially by peanut witches’ broom phytoplasma infection. J Phytopathol 159:505–510

    CAS  Google Scholar 

  • Cheng M, Dong J, Zhang Z, McBeath JH (2012) Molecular characterization of stolbur group subgroup E (16SrXII-E) phytoplasma associated with potato in China. Plant Dis 96:1372

    Google Scholar 

  • Chiykowski LN (1965) A yellows-type virus of alsike clover in Alberta. Can J Bot 43:527–536

    Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JTJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    PubMed  CAS  PubMed Central  Google Scholar 

  • Choueiri E, Jreijiri F, Issa S, Verdin E, Bové J, Garnier M (2001) First report of a phytoplasma disease of almond (Prunus amygdalus) in Lebanon. Plant Dis 85:802

    Google Scholar 

  • Cieślińska M, Morgaś H (2011) Detection and identification of ‘Candidatus Phytoplasma prunorum, ‘Candidatus Phytoplasma mali’ and ‘Candidatus Phytoplasma pyri’ in stone fruit trees in Poland. J Phytopathol 159:217–222

    Google Scholar 

  • Clyde WAJ (1983) Growth inhibition tests. In: Tully J, Razin S (eds) Methods in mycoplasmology, vol 1. Academic, New York, pp 405–410

    Google Scholar 

  • Conci L, Meneguzzi N, Galdeano E, Torres L, Nome C, Nome S (2005) Detection and molecular characterization of an alfalfa phytoplasma in Argentina that represents a new subgroup in the 16S rDNA ash yellows group (‘Candidatus Phytoplasma fraxini’). Eur J Plant Pathol 113:255–265

    CAS  Google Scholar 

  • Constable FE, Symons RH (2004) Genetic variability amongst isolates of Australian grapevine phytoplasmas. Australas Plant Path 33:115–119

    CAS  Google Scholar 

  • Constable FE, Gibb KS, Symons RH (2003) Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathol 52:267–276

    Google Scholar 

  • Constable FE, Jones J, Gibb KS, Chalmers YM, Symons RH (2004) The incidence, distribution and expression of Australian grapevine yellows, restricted growth and late season curl diseases in selected Australian vineyards. Ann Appl Biol 144:205–218

    Google Scholar 

  • Cronjé P, Tymon A, Bailey R, Jones P (1998) Association of a phytoplasma with a yellow leaf syndrome of sugarcane in Africa. Ann Appl Biol 133:177–186

    Google Scholar 

  • Cronjé P, Dabek AJ, Jones P, Tymon AM (2000a) First report of a phytoplasma associated with a disease of date palms in North Africa. Plant Pathol 49:801

    Google Scholar 

  • Cronjé P, Dabek AJ, Jones P, Tymon AM (2000b) Slow decline: a new disease of mature date palms in North Africa associated with a phytoplasma. Plant Pathol 49:804

    Google Scholar 

  • Daire X, Clair D, Reinert W, Boudon-Padieu E (1997) Detection and differentiation of grapevine yellows phytoplasmas belonging to elm yellows group and to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur J Plant Pathol 103:507–514

    CAS  Google Scholar 

  • Danet JL, Bonnet P, Jarausch W, Carraro L, koric D, Foissac X (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bull Insect 60:339–340

    Google Scholar 

  • Danet JL, Balakishiyeva G, Cimerman A, Sauvion N, Marie-Jeanne V, Labonne G, Laviňa A, Battle A, Križanac I, Škorić D, Ermacora P, Ulubaş Serçe Ç, Çağlayan K, Jarausch W, Foissac X (2011) Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology 157:438–450

    PubMed  CAS  Google Scholar 

  • Davis MJ, Ying Z, Brunner BR, Pantoja A, Ferwerda FH (1998) Rickettsial relative associated with Papaya Bunchy Top disease. Curr Microbiol 36:80–84

    PubMed  CAS  Google Scholar 

  • Davis RE, Dally EL (2001) Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Dis 85:790–797

    CAS  Google Scholar 

  • Davis RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997) ‘Candidatus Phytoplasma australiense’ a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 47:262–269

    PubMed  CAS  Google Scholar 

  • Davis RE, Dally EL, Zhao Y, Lee I-M, Jomantiene R, Detweiler AJ, Putnam ML (2010) First report of a new subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-related) phytoplasma associated with juniper witches’ broom disease in Oregon, USA. Plant Pathol 59:1161

    Google Scholar 

  • Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee I-M, Wei W, Kitajima EW (2012) ‘Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). Int J Syst Evol Microbiol 62:984–989

    PubMed  CAS  Google Scholar 

  • Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 63:766–776

    PubMed  CAS  Google Scholar 

  • Davis RI, Schneider B, Gibb KS (1997) Detection and differentiation of phytoplasmas in Australia. Aust J Agr Res 48:535–544

    Google Scholar 

  • De Fluiter HJ, van der Meer FA (1953) Rubus stunt, a leafhopper borne virus disease. Tijdschr Plantenziekte 59:195–197

    Google Scholar 

  • De Luca V, Capasso C, Capasso A, Pastore M, Carginale V (2011) Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Mol Biol Rep 38:2993–3000

    PubMed  Google Scholar 

  • Dickinson M, Tuffen M, Hodgetts J (2013) The phytoplasmas: an introduction. In: Dickinson M, Hodgetts J (eds) Phytoplasma: methods and protocols, methods in molecular biology, vol 938. Springer, New York, pp 1–14

    Google Scholar 

  • Ding Y, Wu W, Wei W, Davis RE, Lee IM, Hammond RW, Sheng JP, Shen L, Jiang Y, Zhao Y (2013) Potato purple top phytoplasma-induced disruption of gibberellin homeostasis in tomato plants. Ann Appl Biol 162:131–139

    CAS  Google Scholar 

  • Douglas SM (1986) Detection of mycoplasma-like organisms in peach and chokecherry with X-disease by fluorescence microscopy. Phytopathology 76:784–787

    Google Scholar 

  • Duduk B, Bertaccini A (2004) Corn with symptoms of reddening: new host of stolbur phytoplasma. Plant Dis 90:1313–1319

    Google Scholar 

  • Ecke P Jr, Matkin OA, Hartley DE (1990) The poinsettia manual, 3rd edn. Paul Ecke Poinsettias, Encinitas

    Google Scholar 

  • Eckstein B, Barbosa JC, Rezende JAM, Bedendo IP (2011) A Sida sp. is a new host for “Candidatus Phytoplasma brasiliense” in Brazil. Plant Dis 95:363

    Google Scholar 

  • Eden-Green SJ, Markham PG (1987) Multiplication and persistence of Acholeplasma spp. in leafhoppers. J Invertebr Pathol 49:235–241

    Google Scholar 

  • Eden-Green SJ, Tully JG (1979) Isolation of Acholeplasma spp. from coconut palms affected by lethal yellowing disease in Jamaica. Curr Microbiol 2:311–316

    Google Scholar 

  • Edward DG, Freundt EA (1956) The classification and nomenclature of organisms of the pleuropneumonia group. J Gen Microbiol 14:197–207

    PubMed  CAS  Google Scholar 

  • Edward DG, Freundt EA (1969) Proposal for classifying organisms related to Mycoplasma laidlawii in a family Sapromycetaceae, genus Sapromyces, within the Mycoplasmatales. J Gen Microbiol 57:391–395

    PubMed  CAS  Google Scholar 

  • Edward DG, Freundt EA (1970) Amended nomenclature for strains related to Mycoplasma laidlawii. J Gen Microbiol 62:1–2

    PubMed  CAS  Google Scholar 

  • Eroglu S, Ozbek H, Sahin F (2011) First report of group 16SrXII phytoplasma causing stolbur disease in potato plants in the eastern and southern Anatolia regions of Turkey. Plant Dis 94:1374

    Google Scholar 

  • Faghihi MM, Bagheri AN, Bahrami HR, Hasanzadeh H, Rezazadeh R, Siampour M, Samavi S, Salehi M, Izadpanah K (2011) Witches’-broom disease of lime affects seed germination and seedling growth but is not seed transmissible. Plant Dis 95:419–422

    Google Scholar 

  • Firrao G, Gibb KS, Streten C (2005) Short taxonomic guide to the genus ‘Candidatus Phytoplasma’. J Plant Pathol 87:249–263

    Google Scholar 

  • Freundt EA, Whitcomb RF, Barile MF, Razin S, Tully JG (1984) Proposal for elevation of the family Acholeplasmataceae to ordinal rank: Acholeplasmatales. Int J Syst Bacteriol 34:346–349

    Google Scholar 

  • Frisinghelli C, Delaiti L, Grando MS, Forti D, Vindimian ME (2000) Cacopsylla costalis (Flor 1861), as a vector of apple proliferation in Trentino. J Phytopathol 148:425–431

    CAS  Google Scholar 

  • Gajardo A, Fiore N, Prodan S, Paltrinieri S, Botti S, Pino AM, Zamorano A, Montealegre J, Bertaccini A (2009) Phytoplasmas associated with grapevine yellows disease in Chile. Plant Dis 93:789–796

    CAS  Google Scholar 

  • Garnier M, Zreik L, Bové JM (1991) Witches’ broom, a lethal mycoplasmal disease of lime trees in the Sultanate of Oman and the United Arab Emirates. Plant Dis 75546–551

    Google Scholar 

  • Gasparich GE (2010) Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals 38:193–203

    PubMed  CAS  Google Scholar 

  • Gatineau F, Larrue J, Clair D, Lorton F, Richard-Molard M, Boudon-Padieu E (2001) A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius (Hemiptera: Cixiidae). Eur J Plant Pathol 10:263–271

    Google Scholar 

  • Getachew MA, Mitchell A, Gurr GM, Fletcher MJ, Pilkington LJ, Nikandrow A (2007) First report of a ‘Candidatus Phytoplasma australiense’—related strain in lucerne in Australia. Plant Dis 91:111

    Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    PubMed  CAS  Google Scholar 

  • Gowanlock DH, Greber RS, Behncken GM, Finlay J (1976) Electron microscopy of mycoplasma-like bodies in several Queensland crop species. Aust Plant Pathol Soc News1ett. 5: abstract 223

    Google Scholar 

  • Greber RS (1966) Identification of the virus causing papaya yellow crinkle with tomato big bud virus by transmission tests. Qld J Agric Anim Sci 23:147–153

    Google Scholar 

  • Griffiths HM, Sinclair WA, Davis CD, Smart RE (1999) The phytoplasma associated with ash yellows and lilac witches’-broom: ‘Candidatus Phytoplasma fraxini’. Int J Syst Bacteriol 49:605–1614

    Google Scholar 

  • Gundersen DE, Lee I-M, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasma like organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hanboonsong Y, Choosai C, Panyim S, Damak S (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Mol Biol 11:97–103

    PubMed  CAS  Google Scholar 

  • Harrison NA, Gundersen-Rindal D, Davis RE (2010) Genus I. “Candidatus Phytoplasma”. In: Garrity GM et al (eds) Bergey’s manual of systematic bacteriology: volume 4: the bacteroidetes, spirochaetes, tenericutes (mollicutes), acidobacteria, fibrobacteres, fusobacteria, dictyoglomi, gemmatimonadetes, lentisphaerae, verrucomicrobia, chlamydiae, and planctomycetes. Springer, New York, pp 696–719

    Google Scholar 

  • Hibben CR, Wolanski B (1971) Dodder transmission of a mycoplasma from ash witches’-broom. Phytopathology 61:151–156

    Google Scholar 

  • Hibben CR, Sinclair WA, Davis RE, Alexander JHIII (1991) Relatedness of mycoplasmalike organisms associated with ash yellows and lilac witches’-broom. Plant Dis 75:1227–1230

    Google Scholar 

  • Hill AV (1943) Insect transmission and host plants of big bud of tomato. J Counc Sci Ind Res Aust 16:85–90

    Google Scholar 

  • Hill AC (1992) Acholeplasma cavigenitalium sp. nov., isolated from the vagina of guinea pigs. Int J Syst Bacteriol 42:589–592

    PubMed  CAS  Google Scholar 

  • Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y, Yamaji Y, Kakizawa S, Oshima K, Namba S (2011) Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J 67:971–979

    PubMed  CAS  Google Scholar 

  • Hiruki C (1999) Paulownia witches’-broom disease important in East Asia. Acta Horticulturae 496:63–68

    Google Scholar 

  • Hiruki C, Wang KR (2004) Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’. Int J Syst Evol Microbiol 54:1349–1353

    PubMed  CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Harrison N, Dikinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidates species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58:1826–1837

    PubMed  CAS  Google Scholar 

  • Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    PubMed  CAS  Google Scholar 

  • Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hren M, Ravnikar M, Brzin J, Ermacora P, Carraro L, Bianco PA, Casati P, Borgo M, Angelini E, Rotter A, Gruden K (2009a) Induced expression of sucrose synthase and alcohol dehydrogenase I genes in phytoplasma-infected grapevine plants grown in the field. Plant Pathol 58:170–180

    Google Scholar 

  • Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K (2009b) ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10:460

    PubMed  PubMed Central  Google Scholar 

  • Huang S, Tiwari AK, Rao GP (2011) ‘Candidatus Phytoplasma pini’ affecting Taxodium distichum var . imbricarium in China. Phytopathogen Mollicutes 1:91–94

    Google Scholar 

  • ICSB-STM (International Committee on Systematic Bacteriology—Subcommittee on the Taxonomy of Mollicutes) (1995) Minutes of the Interim Meeting, 17 and 26 July 1994, Bordeaux, France. Int J Syst Evol Microbiol 45:415–417

    Google Scholar 

  • IRPCM (The IRPCM Phytoplasma/Spiroplasma Working Team–Phytoplasma taxonomy group) (2004) “Candidatus Phytoplasma”, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Micr 54:1243–1255

    Google Scholar 

  • Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet J-L, Bové J, Garnier M (2001) Catharanthus roseus genes regulated differentially by mollicute infections. Mol Plant Pathol 14:225–233

    CAS  Google Scholar 

  • Jarausch W, Jarausch-Wehrheim B, Danet JL, Broquaire JM, Dosba F, Saillard C, Garnier M (2001) Detection and identification of European stone fruit yellows and other phytoplasmas in wild plants in the surroundings of apricot chlorotic leaf roll-affected orchards in southern France. Eur J Plant Pathol 107:209–217

    Google Scholar 

  • Jensen DD, Griggs WH, Gonzales CQ, Schneider H (1964) Pear decline virus transmission by pear psylla. Phytopathology 54:1346–1351

    Google Scholar 

  • Ježić M, Poljak I, Idžojtić M, Ćurković-Perica M (2012) First report of ‘Candidatus Phytoplasma pini’ in Croatia. In: Book of abstracts of the 19th congress of the International Organisation for Mycoplasmology, Toulouse, pp 158–159

    Google Scholar 

  • Johansson K-E, Pettersson B (2002) Taxonomy of mollicutes. In: Razin S, Hermann R (eds) Molecular biology and pathogenicity of mycoplasmas. Kluwer, New York, pp 31–44

    Google Scholar 

  • Jomantiene R, Davis RE, Alminaite A, Valiunas D, Jasinskaite R (2002) First report of oat as host of a phytoplasma belonging to group 16SrI, subgroup A. Plant Dis 86:443

    Google Scholar 

  • Jones P, Devonshire BJ, Holman TJ, Ajanga S (2004) Napier grass stunt: a new disease associated with a 16SrXI group phytoplasma in Kenya. Plant Pathol 53:519

    Google Scholar 

  • Jones P, Arocha Y, Antesana O, Montellano E, Franco P (2005) ‘Hoja de perejil’ (parsley leaf) of tomato, morrenia little leaf, two new diseases associated with a phytoplasma in Bolivia. Plant Pathol 54:235

    Google Scholar 

  • Jović J, Cvrković T, Mitrović M, Krnjanjić S, Redingbaugh MG, Pratt RC, Gingery RE, Hogenhout SA, Toševski I (2007) Roles of stolbur phytoplasma and Reptalus panzeri (Cixiinae, Auchenorrhyncha) in the epidemiology of Maize redness in Serbia. Eur J Plant Pathol 118:85–89

    Google Scholar 

  • Jović J, Krstić O, Toševski I, Gassmann A (2011a) The occurrence of ‘Candidatus Phytoplasma rhamni’ in Rhamnus cathartica L. without symptoms. Bull Insect 64(suppl):227–228

    Google Scholar 

  • Jović J, Cvrković T, Mitrović M, Petrović A, Krstić O, Krnjajić S, Toševski I (2011b) Multigene sequence data and genetic diversity among ‘Candidatus Phytoplasma ulmi’ strains infecting Ulmus spp. in Serbia. Plant Pathol 60:356–368

    Google Scholar 

  • Jung H-Y, Sawayanagi T, Kakizawa S, Nishigawa H, Miyata S, Oshima K, Ugaki M, Lee J-T, Hibi T, Namba S (2002) ‘Candidatus Phytoplasma castaneae’, a novel phytoplasma taxon associated with chestnut witches’ broom disease. Int J Syst Evol Microbiol 52:1543–1549

    PubMed  CAS  Google Scholar 

  • Jung H-Y, Sawayanagi T, Wongkaew P, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata SI, Ugaki M, Hibi T, Namba S (2003a) ‘Candidatus Phytoplasma oryzae’, a novel phytoplasma taxon associated with rice yellow dwarf disease. Int J Syst Evol Microbiol 53:1925–1929

    PubMed  CAS  Google Scholar 

  • Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003b) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’-broom disease. Int J Syst Evol Microbiol 53:1037–1041

    PubMed  CAS  Google Scholar 

  • Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008) Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98:769–775

    PubMed  Google Scholar 

  • Kaloostian GH, Hibino H, Schneider H (1971) Mycoplasmalike bodies in periwinkle: their cytology and transmission by pear psylla from pear trees affected with pear decline. Phytopathology 61:1177–1179

    Google Scholar 

  • Kamińska M, Berniak H, Obdrzalek J (2011) New natural host plants of ‘Candidatus Phytoplasma pini’ in Poland and the Czech Republic. Plant Pathol 60:1023–1029

    Google Scholar 

  • Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol 14:291–317

    PubMed  Google Scholar 

  • Kanehira T, Horikoshi N, Yamakita Y, Shinohara M (1996) Occurrence of hydrangea phyllody in Japan and detection of the causal phytoplasma. Ann Phytopathol Soc Japan 62:537–540

    Google Scholar 

  • Kartte S, Seemüller E (1991) Histopathology of apple proliferation in Malus taxa and hybrids of different susceptibility. J Phytopathol 131:149–160

    Google Scholar 

  • Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90:909–914

    PubMed  CAS  Google Scholar 

  • Khan AJ, Botti S, Al-Subhi AM, Gundersen-Rindal DE, Bertaccini A (2002) Molecular identification of a new phytoplasma associated with alfalfa witches’-broom in Oman. Phytopathology 92:1038–1047

    PubMed  CAS  Google Scholar 

  • Khan AJ, Al-Subhi AM, Calari A, Al-Saady NA, Bertaccini A (2007) A new phytoplasma associated with witches’ broom of Cassia italica in Oman. Bull Insect 60:269–270

    Google Scholar 

  • Khan MS, Raj SK, Snehi SK (2008) Natural occurrence of ‘Candidatus Phytoplasma ziziphi’ isolates in two species of jujube trees (Ziziphus spp.) in India. Plant Pathol 57:1173

    Google Scholar 

  • Kim C-J (1965) Witches’ broom of jujube tree (Zizyphus jujube Mill. var. inermis Rehd.). Transmission by grafting. Korean J Microbiol 3:1–6

    Google Scholar 

  • Kirchhoff H (1974) New species of the families Acholeplasmataceae and Mycoplasmataceae in horses. Zentralblatt fur Veterinarmedizin—Reihe B 21:207–210

    CAS  Google Scholar 

  • Kirchhoff H (1978) Acholeplasma equifetale and Acholeplasma hippikon, two new species from aborted horse fetuses. Int J Syst Bacteriol 28:76–81

    Google Scholar 

  • Kirkpatrick BC (1991) Mycoplasma-like organisms—plant and invertebrate pathogens. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KS (eds) The Prokaryotes, vol 3. Springer, New York, pp 4050–4067

    Google Scholar 

  • Kirkpatrick BC, Fisher GA, Fraser JD, Purcell AH (1990) Epidemiological and phylogenetic studies on western X-disease mycoplasma-like organisms. In: Stanek G, Cassell, GH, Tully JG, Whitcomb RF (eds) Recent advances in mycoplasmology. Gustav Fischer Verlag, Stuttgart, Germany, pp 288–297

    Google Scholar 

  • Kisary J, El-Ebeedy AA, Stipkovits L (1976) Mycoplasma infection of geese. II. Studies on pathogenicity of mycoplasmas in goslings and goose and chicken embryos. Avian Pathol 5:15–20

    PubMed  CAS  Google Scholar 

  • Kison H, Seemüller E (2001) Differences in strain virulence of the European stone fruit yellows phytoplasma and susceptibility of stone fruit trees on various rootstocks to this pathogen. J Phytopathol 149:533–541

    CAS  Google Scholar 

  • Kitajima EW, Robbs CF, Kimura O, Wanderley LJG (1981) O irizado do chuchuzeiro e o superbrotamento do maracuja’—duas enfermidades associadas a microrganismos do tipo mycoplasma constatadas nos estados do Rio de Janeiro e Pernambuco. Fitopatologia Brasileira 6:115–122

    Google Scholar 

  • Knight TF (2004) Reclassification of Mesoplasma pleciae as Acholeplasma pleciae comb. nov. on the basis of 16S rRNA and gyrB gene sequence data. Int J Syst Evol Microbiol 54:1951–1952

    PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72:7286–7293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509

    PubMed  CAS  Google Scholar 

  • Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9:306

    PubMed  PubMed Central  Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. Scientific World J., Volume 2012, article ID 185942, 25 pages.

    Google Scholar 

  • Kuhnert P, Korczak BM (2006) Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152:2537–2548

    PubMed  CAS  Google Scholar 

  • Kunkel LO (1926) Studies on aster yellows. Am J Bot 23:646–705

    Google Scholar 

  • Kunkel LO (1932) Celery yellows of California not identical with the aster yellows of New York. Contrib Boyce Thompson Inst 4:405–414

    Google Scholar 

  • La Y-J, Woo K-S (1980) Transmission of jujube witches’ broom mycoplasma by the leaf hopper Hishimonus sellatus Uhler. J Korean For Soc 48:29–39

    Google Scholar 

  • Laidlaw PP, Elford WJ (1936) A new group of filterable organisms. Proc R Soc B 20:292–303

    Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria. Bacteriological code, 1990 edn. ASM Press, Washington, DC

    Google Scholar 

  • Larsen KJ, Whalen ME (1988) Dispersal of Paraphlopsius irroratus (Say) (Homoptera: Cicadellidae) in peach and cherry orchards. Environ Entomol 17:842–851

    Google Scholar 

  • Lauer U, Seemüller E (2000) Physical map of the chromosome of the apple proliferation phytoplasma. J Bacteriol 182:1415–1418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leach RH (1973) Further studies on classification of bovine strains of mycoplasmatales, with proposals for new species, Acholeplasma modicum and Mycoplasma alkalescens. J Gen Microbiol 75:135–153

    PubMed  CAS  Google Scholar 

  • Lee I-M, Bertaccini A, Vibio M, Gundersen DE, Davis RE, Mittempergher L, Conti M, Gennari F (1995) Detection and characterization of phytoplasmas associated with disease in Ulmus and Rubus in northern and central Italy. Phytopathol Mediterr 34:174–183

    CAS  Google Scholar 

  • Lee I-M, Klopmeyer M, Bartoszyk IM, Gundersen-Rindal DE, Chou T-S, Thomson KL, Eisenreich R (1997) Phytoplasma induced free-branching in commercial poinsettia cultivars. Nat Biotechnol 15:178–182

    PubMed  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk I-M (1998) Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA, ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    CAS  Google Scholar 

  • Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255

    PubMed  CAS  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004a) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54:1037–1048

    PubMed  CAS  Google Scholar 

  • Lee I-M, Martini M, Marcone C, Zhu SF (2004b) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposition of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347

    PubMed  CAS  Google Scholar 

  • Lee I-M, Davis RE (2000) Aster yellows. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 60–63

    Google Scholar 

  • Lee I-M, Bottner KD, Secor G, Rivera-Varas V (2006a) ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 56:1593–1597

    PubMed  CAS  Google Scholar 

  • Lee IM, Zhao Y, Bottner KD (2006b) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91

    PubMed  CAS  Google Scholar 

  • Lee I-M, Zhao Y, Davis RE, Wei W, Martini M (2007) Prospects of DNA-based systems for differentiation and classification of phytoplasmas. Bull Insect 60:239–244

    Google Scholar 

  • Lee IM, Zhao Y, Davis RE (2009) Prospects of multiple gene-based systems for differentiation and classification of phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford/Oxfordshire, UK, pp 51–63

    Google Scholar 

  • Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison N (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60:2887–2897

    PubMed  Google Scholar 

  • Lee I-M, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L (2011) ‘Candidatus Phytoplasma costaricanum’ a new phytoplasma associated with a newly emerging disease in soybean in Costa Rica. Int J Syst Evol Microbiol 61:2822–2826

    PubMed  CAS  Google Scholar 

  • Lee I-M, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE (2012) Differentiation and classification of phytoplasmas in the pigeon pea witches’-broom group (16SrIX): an update based on multiple gene sequence analysis. Int J Syst Evol Microbiol 62:2279–2285

    PubMed  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68

    CAS  Google Scholar 

  • Li Z, Wu Z, Liu H, Hao X, Zhang C, Wu Y (2010) Spiraea salicifolia: a new plant host of “Candidatus Phytoplasma ziziphi”-related phytoplasma. J Gen Plant Pathol 76:299–301

    CAS  Google Scholar 

  • Liefting LW, Beever RE, Winks CJ, Pearson MN, Forster RLS (1997) Planthopper transmission of Phormium yellow leaf phytoplasma. Aust Plant Pathol 26:148–154

    Google Scholar 

  • Liefting LW, Padovan AC, Gibb KS, Beever RE, Andersen MT, Newcomb RD, Beck DL, Foster RLS (1998) ‘Candidatus’ Phytoplasma australiense’ is the phytoplasma associated with Australian Grapevine yellows, papaya dieback and Phormium yellow leaf disease. Eur J Plant Pathol 104:619–623

    Google Scholar 

  • Liefting LW, Beever RE, Andersen MT, Clover GRG (2007) Phytoplasma diseases in New Zealand. Bull Insect 60:165–166

    Google Scholar 

  • Liefting LW, Veerakone S, Ward LI, Clover GRG (2009) First report of ‘Candidatus Phytoplasma australiense’ in potato. Plant Dis 93:969

    Google Scholar 

  • Lim P-O, Sears BB (1989) 16S rRNA sequence indicates that plant-pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. J Bacteriol 171:5901–5906

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lim P-O, Sears BB (1992) Evolutionary relationships of a plant-pathogenic mycoplasma-like organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol 174:2606–2611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lim P-O, Sears BB, Klomparens KL (1992) Membrane properties of a plant-pathogenic mycoplasma-like organism. J Bacteriol 174:682–686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Q, Wu T, Davis RE, Zhao Y (2004) First report of witches’-broom disease of Broussonetia papyrifera and its association with a phytoplasma of elm yellows group (16SrV). Plant Dis 88:770

    Google Scholar 

  • Liu H-L, Chen C-C, Lin C-P (2007) Detection and identification of the phytoplasma associated with pear decline in Taiwan. Eur J Plant Pathol 117:281–291

    CAS  Google Scholar 

  • Lo Gullo MA, Trifilò P, Raimondo F (2000) Hydraulic architecture and water relations of Spartium junceum branches affected by a mycoplasm disease. Plant Cell Environ 23:1079–1088

    Google Scholar 

  • Loi N, Carraro L, Musetti R, Pertot I, Osler R (1995) Dodder transmission of two different MLOs from plum trees affected by “Leptonecrosis”. Acta Horticulturae 386:465–470

    Google Scholar 

  • Lorenz KH, Schneider B, Ahrens U, Seemüller E (1995) Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 85:771–776

    CAS  Google Scholar 

  • MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:831–841

    PubMed  CAS  PubMed Central  Google Scholar 

  • Magaray PA, Wachtel MF (1986) Grapevine yellows, a widespread apparently new disease in Australia. Plant Dis 70:694

    Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A (2012) DNA Barcoding for identification of ‘Candidatus Phytoplasmas’ using a Fragment of the elongation factor tu gene. PLoS ONE 7:e52092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. Int J Syst Evol Microbiol 61:2129–2134

    PubMed  Google Scholar 

  • Maniloff J (2002) Phylogeny and evolution. In: Razin S, Hermann R (eds) Molecular biology and pathogenicity of mycoplasmas. Kluwer, New York, pp 31–44

    Google Scholar 

  • Manimekalai R, Nair S, Soumya VP, Thomas GV (2013) Phylogenetic analysis identifies ‘Candidatus Phytoplasma oryzae’-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. Int J Syst Evol Microbiol 63:1376–1382

    Google Scholar 

  • Maramorosch K (1955) Transmission of blueberry stunt virus by Scaphytopius magdalensis. J Econ Entomol 48:106

    Google Scholar 

  • Marcone C (2010) Movement of phytoplasmas and the development of disease in the plant. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Wallingford/Oxfordshire, UK, pp 114–131

    Google Scholar 

  • Marcone C, Rao GP (2008a) ‘Candidatus Phytoplasma cynodontis’: the causal agent of Bermuda grass white leaf disease. In: Harrison NA, Rao GP, Marcone C (eds) Characterization, diagnosis and management of phytoplasmas. Studium Press, Houston, pp 353–364

    Google Scholar 

  • Marcone C, Rao GP (2008b) White leaf and grassy shoot diseases of sugarcane. In: Harrison NA, Rao GP, Marcone C (eds) Characterization, diagnosis and management of phytoplasmas. Studium Press, Houston, pp 293–305

    Google Scholar 

  • Marcone C, Seemüller E (2001) A chromosome map of the European stone fruit yellows phytoplasma. Microbiology 147:1213–1221

    PubMed  CAS  Google Scholar 

  • Marcone C, Hergenhahn F, Ragozzino A, Seemüller E (1999a) Dodder transmission of pear decline, European stone fruit yellows, rubus stunt, picris echioides yellows and cotton phyllody phytoplasmas to periwinkle. J Phytopathol 147:187–192

    CAS  Google Scholar 

  • Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999b) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89:805–810

    PubMed  CAS  Google Scholar 

  • Marcone C, Lee I-M, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50:1703–1713

    PubMed  CAS  Google Scholar 

  • Marcone C, Schneider B, Seemüller E (2004a) ‘Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease. Int J Syst Evol Microbiol 54:1077–1082

    PubMed  CAS  Google Scholar 

  • Marcone C, Gibb KS, Streten C, Schneider B (2004b) ‘Candidatus Phytoplasma spartii’, ‘Candidatus Phytoplasma rhamni’ and Candidatus Phytoplasma allocasuarinae’, respectively associated with spartium witches’-broom, buckthorn witches’-broom and allocasuarina yellows diseases. Int J Syst Evol Microbiol 54:1025–1029

    PubMed  CAS  Google Scholar 

  • Marcone C, Jarausch B, Jarausch W (2010a) ‘Candidatus Phytoplasma prunorum’, the causal agent of European stone fruit yellows: an overview. J Plant Pathol 92:19–34

    CAS  Google Scholar 

  • Marcone C, Schneider B, Seemüller E (2010b) Comparison of European stone fruit yellows phytoplasma strains differing in virulence by multi-gene sequence analyses. Julius-Kühn-Archiv 427:193–196

    Google Scholar 

  • Martini M (2004) Ribosomal protein gene-based phylogeny: a basis for phytoplasma classification. PhD thesis, University of Udine, Italy

    Google Scholar 

  • Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A (2002) Genetic variability among Flavescence dorée phytoplasmas from different origins in Italy and France. Mol Cell Probes 16:197–208

    PubMed  CAS  Google Scholar 

  • Martini M, Lee I-M, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan AJ, Osler R (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57:2037–2051

    PubMed  CAS  Google Scholar 

  • Martini M, Ermacora P, Falginella L, Loi N, Carraro L (2008) Molecular differentiation of ‘Candidatus Phytoplasma mali’ and its spreading in Friuli Venezia Giulia region (North-East Italy). Acta Hortic 781:395–402

    CAS  Google Scholar 

  • Martini M, Marcone C, Maixner M, Mitrović J, Myrta A, Delić D, Bertaccini A, Ermacora P, Duduk B (2012) ‘Candidatus Phytoplasma convolvuli’, a new phytoplasma taxon associated with bindweed yellows in four European countries. Int J Syst Evol Microbiol 62:2010–2015

    Google Scholar 

  • Marwitz R (1990) Diversity of yellows disease agents in plant infections. Zbl Bakt: Suppl 20:431–434

    Google Scholar 

  • Mäurer R, Seemüller E (1995) Nature and genetic relatedness of the mycoplasma-like organism causing rubus stunt in Europe. Plant Pathol 44:244–249

    Google Scholar 

  • Mäurer R, Seemüller E (1996) Witches’ broom of Rhamnus catharticus: a new phytoplasma disease. J Phytopathol 144:221–223

    Google Scholar 

  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981

    PubMed  CAS  Google Scholar 

  • McClure MS (1980) Spatial and seasonal distribution of leafhopper vectors of peach X-disease in Connecticut. Environ Entomol 9:668–672

    Google Scholar 

  • McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski LN, Cousin MT, Dale JL, de Leeuw GTN, Golino DA, Hackett KJ, Kirkpatrick BC, Marwitz R, Petzold H, Sinha RC, Sugiura M, Whitcomb RF, Yang IL, Zhu BM, Seemüller E (1989) Plant diseases associated with mycoplasma-like organisms. In: Whitcomb RF, Tully JG (eds) The Mycoplasmas, vol 5. Academic, San Diego, pp 545–640

    Google Scholar 

  • Mehle N, Brzin J, Boben J, Hren M, Frank J, Petrović N, Gruden K, Dreo T, Žežlina I, Seljak G, Ravnicar M (2007) First report of ‘Candidatus Phytoplasma mali’ in Prunus avium, P. armeniaca and P. domestica. Plant Pathol 56:721

    Google Scholar 

  • Mirzaie A, Esmailzadeh-Hosseini SA, Jafari-Nodoshan A, Rahimian H (2007) Molecular characterization and potential insect vector of a phytoplasma associated with garden beet witches’- broom in Yazd, Iran. J Phytopathol 155:198–203

    CAS  Google Scholar 

  • Molino Lova M, Quaglino F, Abou-Jawdah Y, Choueiri E, Sobh H, Alma A, Tedeschi R, Casati P, Bianco PA (2011) ‘Candidatus Phytoplasma phoenicium’-related strains infecting almond, peach and nectarine in Lebanon. Bull Insect 64(suppl):267–268

    Google Scholar 

  • Montano HG, Dally EL, Davis RE, Pimentel JP, Brioso PST (2001a) First report of natural infection by ‘Candidatus Phytoplasma brasiliense’ in Catharanthus roseus. Plant Dis 85:1209

    Google Scholar 

  • Montano HG, Davis RE, Dally EL, Hogenhout S, Pimentel JP, Brioso PST (2001b) ‘Candidatus Phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches’ broom disease. Int J Syst Evol Microbiol 51:1109–1118

    PubMed  CAS  Google Scholar 

  • Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol 4:109–114

    PubMed  CAS  Google Scholar 

  • Moya-Raygoza G, Nault R (1998) Transmission biology of maize bushy stunt phytoplasma by the corn leafhopper (Homoptera: Cicadellidae). Ann Entomol Soc Am 91:668–676

    Google Scholar 

  • Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187

    PubMed  CAS  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2009a) Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species. Plant Pathol 58:1152–1160

    CAS  Google Scholar 

  • Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M (2009b) First report of a 16SrXIV, ‘Candidatus cynodontis’ group phytoplasma associated with coconut yellow decline in Malaysia. Plant Pathol 58:389

    Google Scholar 

  • Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SNA, Zhao Y (2013) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 63:540–548

    PubMed  CAS  Google Scholar 

  • Nicolaisen M, Christensen NM (2007) Phytoplasma induced changes in gene expression in poinsettia. Bull Insect 60:215–216

    Google Scholar 

  • Nicolaisen M, Horvath DP (2008) A branch-inducing phytoplasma in Euphorbia pulcherrima is associated with changes in expression of host genes. J Phytopathol 156:403–407

    CAS  Google Scholar 

  • Obura E, Masiga D, Midega CAO, Wachira F, Pickett JA, Deng AL, Khan ZR (2010) First report of a phytoplasma associated with Bermuda grass white leaf disease in Kenya. New Dis Rep 21:23

    Google Scholar 

  • Padovan A, Gibb K, Persley D (2000) Association of ‘Candidatus Phytoplasma australiense’ with green petal and lethal yellows diseases in strawberry. Plant Pathol 49:362–369

    Google Scholar 

  • Palermo S, Elekes M, Botti S, Ember I, Oroz A, Bertaccini A, Kölber M (2004) Presence of stolbur phytoplasma in Cixiidae in Hungarian vineyards. Vitis 43:201–203

    Google Scholar 

  • Pearce TL, Scott JB, Pethybridge SJ (2011) First report of a 16SrII-D subgroup phytoplasma associated with pale purple coneflower witches’-broom disease in Australia. Plant Dis 95:773

    Google Scholar 

  • Pilkington LJ, Gurr GM, Fletcher MJ, Nikandrow A, Elliott E (2004) Vector status of three leafhopper species for Australian lucerne yellows phytoplasma. Aust J Entomol 42:366–373

    Google Scholar 

  • Poggi Pollini C, Giunchedi L, Gobber M, Miorelli P, Pignatta D, Terlizzi F (2005) Indagini sulla presenza del giallume europeo delle drupacee (ESFY) e di altri fitoplasmi in piante spontanee in provincia di Trento. Petria 15:201–204

    Google Scholar 

  • Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol Plant Microbe Interact 19:62–68

    PubMed  CAS  Google Scholar 

  • Prentice IW (1950) Rubus stunt: a virus disease. J Hortic Sci 26:35–42

    Google Scholar 

  • Přibylová J, Petrzik K, Špak J (2009) The first detection of ‘Candidatus Phytoplasma trifolii’ in Rhododendron hybridum. Eur J Plant Pathol 124:181–185

    Google Scholar 

  • Purcell AH (1988) Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens. Entomol Exp Appl 46:187–196

    Google Scholar 

  • Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur and bois noir related diseases of plants. Int J Syst Evol Microbiol 63:2879–2894

    PubMed  CAS  Google Scholar 

  • Radonjić S, Hrncic S, Jovic J, Cvrkovic T, Krstic O, Krnjajic S, Tosevski I (2006) Occurrence and distribution of grapevine yellows caused by Stolbur phytoplasma in Montenegro. J Phytopathol 157:682–685

    Google Scholar 

  • Rao GP, Raj SK, Snehi SK, Mall S, Singh M, Marcone C (2007) Molecular evidence for the presence of ‘Candidatus Phytoplasma cynodontis’, the Bermuda grass white leaf agent, in India. Bull Insect 60:145–146

    Google Scholar 

  • Rao GP, Srivastava S, Gupta PS, Sharma SR, Singh A, Singh S, Singh M, Marcone C (2008) Detection of sugarcane grassy shoot phytoplasma infecting sugarcane in India and its phylogenetic relationships to closely related phytoplasmas. Sugar Tech 10:74–80

    CAS  Google Scholar 

  • Rao GP, Mall S, Singh M, Marcone C (2009) First report of a ‘Candidatus Phytoplasma cynodontis’-related strain (group 16SrXIV) associated with white leaf disease of Dichanthium annulatum in India. Aust Plant Dis Note 4:56–58

    CAS  Google Scholar 

  • Rao GP, Mall S, Marcone C (2010) ‘Candidatus Phytoplasma cynodontis’ (16SrXIV group) affecting Oplismenus burmannii (Retz.) P. Beauv. and Digitaria sanguinalis (L.) Scop. in India. Aust Plant Dis Note 5:93–95

    Google Scholar 

  • Razin S (1992) Mycoplasma taxonomy and ecology. In: Maniloff J, McElhansey RN, Finch LR, Baseman JB (eds) Mycoplasmas: molecular biology and pathogenesis. American Society for Microbiology, Washington, DC, pp 1–22

    Google Scholar 

  • Razin S, Efrati H, Kutner S, Rottem S (1982) Cholesterol and phospholipid uptake by mycoplasmas. Rev Infect Dis 4(Suppl):S85–S92

    PubMed  Google Scholar 

  • Rice RE, Jones RA (1972) Leafhopper vectors of the western X-disease pathogen: collections in central California. Environ Entomol 1:726–730

    Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Robinson IM, Freundt EA (1987) Proposal for an amended classification of anaerobic mollicutes. Int J Syst Bacteriol 37:78–81

    Google Scholar 

  • Rogers MJ, Simmons J, Walker RT, Weisburg WG, Woese CR, Tanner RS, Robinson IM, Stahl DA, Olsen G, Leach RH (1985) Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. Proc Natl Acad Sci USA 82:1160–1164

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    PubMed  CAS  Google Scholar 

  • Romanazzi G, Murolo S (2008) Candidatus Phytoplasma ulmi’ causing yellows in Zelkova serrata newly reported in Italy. Plant Pathol 57:1174

    Google Scholar 

  • Rose DL, Tully JG, Del Giudice RA (1980) Acholeplasma morum, a new non-sterol-requiring species. Int J Syst Bacteriol 30:647–654

    Google Scholar 

  • Rose DL, Tully JG, Bové JM, Whitcomb RF (1993) A test for measuring growth responses of mollicutes to serum and polyoxyethylene sorbitan. Int J Syst Bacteriol 43:527–532

    PubMed  CAS  Google Scholar 

  • Rottem S, Markowitz O (1979) Unusual positional distribution of fatty acids in phosphatidylglycerol of sterol-requiring mycoplasmas. FEBS Lett 107:379–382

    PubMed  CAS  Google Scholar 

  • Sabin A (1941) The filterable micro-organisms of the pleuropneumonia group. Bacteriol Rev 5:1–66

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N, Firrao G (2012) Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158:2805–2814

    PubMed  CAS  Google Scholar 

  • Salehi M, Izadpanah K, Rahimian H (1997) Witches’-broom disease of lime in Sistan, Baluchistan. Iran J Plant Pathol 33:76

    Google Scholar 

  • Salehi M, Izadpanah K, Taghizadeh M (2000) A study on host range and possible vector of lime witches’ broom in Iran. In: Abstract book of the 14th Iranian Plant Protection Congress, September 2000, Isfahan

    Google Scholar 

  • Salehi M, Izadpanah K, Taghizadeh M (2002) Witches’-broom disease of lime in Iran: new distribution areas, experimental herbaceous hosts and transmission trials. In: Proceedings of the 15th International Organization of Citrus Virologists (IOCV), Riverside, pp 293–296

    Google Scholar 

  • Salehi M, Nejat N, Tvakoli AR, Izadpanah K (2005) Reaction of citrus cultivars to ‘Candidatus Phytoplasma aurantifolia’ in Iran. Iran J Plant Pathol 41:147–149

    Google Scholar 

  • Salehi M, Izadpanah K, Siampour M, Bagheri AN, Faghihi M (2007) Transmission of ‘Candidatus Phytoplasma aurantifolia’ to Bakraee (Citrus reticulata hybrid) by feral Hishimonus phycitis leafhoppers in Iran. Plant Dis 91:466

    Google Scholar 

  • Salehi M, Izadpanah K, Siampour M, Taghizadeh M (2009) Molecular characterization and transmission of Bermuda grass white leaf phytoplasma in Iran. J Plant Pathol 91:655–661

    CAS  Google Scholar 

  • Salehi M, Haghshenas F, Khanchezar A, Esmailzadeh-Hosseini SA (2011) Association of ‘Candidatus Phytoplasma phoenicium’ with GF-677 witches’ broom in Iran. Bull Insect 64(suppl):113–114

    Google Scholar 

  • Saqib M, Jones MGK, Jones RAC (2006) ‘Candidatus Phytoplasma australiense’ is associated with diseases of red clover and paddy melon in south-west Australia. Aust Plant Pathol 35:283–285

    Google Scholar 

  • Sawayanagi T, Horikoshi N, Kanehira T, Shinohara M, Bertaccini A, Cousin MT, Hiruki C, Namba S (1999) ‘Candidatus Phytoplasma japonicum’, a new phytoplasma taxon associated with Japanese Hydrangea phyllody. Int J Syst Bacteriol 49:1275–1285

    PubMed  CAS  Google Scholar 

  • Schneider B, Seemüller E (2009) Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP and sequence analyses of the hflB gene. J Plant Pathol 91:103–112

    CAS  Google Scholar 

  • Schneider B, Padovan A, De la Rue S, Eichner R, Davis R, Bernuetz A, Gibb K (1999) Detection and differentiation of phytoplasmas in Australia: an update. Aust J Agr Res 50:333–342

    Google Scholar 

  • Schneider B, Torres E, Martín MP, Schröder M, Behnke HD, Seemüller E (2005) ‘Candidatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. Int J Syst Evol Microbiol 55:303–307

    PubMed  CAS  Google Scholar 

  • Secor GA, Lee I-M, Bottner KD, Rivera-Varas V, Gudmestad C (2006) First report of a defect of processing potatoes in Texas and Nebraska associated with a new phytoplasma. Plant Dis 90:377

    Google Scholar 

  • Seemüller E, Schneider B (2004) ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54:1217–1226

    PubMed  Google Scholar 

  • Seemüller E, Schneider B (2007) Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali’, the apple proliferation agent. Phytopathology 97:964–970

    PubMed  Google Scholar 

  • Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M (1998a) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26

    Google Scholar 

  • Seemüller E, Kison H, Lorenz K-H, Schneider B, Marcone C, Smart CD, Kirkpatrick BC (1998b) Detection and identification of fruit tree phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. In: Manceau C, Spak J (eds) COST 823 -New technologies to improve phytodiagnosis. Advances in the detection of plant pathogens by polymerase chain reaction. Office for Official Publications of the European Communities, Luxembourg, pp 56–66

    Google Scholar 

  • Seemüller E, Garnier M, Schneider B (2002) Mycoplasmas of plants and insects. In: Razin S, Hermann R (eds) Molecular biology and pathogenicity of mycoplasmas. Kluwer, New York, pp 91–115

    Google Scholar 

  • Seemüller E, Kiss E, Sule S, Schneider B (2010) Multiple infection of apple trees by distinct strains of ‘Candidatus Phytoplasma mali’ and its pathological relevance. Phytopathology 100:863–870

    PubMed  Google Scholar 

  • Seemüller E, Schneider B, Jarausch B (2011a) Pear decline phytoplasma. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS Press, St. Paul, pp 77–84

    Google Scholar 

  • Seemüller E, Carraro L, Jarausch W, Schneider B (2011b) Apple proliferation phytoplasma. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS Press, St. Paul, pp 67–73

    Google Scholar 

  • Seemüller E, Kampmann M, Kiss E, Schneider B (2011c) HflB gene-based phytopathogenic classification of ‘Candidatus Phytoplasma mali’ strains and evidence that strain composition determines virulence in multiply infected apple trees. Mol Plant Microbe Interact 24:1258–1266

    PubMed  Google Scholar 

  • Sertkaya G, Osler R, Musetti R, Ermacora P, Martini M (2004) Detection of phytoplasmas in Rubus spp. by microscopy and molecular techniques in Turkey. Acta Hortic 656:181–186

    CAS  Google Scholar 

  • Sertkaya G, Martini M, Musetti R, Osler R (2007) Detection and molecular characterization of phytoplasmas infecting sesame and solanaceous crops in Turkey. Bull Insect 60:141–142

    Google Scholar 

  • Shao J, Jomantiene R, Dally EL, Zhao Y, Lee I-M, Nuss DL, Davis RE (2006) Phylogeny and characterization of phytoplasmal nusA and use of the nusA gene in detection of group 16SrI strains. J Plant Pathol 88:193–201

    CAS  Google Scholar 

  • Siampour M, Izadpanah K, Galetto L, Salehi M, Marzachì C (2013) Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathol 62:452–459

    CAS  Google Scholar 

  • Sinclair WA, Griffiths HM (1994) Ash yellows and its relationship to dieback and decline of ash. Annu Rev Phytopathol 32:49–60

    Google Scholar 

  • Sinclair WA, Griffiths HM, Davis RE (1996) Ash yellows and lilac witches’-broom: phytoplasmal diseases of concern in forestry and horticulture. Plant Dis 80:468–475

    Google Scholar 

  • Singh J, Rani A, Kumar P, Baranwal VK, Saroj PL, Sirohi A (2012) First report of a 16SrII-D phytoplasma ‘Candidatus Phytoplasma australasia’ associated with a tomato disease in India. New Dis Rep 26:14

    Google Scholar 

  • Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A, Barbe V, Schenowitz C, Mangenot S, Couloux A, Segurens B, de Daruvar A, Blanchard A, Citti C (2007) Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3:e75

    PubMed  PubMed Central  Google Scholar 

  • Śliwa H, Kaminska M, Korszun S, Adler P (2008) Detection of ‘Candidatus Phytoplasma pini’ in Pinus sylvestris trees in Poland. J Phytopathol 156:88–92

    Google Scholar 

  • Somerson NL, Kocka JP, Rose D, Del Giudice RA (1982) Isolation of acholeplasmas and a mycoplasma from vegetables. Appl Environ Microbiol 43:412–417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stephens EB, Aulakh GS, Rose DL (1983a) Interspecies and intraspecies DNA homology among established species of Acholeplasma: a review. Yale J Biol Med 56:729–735

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stephens EB, Aulakh GS, Rose DL (1983b) Intraspecies genetic relatedness among strains of Acholeplasma laidlawii and of Acholeplasma axanthum by nucleic acid hybridization. J Gen Microbiol 129:1929–1934

    PubMed  CAS  Google Scholar 

  • Stoddard EM (1934) Progress report on the investigation of a new peach disease. Conn Pomol Soc Proc 44:31–36 (1933)

    Google Scholar 

  • Stoddard EM (1938) The “X disease” of peach. Connecticut Agricultural Experiment Station, New Haven. June 1938 Circular 122, pp 54–60

    Google Scholar 

  • Stoddard EM, Hildebrand EM, Palmiter DH, Parker KG (1951) X-disease. In: Virus diseases and other disorders with viruslike symptoms of stone fruits in North America, vol 10, Agriculture handbook. United States Department of Agriculture, United States Government Printing Office, Washington, DC, pp 37–42

    Google Scholar 

  • Streten C, Conde B, Herrington M, Moulden J, Gibb KS (2005) ‘Candidatus Phytoplasma australiense’ is associated with pumpkin yellow leaf curl disease in Queensland, Western Australia and the Northern Territory. Australas Plant Pathol 34:103–105

    Google Scholar 

  • Su Y-T, Chen J-C, Lin C-P (2011) Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol Plant Microbe Interact 24:1502–1512

    PubMed  CAS  Google Scholar 

  • Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011a) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 49:175–195

    PubMed  CAS  Google Scholar 

  • Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011b) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci USA 108:4252–4257

    Google Scholar 

  • Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci USA 103:4252–4257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan PY, Whitlow T (2001) Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. New Phytol 150:757–769

    Google Scholar 

  • Taylor P, Arocha-Rosete Y, Scott J (2011) First report of ‘Candidatus Phytoplasma trifolii (group 16SrVI) infecting S auropus androgynus. New Dis Rep 24:23

    Google Scholar 

  • Taylor-Robinson D (1983) Metabolism inhibition tests. In: Razin S, Tully J (eds) Methods in mycoplasmology, vol 1. Academic, New York, pp 411–421

    Google Scholar 

  • Tedeschi R, Alma A (2006) Fieberiella florii (Homoptera: Auchenorrhyncha) as a vector of “Candidatus Phytoplasma mali”. Plant Dis 90:284–290

    CAS  Google Scholar 

  • Tedeschi R, Visentin C, Alma A, Bosco D (2003) Epidemiology of apple proliferation (AP) in northwestern Italy: evaluation of the frequency of AP-positive psyllids in naturally infected populations of Cacopsylla melanoneura (Homoptera: Psyllidae). Ann Appl Biol 142:285–290

    Google Scholar 

  • Tedeschi R, Ferrato V, Rossi J, Alma A (2006) Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathol 55:18–24

    Google Scholar 

  • Terlizzi F, Babini AR, Credi R (2006) First report of stolbur phytoplasma (16SrXII-A) on strawberry in northern Italy. Plant Dis 90:831

    Google Scholar 

  • Tran-Nguyen LT, Gibb KS (2006) Extrachromosomal DNA isolated from tomato big bud and ‘Candidatus Phytoplasma australiense’ phytoplasma strains. Plasmid 56:153–166

    PubMed  CAS  Google Scholar 

  • Tran-Nguyen LT, Persley DM, Gibb KS (2003) First report of phytoplasma disease in capsicum, celery and chicory in Queensland, Australia. Australas Plant Pathol 32:559–560

    Google Scholar 

  • Trivellone V, Pinzauti F, Bagnoli B (2005) Reptalus quinquecostatus (Dufour) (Auchenorrhyncha Cixiidae) as a possible vector of stolbur-phytoplasma in a vineyard in Tuscany. Redia 88:103–108

    Google Scholar 

  • Tsai JH (1979) Vector transmission of mycoplasmal agents of plant diseases. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol III. Academic, San Diego, pp 266–307

    Google Scholar 

  • Tully JG (1973) Biological and serological characteristics of the acholeplasmas. Ann N Y Acad Sci 225:74–93

    Google Scholar 

  • Tully JG (1979) Special features of the acholeplasmas. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol I. Academic, San Diego, pp 431–449

    Google Scholar 

  • Tully JG, Razin S (1970) Acholeplasma axanthum, sp. nov.: a new sterol-nonrequiring member of the Mycoplasmatales. J Bacteriol 103:751–754

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tully JG, Whitcomb RF, Rose DL, Bove JM, Carle P, Somerson NL, Williamson DL, Eden-Green S (1994a) Acholeplasma brassicae sp. nov. and Acholeplasma palmae sp. nov., two non- sterol-requiring mollicutes from plant surfaces. Int J Syst Bacteriol 44:680–684

    PubMed  CAS  Google Scholar 

  • Tully JG, Whitcomb RF, Hackett KJ, Rose DL, Henegar RB, Bove JM, Carle P, Williamson DL, Clark TB (1994b) Taxonomic descriptions of eight new non-sterol-requiring mollicutes assigned to the genus Mesoplasma. Int J Syst Bacteriol 44:685–693

    PubMed  CAS  Google Scholar 

  • Valiunas D, Staniulis J, Davis RE (2006) ‘Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria x ananassa. Int J Syst Evol Microbiol 56:277–281

    PubMed  CAS  Google Scholar 

  • Valiunas D, Jomantiene R, Ivanauskas A, Sneideris D, Staniulis J, Davis RE (2010) A possible threat to the timber industry: ‘Candidatus Phytoplasma pini’ in Scots pine (Pinus sylvestris L.) in Lithuania. In: Bertaccini A, Laviña A, Torres E (eds) Current status and perspectives of phytoplasma disease research and management (Abstract book of the COST Action FA0807 Meeting). February 1-2, Sitges, Spain, p 38

    Google Scholar 

  • Van der Meer FA (1987) Virus and viruslike diseases of Rubus (raspberry and blackberry). Leafhopper-borne diseases. Rubus stunt. In: Converse RH (ed) Virus diseases of small fruits, vol 631, Agriculture handbook. United States Department of Agriculture, Washington, DC, pp 197–203

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    PubMed  CAS  PubMed Central  Google Scholar 

  • Verdin E, Salar P, Danet J-L, Choueiri E, Jreijiri F, El Zammar S, Gélie B, Bové J, Garnier M (2003) ‘Candidatus Phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol 53:833–838

    PubMed  CAS  Google Scholar 

  • Villalobos W, Moreira L, Rivera C, Lee I-M (2009) First report of new phytoplasma diseases associated with soybean, sweet pepper, and passion fruit in Costa Rica. Plant Dis 93:201

    Google Scholar 

  • Villalobos W, Martini M, Garita L, Muñoz M, Osler R, Moreira L (2011) Guazuma ulmifolia (Sterculiaceae), a new natural host of 16SrXV phytoplasma in Costa Rica. Trop Plant Path 36:110–115

    Google Scholar 

  • Volokhov DV, George J, Liu SX, Ikonomi P, Anderson C, Chizhikov V (2006) Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing. Appl Microbiol Biotechnol 71:680–698

    PubMed  CAS  Google Scholar 

  • Volokhov DV, Neverov AA, George J, Kong H, Liu SX, Anderson C, Davidson MK, Chizhikov V (2007) Genetic analysis of housekeeping genes of members of the genus Acholeplasma: phylogeny and complementary molecular markers to the 16S rRNA gene. Mol Phylogenet Evol 44:699–710

    PubMed  CAS  Google Scholar 

  • Waites KB, Tully JG, Rose DL (1987) Isolation of Acholeplasma oculi from human amniotic fluid in early pregnancy. Curr Microbiol 15:325–327

    Google Scholar 

  • Wang TH, Zhu HC, Zhao ZR, Tong QQ (1964) Investigation of the pathogens of jujube witches’-broom. Acta Phytopathol Sin 3:195–198

    Google Scholar 

  • Wang QK, Xu SH, Chen ZW, Zhang JQ (1981) On the witches’-broom disease of Zizyphus jujuba Mill. Acta Phytopathol Sin 11:15–18

    CAS  Google Scholar 

  • Wang Z, Zhou P, Yu B, Jiang X, Chang C (1984) On the bionomics and control of Hishimonoides chinensis Anufriev, the vector of jujube witches’ broom disease. Acta Phytopathol Sin 11:247–252

    Google Scholar 

  • Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867

    PubMed  CAS  Google Scholar 

  • Wei W, Lee I-M, Davis RE, Suo X, Zhao Y (2008) Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16S subgroup lineages. Int J Syst Evol Microbiol 58:2368–2377

    PubMed  CAS  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    PubMed  CAS  Google Scholar 

  • Whitcomb RF, Tully JG, Bove JM, Saglio P (1973) Spiroplasmas and acholeplasmas: multiplication in insects. Science 182:1251–1253

    PubMed  CAS  Google Scholar 

  • White DT, Blackall LL, Scott PT, Walsh KB (1998) Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. Int J Syst Bacteriol 48:941–951

    PubMed  CAS  Google Scholar 

  • Win NKK, Lee S-Y, Bertaccini A, Namba S, Jung H-Y (2013) ‘Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. Int J Syst Evol Microbiol 63:636–640

    PubMed  CAS  Google Scholar 

  • Wu Y, Hao X, Li Z, Gu P, An F, Xiang J, Wang H, Luo Z, Liu J, Xiang Y (2010) Identification of the phytoplasma associated with wheat blue dwarf disease in China. Plant Dis 94:977–985

    CAS  Google Scholar 

  • Wu W, Cai H, Wei W, Davis RE, Lee I-M, Chen H, Zhao Y (2012) Identification of two new phylogenetically distant phytoplasmas from Senna surattensis plants exhibiting stem fasciation and shoot proliferation symptoms. Annals of Applied Biology 160:25–34

    Google Scholar 

  • Yang Y, Zhao W, Li Z, Zhu S (2011) Molecular identification of a ‘Candidatus Phytoplasma ziziphi’-related strain infecting amaranth (Amaranthus retroflexus L.) in China. J Phytopathol 159:635–637

    Google Scholar 

  • Yi C-K, La Y-J (1973) Mycoplasma-like bodies found in the phloem elements of jujube infected with witches’ broom disease. J Korean For Soc 20:111–114

    Google Scholar 

  • Yu Z-C, Cao Y, Zhang Q, Deng D-F, Liu Z-Y (2012) ‘Candidatus Phytoplasma ziziphi’ associated with Sophora japonica witches’-broom disease in China. J Gen Plant Pathol 78:298–300

    Google Scholar 

  • Zhang L, Li Z, Du C, Fu Z, Wu Y (2012) Detection and identification of group 16SrVI phytoplasma in willows in China. J Phytopathol 160:755–757

    CAS  Google Scholar 

  • Zhao Y, Sun Q, Davis RE, Lee IM (2007) First report of witches’-broom disease in a Cannabis spp. in China and its association with a phytoplasma of elm yellows group (16SrV). Plant Dis 91:227

    Google Scholar 

  • Zhao Y, Sun Q, Wei W, Davis RE, Wu W, Liu Q (2009a) ‘Candidatus Phytoplasma tamaricis’, a novel taxon discovered in witches’-broom-diseased salt cedar (Tamarix chinensis Lour.). Int J Syst Evol Microbiol 59:2496–2504

    PubMed  CAS  Google Scholar 

  • Zhao Y, Wei W, Lee I-M, Shao J, Suo X, Davis RE (2009b) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582–2593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu SF, Hadidi A, Gundersen DE, Lee I-M, Zhang CL (1997) Characterization of the phytoplasmas associated with cherry lethal yellows and jujube witches’-broom diseases in China. Acta Hortic 472:701–714

    Google Scholar 

  • Zreik L, Carle P, Bove JM, Garnier M (1995) Characterization of the mycoplasmalike organism associated with witches’-broom disease of lime and proposition of a Candidatus taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. Int J Syst Bacteriol 45:449–453

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Martini, M., Marcone, C., Lee, IM., Firrao, G. (2014). The Family Acholeplasmataceae (Including Phytoplasmas). In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_387

Download citation

Publish with us

Policies and ethics