Skip to main content

The Family Heliobacteriaceae

  • Reference work entry
  • First Online:
Book cover The Prokaryotes

Abstract

Heliobacteria are anoxygenic phototrophic bacteria of the phylum Firmicutes and are distinct from all other anoxygenic phototrophs in many ways. These include their phylogeny, synthesis of the unique photopigment bacteriochlorophyll ., production of heat-resistant endospores, and their primarily soil habitat. Five genera of heliobacteria have been described, including a total of 11 species. Heliobacteria are obligate anaerobes, and most species are capable of both phototrophic and chemotrophic growth. Two distinct phylogenetic clades of heliobacteria exist, including a group that inhabits neutral pH soils and a group that inhabits alkaline soils and soda lake ecosystems. As a group, heliobacteria are distant relatives of endospore-forming bacteria of the Bacillaceae and Clostridiaceae. The genome of the thermophile Heliobacterium modesticaldum lacks genes for autotrophy but contains genes encoding key endospore-specific proteins and nitrogenase; the heliobacterial photosynthesis gene cluster encodes the most streamlined photosystem of any known anoxygenic phototroph. Heliobacteria are widespread in paddy soils where their strong nitrogen-fixing capacities may benefit rice plants. The photoheterotrophic lifestyle of the heliobacteria may also benefit from such associations by receiving organic carbon from plant exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asao M, Madigan MT (2009) Family IV Heliobacteriaceae Madigan 2001, 625. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, (the Firmicutes), 2nd edn, vol 3. Springer, New York, pp 923–931

    Google Scholar 

  • Asao M, Madigan MT (2010) Taxonomy, phylogeny, and ecology of the heliobacteria. Photosynth Res 104:103–111

    Article  PubMed  CAS  Google Scholar 

  • Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natrun, Egypt. Extremophiles 10:403–410

    Article  PubMed  CAS  Google Scholar 

  • Asao M, Takaichi S, Madigan MT (2012) Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and “Candidatus Heliomonas lunata”. Extremophiles 16:585–595

    Article  PubMed  CAS  Google Scholar 

  • Beer-Romero P (1986) Comparative studies on Heliobacterium chlorum, Heliospirillum gestii and Heliobacillus mobilis. MA Thesis, Department of Biology, Indiana University, Bloomington

    Google Scholar 

  • Beer-Romero P, Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll .. FEMS Microbiol Lett 41:109–114

    Article  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL, Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49:451–454

    Article  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford, UK

    Book  Google Scholar 

  • Brockmann H, Lipinski A (1983) Bacteriochlorophyll .. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19

    Article  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT (1999) Heliorestis daurensis gen. nov. sp. nov., an alkaliphilic rod to coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 172:167–174

    Article  PubMed  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000a) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174:283–291

    Article  PubMed  CAS  Google Scholar 

  • Bryantseva IA, Gorlenko VM, Tourova TP, Kuznetsov BB, Lysenko AM, Bykova SA, Gal’chenko VF, Mityushina LL, Osipov GA (2000b) Heliobacterium sulfidophilum sp. nov. and Heliobacterium undosum sp. nov.: sulfide-oxidizing heliobacteria from thermal sulfidic springs. Microbiology (En transl from Mikrobiologiya) 69:325–334

    CAS  Google Scholar 

  • Buresh RJ, Casselman ME, Patrick WH Jr (1980) Nitrogen fixation in flooded soil systems, a review. Adv Agron 33:149–192

    Article  CAS  Google Scholar 

  • Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41:17–21

    Article  PubMed  CAS  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Gest H, Favinger JL, Madigan MT (1985) Exploitation of N2 fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies. FEMS Microbiol Ecol 31:317–322

    Article  CAS  Google Scholar 

  • Habte M, Alexander M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl Environ Microbiol 39:342–347

    PubMed  CAS  PubMed Central  Google Scholar 

  • Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53

    Article  PubMed  CAS  Google Scholar 

  • Kimble LK, Madigan MT (1992a) Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161

    Article  CAS  Google Scholar 

  • Kimble LK, Madigan MT (1992b) Evidence for an alternative nitrogenase system in Heliobacterium gestii. FEMS Microbiol Lett 100:255–260

    Article  CAS  Google Scholar 

  • Kimble LK, Stevenson AK, Madigan MT (1994) Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–55

    Article  PubMed  CAS  Google Scholar 

  • Kimble LK, Mandelco L, Woese CR, Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267

    Article  CAS  Google Scholar 

  • Kimble-Long LK, Madigan MT (2001) Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 199:191–195

    Article  PubMed  CAS  Google Scholar 

  • Kimble-Long LK, Madigan MT (2002) Irradiance effects on growth and bacteriochlorophyll content of phototrophic heliobacteria, purple and green photosynthetic bacteria. Photosynthetica 40:629–632

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991) Enrichment of bacteriochlorophyll .′ in membranes of Heliobacterium chlorum by ether extraction: unequivocal evidence for its existence in vivo. FEBS Lett 284:129–131

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AZB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111

    Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 1981–1992

    Google Scholar 

  • Madigan MT (2006). The family Heliobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, vol 4. Springer, New York, pp 951–964

    Chapter  Google Scholar 

  • Madigan MT, Ormerod JG (1995) Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 17–30

    Google Scholar 

  • Madigan MT, Euzéby JP, Asao M (2010) Proposal of Heliobacteriaceae fam. nov. Int J Syst Evol Microbiol 60:1709–1710

    Article  PubMed  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin .: properties and some speculations on a possible primary role for bacteriochlorophylls . and . in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84:2570–2574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miller KR, Jacob JS, Smith U, Kolaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114

    Article  PubMed  CAS  Google Scholar 

  • Oh-Oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    Article  PubMed  CAS  Google Scholar 

  • Oh-Oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome . to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ormerod JG, Kimble LK, Nesbakken T, Torgersen YA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endopore-forming heliobacteria from rice field soils. Arch Microbiol 165:226–234

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1989) Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, New York, pp 97–116

    Google Scholar 

  • Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41:75–88

    Article  PubMed  CAS  Google Scholar 

  • Sarrou I, Khan Z, Cowgill J, Lin S, Brune D, Romberger S, Golbeck JH, Redding KE (2012) Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. Photosynth Res 111:291–302

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122

    Article  PubMed  CAS  Google Scholar 

  • Sattley WM, Swingley WD (2013) Properties and evolutionary implications of the heliobacterial genome. In: Beatty JT (ed) Genome evolution of photosynthetic bacteria, vol 66, Advances in botanical research. Academic Press, Elsevier, San Diego, pp 67–97

    Chapter  Google Scholar 

  • Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM, Conrad AL, Dejesa LC, Honchak BM, Jung DO, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Page LE, Taylor HL, Wang ZT, Raymond J, Chen M, Blankenship RE, Touchman JW (2008) The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 190:4687–4696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sirevåg R, Ormerod JG (1970) Carbon dioxide—fixation in photosynthetic green sulfur bacteria. Science 169:186–188

    Article  PubMed  Google Scholar 

  • Stevenson AK (1993) Isolation and characterization of heliobacteria from soil habitats worldwide. MA Thesis, Department of Microbiology, Southern Illinois University, Carbondale

    Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53:1–12

    Article  CAS  Google Scholar 

  • Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-Oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281

    Article  PubMed  CAS  Google Scholar 

  • Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100

    PubMed  CAS  Google Scholar 

  • Tang KH, Yue H, Blankenship RE (2010) Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 10:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Trost JT, Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis. Biochemistry 28:9898–9904

    Article  PubMed  CAS  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J, Watanabe T (1991) Identification of 81-hydroxychlorophyll . as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058:356–362

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was supported in part by grant EF0950550 from the US National Science Foundation to MTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Matthew Sattley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sattley, W.M., Madigan, M.T. (2014). The Family Heliobacteriaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_362

Download citation

Publish with us

Policies and ethics