Skip to main content

The Families Erysipelotrichaceae emend., Coprobacillaceae fam. nov., and Turicibacteraceae fam. nov.

  • Reference work entry
  • First Online:

Abstract

The family Erysipelotrichaceae, comprising 10 genera and 12 validly named species, is a family of the order Erysipelotrichales, class Erysipelotrichia within the phylum Firmicutes, remotely related by 16S rRNA gene sequence analysis with some members of Tenericutes (Mollicutes). The phenotype encompasses microaerophilic and anaerobic, spore- and nonsporing organisms, embracing rod-shaped cells to helical and curled rods, appearing singly, in short chains or V-forms. In addition to authentic members of the family, several (misclassified) members of the genera Streptococcus, Eubacterium, and Clostridium are affiliated to the family. Based upon full genome analyses and 16S rRNA gene sequence analyses, the family is polyphyletic and two new families are described on the basis of the 16S rRNA gene tree topology. All members are associated to one or several different hosts, often mammals, but also birds, fish, and marine invertebrates. Besides the obligate pathogen Erysipelothrix rhusiopathiae, causing erysipeloid in humans and erysipelas in swine, most of the other members are found as opportunistic pathogens affecting various parts of the body. Cultivation-based and cultivation-independent studies have revealed their presence in diverse environmental samples but rarely in significant numbers.

This contribution contains some paragraphs on taxonomic aspects taken from the 3rd edition of The Prokaryotes (Stackebrandt et al. 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abt B, Han C, Scheuner C, Lu M, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng J-F, Tapia R, Goodwin L, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla E-M, Rohde M, Spring S, Gronow S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P, Detter JC (2012) Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. Stand Genomic Sci 6:194–209

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahrne S, Stenstrom IM, Jensen NE, Pettersson B, Uhlen M, Molin G (1995) Classification of Erysipelothrix strains on the basis of restriction fragment length polymorphisms. Int J Syst Bacteriol 45:382–385

    PubMed  CAS  Google Scholar 

  • Anderson IJ, Scheuner C, Göker M, Mavromatis K, Hooper SD, Porat I, Klenk H-P, Ivanova N, Kyrpides NC (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS One 6:e20237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bairey MH, Vogel JH (1973) Erysipelas immunizing product review. Proc Annu Meet U S Anim Health Assoc 77:340–344

    PubMed  Google Scholar 

  • Barber M (1939) A comparative study of Listeria and Erysipelothrix. J Pathol Bacteriol 48:11–23

    Google Scholar 

  • Barnes EM, Impey CS, Stevens BJ, Peel JL (1977) Streptococcus pleomorphus sp.nov.: an anaerobic streptococcus isolated mainly from the caeca of birds. J Gen Microbiol 102:45–53

    PubMed  CAS  Google Scholar 

  • Basu R, Tewari P (2013) Mitral regurgitation jet around neoannulus: mitral valve replacement in Erysipelothrix rhusiopathiae endocarditis. Ann Card Anaesth 16:129–132

    PubMed  Google Scholar 

  • Bearson SM, Allen HK, Bearson BL, Looft T, Brunelle BW, Kich JD, Tuggle CK, Bayles DO, Alt D, Levine UY, Stanton TB (2013) Profiling the gastrointestinal microbiota in response to Salmonella: low versus high Salmonella shedding in the natural porcine host. Infect Genet Evol 16C:330–340

    Google Scholar 

  • Bender JS, Shen HG, Irwin CK, Schwartz KJ, Opriessnig T (2010) Characterization of Erysipelothrix species isolates from clinically affected pigs. Clin Vaccine Immunol 17:1605–1611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Benno Y, Suzuki K, Suzuki K, Narisawa K, Bruce WR, Mitsuoka T (1986) Comparison of the fecal microflora in rural Japanese and urban Canadians. Microbiol Immunol 30:521–532

    PubMed  CAS  Google Scholar 

  • Bernath S, Kucsera G, Kadar I, Horvath G, Morovjan G (1997) Comparison of the protein patterns of Erysipelothrix rhusiopathiae strains by SDS-PAGE and autoradiography. Acta Vet Hung 45:417–425

    PubMed  CAS  Google Scholar 

  • Bernath S, Nemet L, Toth K, Morovjan G (2001) Computerized comparison of the protein compositions of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum strains. J Vet Med B Infect Dis Vet Public Health 48:73–79

    PubMed  CAS  Google Scholar 

  • Bibiloni R, Simon MA, Albright C, Sartor B, Tannock GW (2005) Analysis of the large bowel microbiota of colitic mice using PCR/DGGE. Lett Appl Microbiol 41:45–51

    PubMed  CAS  Google Scholar 

  • Boerner L, Nevis KR, Hinckley LS, Weber ES, Frasca S Jr (2004) Erysipelothrix septicemia in a little blue penguin (Eudyptula minor). J Vet Diagn Invest 16:145–149

    Google Scholar 

  • Bolivar I, Whiteson K, Stadelmann B, Baratti-Mayer D, Gizard Y, Mombelli A, Pittet D, Schrenzel J, Consortium: The Geneva Study Group on Noma (GESNOMA) (2012) Bacterial diversity in oral samples of children in Niger with acute Noma, acute necrotizing gingivitis, and healthy controls. PLoS Negl Trop Dis 6:E1556

    PubMed  CAS  PubMed Central  Google Scholar 

  • Booth V, Downes J, Van den Berg J, Wade WG (2004) Gram-positive anaerobic bacilli in human periodontal disease. J Periodontal Res 39:213–220

    PubMed  CAS  Google Scholar 

  • Borriello SP (1995) Clostridial disease of the gut. Clin Infect Dis 20(Suppl 2):S242–S250

    PubMed  Google Scholar 

  • Bosshard PP, Zbinden R, Altwegg M (2002) Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. Int J Syst Evol Microbiol 52:1263–1266

    PubMed  CAS  Google Scholar 

  • Boureau H, Decré D, Carlier JP, Guichet C, Bourlioux P (1993) Identification of a Clostridium cocleatum strain involved in an anti-Clostridium difficile barrier effect and determination of its mucin-degrading enzymes. Res Microbiol 144:405–410

    PubMed  CAS  Google Scholar 

  • Brazelton WJ, Morrill PL, Szponar N, Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria. V. Subgroups and genera of the Bacteriaceae. J Bacteriol 3:27–61

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buzoianu SG, Walsh MC, Rea MC, O’Sullivan O, Crispie F, Cotter PD, Ross RP, Gardiner GE, Lawlor PG (2012) The effect of feeding Bt MON810 maize to pigs for 110 days on intestinal microbiota. PLoS One 7:e33668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cato EP, Salmon CNW, Holdeman LV (1974) Eubacterium cylindroides (Rocchi) Holdeman and Moore: emended description and designation of neotype strain. Int J Syst Bacteriol 24:256–259

    Google Scholar 

  • Child MW, Kennedy A, Walker AW, Bahrami B, Macfarlane S, Macfarlane GT (2006) Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS Microbiol Ecol 55:299–310

    PubMed  CAS  Google Scholar 

  • Chooromoney KN, Hampson DJ, Eamens GJ, Turner MJ (1994) Analysis of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum by multilocus enzyme electrophoresi.. J Clin Microbiol 32:371–376

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clavel T, Lippman R, Gavini F, Doré J, Blaut M (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26

    PubMed  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    PubMed  CAS  Google Scholar 

  • Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 80:1421–1432

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cordero A, García M, Herradora M, Ramírez G, Martínez R (2010) Bacteriological characterization of wastewater samples obtained from a primary treatment system on a small scale swine farm. Bioresour Technol 101:2938–2944

    PubMed  CAS  Google Scholar 

  • Cormican MG, Jones RN (1995) Antimicrobial activity of cefotaxime tested against infrequently isolated pathogenic species (unusual pathogens). Diagn Microbiol Infect Dis 22:43–48

    PubMed  CAS  Google Scholar 

  • Cousquer G (2005) Erysipelas outbreak in racing pigeons following ingestion of compost. Vet Rec 156:656

    PubMed  Google Scholar 

  • Coutinho TA, Imada Y, de Barcellos DE, de Oliveira SJ, Moreno AM (2011) Genotyping of Brazilian Erysipelothrix spp. strains by amplified fragment length polymorphism. J Microbiol Methods 84:27–32

    PubMed  CAS  Google Scholar 

  • Dacres WG, Groth AH Jr (1959) Identification of Erysipelothrix insidiosa with fluorescent antibody. J Bacteriol 78:298–299

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davis GHG, Newton KG (1969) Numerical taxonomy of some named coryneform bacteria. J Gen Microbiol 56:195–214

    PubMed  CAS  Google Scholar 

  • Davis JJ, Xia F, Overbeek RA, Olsen GJ (2013) The genomes of the Erysipelotrichia clarify the firmicute origin of the Mollicutes. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.048983-0

    PubMed Central  Google Scholar 

  • Debono M (1912) On some anaerobical bacteria of the normal human intestine. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I 62:229–234

    Google Scholar 

  • Detry G, Pierard D, Vandoorslaer K, Wauters G, Avesani V, Glupczynski Y (2006) Septicemia due to Solobacterium moorei in a patient with multiple myeloma. Anaerobe 123:160–162

    Google Scholar 

  • DiGiulio DB, Romero R, Kusanovic JP, Gómez R, Kim CJ, Seok KS, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Sanders K, Bik EM, Chaiworapongsa T, Oyarzún E, Relman DA (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol 641:38–57

    Google Scholar 

  • Downes J, Olsvik B, Hiom SJ, Spratt DA, Cheeseman SL, Olsen I, Weightman AJ, Wade WG (2000) Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. Int J Syst Bacteriol 50:979–983

    CAS  Google Scholar 

  • Downes J, Munson MA, Spratt DA, Kononen E, Tarkka E, Jousimies-Somer H, Wade WG (2001) Characterisation of Eubacterium-like strains isolated from oral infections. J Med Microbiol 50:947–951

    PubMed  CAS  Google Scholar 

  • Duncan SH, Scott KP, Ramsay AG, Harmsen HJ, Welling GW, Stewart CS, Flint HJ (2003) Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol 69:1136–1142

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eriksson H, Jansson DS, Johansson KE, Baverud V, Chirico J, Aspan A (2009) Characterization of Erysipelothrix rhusiopathiae isolates from poultry, pigs, emus, the poultry red mite and other animals. Vet Microbiol 137:98–104

    PubMed  CAS  Google Scholar 

  • Eriksson H, Nyman AK, Fellström C, Wallgren P (2013) Erysipelas in laying hens is associated with housing system. Vet Rec 173:18

    PubMed  CAS  Google Scholar 

  • Erler W (1972) Serologisch, chemische und immunochemische Untersuchungen an Rotlaufbakterien. X. Die Differenzierung der Rotlaufbakterien nach chemischen Merkmalen. Arch Exp Veterinarmed 26:809–816

    PubMed  CAS  Google Scholar 

  • Ewald FW (1957) Das Hyaluronidase-Bildungsvermögen von Rotlaufbakterien. Monatsh Tierheilk 9:333–341

    CAS  Google Scholar 

  • Ewald FW (1981) The genus Erysipelothrix. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, New York, pp 1688–1700

    Google Scholar 

  • Farfour E, Leto J, Barritault M, Barberis C, Meyer J, Dauphin B et al (2012) Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J Clin Microbiol 50:2702–2707

    PubMed  CAS  PubMed Central  Google Scholar 

  • Feist H (1972) Serologische, chemische und immunchemische Untersuchungen an Rotlaufbakterien. XII. Das Murein der Rotlaufbakterien. Arch Exp Veterinarmed 26:825–834

    PubMed  CAS  Google Scholar 

  • Feltham RKA, Power AK, Pell PA, Sneath PHA (1978) A simple method for storage of bacteria at −76°C. J Appl Bacteriol 44:313–316

    PubMed  CAS  Google Scholar 

  • Feresu SB, Jones D (1988) Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli. J Gen Microbiol 134:1165–1183

    PubMed  CAS  Google Scholar 

  • Ferreira CE, Nakano V, Avila-Campos MJ (2004) Cytotoxicity and antimicrobial susceptibility of Clostridium difficile isolated from hospitalized children with acute diarrhea. Anaerobe 10:171–177

    PubMed  Google Scholar 

  • Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A et al (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226

    PubMed  CAS  Google Scholar 

  • Fidalgo SG, Riley TV (2004) Detection of Erysipelothrix rhusiopathiae in clinical and environmental samples. Methods Mol Biol 268:199–205

    PubMed  Google Scholar 

  • Fidalgo SG, Wang Q, Riley TV (2000) Comparison of methods for detection of Erysipelothrix spp. and their distribution in some Australasian seafoods. Appl Environ Microbiol 66:2066–2070

    PubMed  CAS  PubMed Central  Google Scholar 

  • Finkelstein R, Oren I (2011) Soft tissue infections caused by marine bacterial pathogens: epidemiology, diagnosis, and management. Curr Infect Dis Rep 13:470–477

    PubMed  Google Scholar 

  • Flanagan JL, Brodie EL, Weng L, Lynch SV, Garcia O et al (2007) Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol 45:1954–1962

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flossmann KD, Erler W (1972) Serologische, chemische und immunchemische Untersuchungen an Rothufbakterien. XI. Isolierung und Charakterisierung von Desoxyribonukleinsäuren aus Rotlaufbakterien. Arch Exp Veterinarmed 26:817–824

    CAS  Google Scholar 

  • Foster JD, Hartmann FA, Moriello KA (2012) A case of apparent canine erysipeloid associated with Erysipelothrix rhusiopathiae bacteraemia. Vet Dermatol 23:528-e108

    PubMed  Google Scholar 

  • Füzi M (1963) A neomycin sensitivity test for the rapid differentiation of Listeria monocytogenes and Erysipelothrix rhusiopathiae. J Pathol Bacteriol 85:524–525

    PubMed  Google Scholar 

  • Giménez-Lirola LG, Xiao CT, Halbur PG, Opriessnig T (2012) Development and evaluation of an enzyme-linked immunosorbent assay based on a recombinant SpaA protein (rSpaA415) for detection of anti- Erysipelothrix spp. IgG antibodies in pigs. J Microbiol Methods 91:191–197

    PubMed  Google Scholar 

  • Goh SH, Mabbett AN, Welch JP, Hall SJ, McEwan AG (2009) Molecular ecology of a facultative swine waste lagoon. Lett Appl Microbiol 48:486–492

    PubMed  CAS  Google Scholar 

  • Göker M, Scheuner C, Klenk H-P, Stielow JB, Menzel W (2011) Codivergence of mycoviruses with their hosts. PLoS One 6:e22252

    PubMed  PubMed Central  Google Scholar 

  • Goldstein EJ, Citron DM, Merriam CV, Abramson MA (2009) Infection after elective colorectal surgery: bacteriological analysis of failures in a randomized trial of cefotetan vs. ertapenem prophylaxis. Surg Infect (Larchmt) 10:111–118

    Google Scholar 

  • Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B, Steiner U, Falsen E, Collins MD (2004) Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 10:301–307

    PubMed  CAS  Google Scholar 

  • Grieco MH, Sheldon C (1970) Erysipelothrix rhusiopathiae. Ann N Y Acad Sci 174:523–532

    PubMed  CAS  Google Scholar 

  • Hafner S, Harmon BG, Thayer SG, Hall SM (1994) Splenic granulomas in broiler chickens produced experimentally by inoculation with Eubacterium tortuosum. Avian Dis 38:605–609

    PubMed  CAS  Google Scholar 

  • Hammann R, Werner H (1981) Presence of diaminopimelic acid in propionate-negative Bacteroides species and in some butyric acid-producing strains. J Med Microbiol 14:205–212

    PubMed  CAS  Google Scholar 

  • Haraszthy VI, Gerber D, Clark B, Moses P, Parker C, Sreenivasan PK, Zambon JJ (2008) Characterization and prevalence of Solobacterium moorei associated with oral halitosis. J Breath Res 21:017002

    Google Scholar 

  • Harrington R Jr, Hulse DC (1971) Comparison of two plating media for the isolation of Erysipelothrix rhusiopathiae from enrichment broth culture. Appl Microbiol 22:141–142

    Google Scholar 

  • Harrington R Jr, Wood RL, Hulse DC (1974) Comparison of a fluorescent antibody technique and cultural method for the detection of Erysipelothrix rhusiopathiae in primary broth cultures. Am J Vet Res 35:461–462

    Google Scholar 

  • Hassanein R, Sawada T, Kataoka Y, Itoh K, Suzuki Y (2001) Serovars of Erysipelothrix species isolated from the tonsils of healthy cattle in Japan. Vet Microbiol 82:97–100

    PubMed  CAS  Google Scholar 

  • Hassanein R, Sawada T, Kataoka Y, Gadallah A, Suzuki Y (2003) Molecular identification of Erysipelothrix isolates from the tonsils of healthy cattle by PCR. Vet Microbiol 95:239–245

    PubMed  CAS  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1971) Clostridium ramosum (Vuillemin) comb. nov.: emended description and proposed neotype strain. Int J Syst Bacteriol 21:35–39

    Google Scholar 

  • Hong PY, Yannarell AC, Dai Q, Ekizoglu M, Mackie RI (2013) Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol 79:2620–2629

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imada Y, Takase A, Kikuma R, Iwamaru Y, Akachi S, Hayakawa Y (2004) Serotyping of 800 strains of Erysipelothrix isolated from pigs affected with erysipelas and discrimination of attenuated live vaccine strain by genotyping. J Clin Microbiol 42:2121–2126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ingebritson AL, Roth JA, Hauer PJ (2010) Erysipelothrix rhusiopathiae: association of Spa-type with serotype and role in protective immunity. Vaccine 28:2490–2496

    PubMed  CAS  Google Scholar 

  • Jensen HE, Gyllensten J, Hofman C, Leifsson PS, Agerholm JS, Boye M, Aalbæk B (2010) Histologic and bacteriologic findings in valvular endocarditis of slaughter-age pigs. J Vet Diagn Invest 22:921–927

    PubMed  Google Scholar 

  • Ji X, Pushalkar S, Li Y, Glickman R, Fleisher K, Saxena D (2012) Antibiotic effects on bacterial profile in osteonecrosis of the jaw. Oral Dis 18:85–95

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J Gen Microbiol 87:52–96

    PubMed  CAS  Google Scholar 

  • Jones D (1986) Genus Erysipelothrix Rosenbach 367al. In: Sneath PH, Mair NS, Sharpe ME (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1245–1249

    Google Scholar 

  • Julak J, Ryska M, Koruna I, Mencikova E (1989) Cellular fatty acids and fatty aldehydes of Listeria and Erysipelothrix. Zentralbl Bakteriol 272:171–180

    PubMed  CAS  Google Scholar 

  • Kageyama A, Benno Y (2000a) Coprobacillus catenaformis gen. nov., sp. nov., a new genus and species isolated from human feces. Microbiol Immunol 44:23–28

    PubMed  CAS  Google Scholar 

  • Kageyama A, Benno Y (2000b) Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces. Int J Syst Evol Microbiol 50:1595–1599

    PubMed  Google Scholar 

  • Kageyama A, Benno Y (2000c) Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei gen. nov., sp. nov. Microbiol Immunol 44:223–227

    PubMed  CAS  Google Scholar 

  • Kalmokoff M, Waddington LM, Thomas M, Liang KL, Ma C, Topp E, Dandurand UD, Letellier A, Matias F, Brooks SP (2011) Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J Appl Microbiol 110:1414–1425

    PubMed  CAS  Google Scholar 

  • Kaneuchi C, Mizayato T, Shinjo T, Mitsuoka T (1979) Taxonomic study of helically coiled, sporeforming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov. Int J Syst Bacteriol 29:1–12

    Google Scholar 

  • Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33

    PubMed  CAS  Google Scholar 

  • Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41:558–563

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khan AA, Nawaz MS, Robertson L, Khan SA, Cerniglia CE (2001) Identification of predominant human and animal anaerobic intestinal bacterial species by terminal restriction fragment patterns (TRFPs): a rapid, PCR-based method. Mol Cell Probes 15:349–355

    PubMed  CAS  Google Scholar 

  • Kisidayová S, Váradyová Z, Pristas P, Piknová M, Nigutová K, Petrzelková KJ, Profousová I, Schovancová K, Kamler J, Modrý D (2009) Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. Am J Primatol 71:548–557

    PubMed  Google Scholar 

  • Kiuchi A, Hara M, Pham HS, Takikawa K, Tabuchi K (2000) Phylogenetic analysis of the Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum based upon 16S rRNA. DNA Seq 11:257–260

    PubMed  CAS  Google Scholar 

  • Koch R (1878) Untersuchungen über die Atiologie der Wundinfektionskrankheiten. Vogel, Leipzig

    Google Scholar 

  • Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (2012) Consortium: comparative sequence program. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859

    PubMed  CAS  PubMed Central  Google Scholar 

  • Koyanagi T, Sakamoto M, Takeuchi Y, Ohkuma M, Izumi Y (2010) Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J Oral Microbiol 24:2

    Google Scholar 

  • Krasemann C, Müller HE (1975) Die Virulenz von Erysipelothrix-rhusiopathiae-Stämmen und Neuraminidase-Produktion. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 23:1206–1213

    Google Scholar 

  • Langford GC, Hansen PA (1953) Erysipelothrix insidiosa. Riass Commun VI Congr Int Microbiol Roma 1:18

    Google Scholar 

  • Langford GC, Hansen PA (1954) The species of Erysipelothrix. Antonie Van Leeuwenhoek J Microbiol Serol 20:87–92

    Google Scholar 

  • Lau SK, Teng JL, Leung KW, Li NK, Ng KH, Chau KY, Que TL, Woo PC, Yuen KY (2006) Bacteremia caused by Solobacterium moorei in a patient with acute proctitis and carcinoma of the cervix. J Clin Microbiol 44:3031–3034

    PubMed  PubMed Central  Google Scholar 

  • Lavigne JP, Bouziges N, Sotto A, Leroux JL, Michaux-Charachon S (2003) Spondylodiscitis due to Clostridium ramosum infection in an immunocompetent elderly patient. J Clin Microbiol 41:2223–2226

    PubMed  PubMed Central  Google Scholar 

  • Lee WK, Fujisawa T, Kawamura S, Itoh K, Mitsuoka T (1991) Isolation and identification of clostridia from the intestine of laboratory animals. Lab Anim 25:9–15

    PubMed  CAS  Google Scholar 

  • Li M, Wang B, Zhang M, Rantalainen M, Wang S et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105:2117–2122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li E, Hamm CM, Gulati AS, Sartor RB, Chen H et al (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2. Genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7(6), E26284

    PubMed  CAS  PubMed Central  Google Scholar 

  • Loeffler FA (1886) Experimentelle Untersuchungen über Schweinerotlauf. Arb Kais Gesundheitsamt 1:46–55

    Google Scholar 

  • Ludwig W, Schleifer KH, Whitman WB (2009a) Order I. Erysipelothrichales. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1298

    Google Scholar 

  • Ludwig W, Schleifer KH, Whitman WB (2009b) Class III. Erysipelotrichia. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1298

    Google Scholar 

  • Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Garrity G, Ludwig W, Suzuki K (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New York, pp 1–28

    Google Scholar 

  • Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, Mättö J, Mäkelä L, Palva A (2009) Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol 15:5936–5945

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makino S-I, Okada Y, Maruyama T, Ishikawa K, Takahashi T, Nakamura M, Ezaki T, Morita H (1994) Direct and rapid detection of Erysipelothrix rhusiopathiae DNA in animals by PCR. J Clin Microbiol 32:1526–1531

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mann S (1969) Über die Zellwandbausteine von Listeria monocytogenes und Erysipelothrix rhusiopathiae. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 209:510–518

    CAS  Google Scholar 

  • Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237

    PubMed  PubMed Central  Google Scholar 

  • Martin CA, Wijesurendra RS, Borland CD, Karas JA (2007) Femoral vein thrombophlebitis and septic pulmonary embolism due to a mixed anaerobic infection including Solobacterium moorei: a case report. J Med Case Rep 1:40

    PubMed  PubMed Central  Google Scholar 

  • Migula W (1900) System der Bakterien. Handbuch der Morphologie, Entwicklungsgeschichte und Systematik der Bacterien. G. Fischer Verlag, Jena

    Google Scholar 

  • Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521

    PubMed  CAS  Google Scholar 

  • Moore WEC, Johnson JL, Holdeman LV (1976) Emendation of Bacteriodaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 26:238–252

    Google Scholar 

  • Morita H, Shiratori C, Murakami M, Takami H, Toh H, Kato Y, Nakajima F, Takagi M, Akita H, Masaoka T, Hattori M (2008) Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. Int J Syst Evol Microbiol 58:2682–2686

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay C, Shah H, Vandana K, Munim F, Vijayan SA (2012) A child with Erysipelothrix arthritis-beware of the little known. Asian Pac J Trop Biomed 2:503–504

    PubMed  PubMed Central  Google Scholar 

  • Müller HE, Krasemann C (1976) Immunität gegen Erysipelothrix rhusiopathiae- Infektion durch aktive Immunizierung mit homologer Neuraminidase. Z Immunitätsforsch 151:237–241

    Google Scholar 

  • Müller HE, Seidler D (1975) Über das Vorkommen Neuraminidase-neutralizierender Antikörper bei chronisch rotlaufkranken Schweinen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe A 230:51–58

    Google Scholar 

  • Nakazawa H, Hayashidani H, Higashi J, Kaneko K, Takahashi T, Ogawa M (1998) Occurrence of Erysipelothrix spp. in broiler chickens at an abattoir. J Food Prot 61:907–909

    PubMed  CAS  Google Scholar 

  • Nanda N, Voskuhl GW (2006) Lung abscess caused by Clostridium ramosum. J Okla State Med Assoc 99:158–160

    PubMed  Google Scholar 

  • Neumann EJ, Grinberg A, Bonistalli KN, Mack HJ, Lehrbach PR, Gibson N (2009) Safety of a live attenuated Erysipelothrix rhusiopathiae vaccine for swine. Vet Microbiol 135:297–303

    PubMed  CAS  Google Scholar 

  • Nikolov P, Abrashev I (1976) Comparative studies of the neuraminidase activity of Erysipelothrix insidiosa. Activity of virulent strains and avirulent variants of Erysipelothrix insidiosa. Acta Microbiol Virol Immunol (Sofia) 3:28–31

    CAS  Google Scholar 

  • Noguchi N, Sasatsu M, Takahashi T, Ohmae K, Terakado N, Kono M (1993) Detection of plasmid DNA in Erysipelothrix rhusiopathiae isolated from pigs with chronic swine erysipelas. J Vet Med Sci 55:349–350

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Oishi E, Muneta Y, Sano A, Hikono H, Shibahara T, Yagi Y, Shimoji Y (2009) Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine 27:4543–4550

    PubMed  CAS  Google Scholar 

  • Okatani AT, Hayashidani TH, Takahashi T, Taniguchi T, Ogawa M, Kaneko K-I (2000) Randomly amplified polymorphic DNA analysis of Erysipelothrix spp. J Clin Microbiol 38:4332–4336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okatani AT, Uto T, Taniguchi T, Horisaka T, Horikita T, Kaneko K-I, Hayashidani H (2001) Pulsed-field gel electrophoresis in differentiation of Erysipelothrix species strains. J Clin Microbiol 39:4032–4036

    PubMed  CAS  PubMed Central  Google Scholar 

  • Okatani TA, Ishikawa M, Yoshida S, Sekiguchi M, Tanno K, Ogawa M, Horikita T, Horisaka T, Taniguchi T, Kato Y, Hayashidani H (2004) Automated ribotyping: a rapid typing method for analysis of Erysipelothrix spp. strains. J Vet Med Sci 66:729–733

    PubMed  CAS  Google Scholar 

  • Opriessnig T, Hoffmann LJ, Harris DL, Gaul SB, Halbur PG (2004) Erysipelothrix rhusiopathiae: genetic characterization of midwest US isolates and live commercial vaccines using pulsed-field gel electrophoresis. J Vet Diagn Invest 16:101–107

    PubMed  CAS  Google Scholar 

  • Opriessnig T, Shen HG, Bender JS, Boehm JR, Halbur PG (2013) Erysipelothrix rhusiopathiae isolates recovered from fish, a Harbour Seal (Phoca vitulina) and the marine environment are capable of inducing characteristic cutaneous lesions in pigs. J Comp Pathol 148:365–372

    PubMed  CAS  Google Scholar 

  • Osaki T, Matsuki T, Asahara T, Zaman C, Hanawa T, Yonezawa H, Kurata S, Woo TD, Nomoto K, Kamiya S (2012) Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog 53:12–18

    PubMed  Google Scholar 

  • Ozawa M, Yamamoto K, Kojima A, Takagi M, Takahashi T (2009) Etiological and biological characteristics of Erysipelothrix rhusiopathiae isolated between 1994 and 2001 from pigs with swine erysipelas in Japan. J Vet Med Sci 7:697–702

    Google Scholar 

  • Packer RA (1943) The use of sodium azide and crystal violet in a selective medium for Erysipelothrix rhusiopathiae and streptococci. J Bacteriol 46:343–349

    PubMed  CAS  PubMed Central  Google Scholar 

  • Park HY, Kim M, Han J (2011) Stereospecific microbial production of isoflavanones from isoflavones and isoflavone glucosides. Appl Microbiol Biotechnol 91:1173–1181

    PubMed  CAS  Google Scholar 

  • Paster BJ, Russell MK, Alpagot T, Lee AM, Boches SK, Galvin JL, Dewhirst FE (2002) Bacterial diversity in necrotizing ulcerative periodontitis in HIV-positive subjects. Ann Periodontol 71:8–16

    Google Scholar 

  • Pasteur L, Dumas M (1882) Sur le rouget, ou mal rouge des porcs. Extrait d’une Lettre. C R Hebd Seances Acad Sci Paris 95:1120–1121

    Google Scholar 

  • Pedersen RM, Holt HM, Justesen US (2011) Solobacterium moorei bacteremia: identification, antimicrobial susceptibility, and clinical characteristics. J Clin Microbiol 49:2766–2768

    PubMed  PubMed Central  Google Scholar 

  • Peltier J, Courtin P, El Meouche I, Lemée L, Chapot-Chartier MP, Pons JL (2011) Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol Chem 286:29053–29062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pleszczynska E (1972) Comparative studies on Listeria and Erysipelothrix. I. Analysis of whole antigens. II. Analysis of antigen fractions. Pol Arch Weter 15:463–471

    PubMed  CAS  Google Scholar 

  • Rainey FA, Hollen BJ, Small A (2009) Genus I. Clostridium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology. pp 738–828

    Google Scholar 

  • Reboli AC, Farrar WE (1989) Erysipelothrix rhusiopathiae: an occupational pathogen. Clin Microbiol Rev 2:354–359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reboli AC, Farrar WE (1991) The genus Erysipelothrix. In: Balows A, Trüper HG, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, New York, pp 1629–1642, 1992

    Google Scholar 

  • Rettedal E, Vilain S, Lindblom S, Lehnert K, Scofield C, George S, Clay S, Kaushik RS, Rosa AJ, Francis D, Brözel VS (2009) Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl Environ Microbiol 75:5489–5495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A (2008) Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol 8:56

    PubMed  PubMed Central  Google Scholar 

  • Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341

    PubMed  CAS  Google Scholar 

  • Rolph HJ, Lennon A, Riggio MP, Saunders WP, MacKenzie D, Coldero L, Bagg J (2001) Molecular identification of microorganisms from endodontic infections. J Clin Microbiol 39:3282–3289

    PubMed  CAS  PubMed Central  Google Scholar 

  • Romney M, Cheung S, Montessori V (2001) Erysipelothrix rhusiopathiae endocarditis and presumed osteomyelitis. Can J Infect Dis 12:254–256

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenbach FJ (1909) Experimentelle, morphologische und klinische Studien über krankheitserregende Mikroorganismen des Schweinerotlaufs, des Erysipeloids und der Mausesepticamie. Z Hyg Infekt 63:343–371

    Google Scholar 

  • Salvetti E, Felis GE, Dellaglio F, Castioni A, Torriai S, Lawson PA (2011) Reclassification of Lactobacillus catenaformis Eggerth 1935 Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 61:2520–2524

    PubMed  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6

    Google Scholar 

  • Schirrmeister JF, Liebenow AL, Pelz K, Wittmer A, Serr A, Hellwig E, Al-Ahmad A (2009) New bacterial compositions in root-filled teeth with periradicular lesions. J Endod 35:169–174

    PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schubert K, Fiedler F (2001) Structural investigations on the cell surface of Erysipelothrix rhusiopathiae. Syst Appl Microbiol 24:26–30

    PubMed  CAS  Google Scholar 

  • Schumann P (2011) Peptidoglycan structure. Methods Microbiol 38:101–129

    CAS  Google Scholar 

  • Seidler D, Trautwein G, Bohm KH (1971) Nachweis von Erysipelothrix insidiosa mit fluoreszierenden Antikörpern. Zentralbl Veterinarmed B 18:280–292

    PubMed  CAS  Google Scholar 

  • Shaddox LM, Huang H, Lin T, Hou W, Harrison PL, Aukhil I, Walker CB, Klepac-Ceraj V, Paster BJ (2012) Microbiological characterization in children with aggressive periodontitis. J Dent Res 91:927–933

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shen HG, Bender JS, Opriessnig T (2010) Identification of the surface protective antigen (spa) types in Erysipelothrix spp. reference strains and diagnostic samples by spa multiplex real-time and conventional PCR assays. J Appl Microbiol 109:1227–1233

    PubMed  CAS  Google Scholar 

  • Shimoji Y (2000) Pathogenicity of Erysipelothrix rhusiopathiae: virulence factors and protective immunity. Microbes Infect 2:965–972

    PubMed  CAS  Google Scholar 

  • Shimoji Y, Oishi E, Kitajima T, Muneta Y, Shimizu S, Mori Y (2002) Erysipelothrix rhusiopathiae YS-1 as a live vaccine vehicle for heterologous protein expression and intranasal immunization of pigs. Infect Immun 70:226–232

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinclair M, Hawkins A, Testro A (2013) Something fishy: an unusual Erysipelothrix rhusiopathiae infection in an immunocompromised individual. BMJ Case Rep. doi: 10.1136/bcr-2013-008873

    Google Scholar 

  • Smith LDS, King E (1962) Clostridium innocuum, sp. n., a spore-forming anaerobe isolated from human infections. J Bacteriol 83:938–939

    PubMed  CAS  PubMed Central  Google Scholar 

  • Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sneath PHA, Abbott JD, Cunliffe AC (1951) The bacteriology of erysipeloid. Br Med J 2:1063–1066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spring S, Scheuner C, Lapidus A, Lucas S, Del Rio TG, Tice H, Copeland A, Cheng J-F, Chen F, Nolan M, Saunders E, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Lykidis A, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang Y-J, Jeffries CD, Goodwin L, Detter JC, Brettin T, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P (2010) The genome sequence of Methanohalophilus mahii SLPT reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. Archaea 2010:690737

    PubMed  PubMed Central  Google Scholar 

  • Stackebrandt E (2009a) Genus I. Erysipelothrix. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 1299–1306

    Google Scholar 

  • Stackebrandt E (2009b) Family I. Erysipelothricaceae. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1299

    Google Scholar 

  • Stackebrandt E, Reboli AC, Farrar WE (2005) The Genus Erysipelothrix. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York (electronic, release 3.1)

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    PubMed  CAS  Google Scholar 

  • Stiverson J, Morrison M, Yu Z (2011) Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int J Microbiol 2011:750613

    PubMed  PubMed Central  Google Scholar 

  • Stuart MR, Pease PE (1972) A numerical study on the relationships of Listeria and Erysipelothrix. J Gen Microbiol 73:551–565

    PubMed  CAS  Google Scholar 

  • Stuart SE, Welshimer HJ (1974) Taxonomic re-examination of Listeria Pirie and transfer of Listeria grayi and Listeria murrayi to a new genus Murraya. Int J Syst Bacteriol 24:177–185

    Google Scholar 

  • Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, Kachroo P, Ivanov I, Minamoto Y, Dillman EM, Steiner JM, Cook AK, Toresson L (2012) The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7:e51907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tachon S, Zhou J, Keenan M, Martin R, Marco ML (2013) The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiol Ecol 83:299–309

    PubMed  CAS  Google Scholar 

  • Tadayon RA, Carroll KK (1971) Effect of growth conditions on the fatty acid composition of Listeria monocytogenes and comparison with the fatty acids of Erysipelothrix and Corynebacterium. Lipids 6:820–825

    PubMed  CAS  Google Scholar 

  • Tadayon RA, Cheema AH, Muhammed SI (1980) Microorganisms associated with abscesses of sheep and goats in the south of Iran. Am J Vet Res 41:798–802

    PubMed  CAS  Google Scholar 

  • Takahashi T, Fujisawa T, Benno Y, Tamura Y, Sawada T, Suzuki S, Muramatsu M, Mitsuoka T (1987) Erysipelothrix tonsillarum sp. nov., isolated from tonsils of apparently healthy pigs. Int J Syst Bacteriol 37:166–168

    Google Scholar 

  • Takahashi T, Tamura Y, Sawada T, Suzuki S, Muramatsu M, Fujisawa T, Benno Y, Mitsuoka T (1989) Enzymatic profiles of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillae. Res Vet Sci 47:275–276

    PubMed  CAS  Google Scholar 

  • Takahashi T, Fujisawa T, Tamura Y, Suzuki S, Muramatsu M, Sawada T, Benno Y, Mitsuoka T (1992) DNA relatedness among Erysipelothrix rhusiopathiae strains representing all twenty-three serovars and Erysipelothrix tonsillarum. Int J Syst Bacteriol 42:469–473

    PubMed  CAS  Google Scholar 

  • Takahashi T, Tamura Y, Endo YS, Hara N (1994) Cellular fatty acid composition of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum. J Vet Med Sci 56:385–387

    PubMed  CAS  Google Scholar 

  • Takahashi T, Fujisawa T, Yamamoto K, Kijima M, Takahashi T (2000) Taxonomic evidence that serovar 7 of Erysipelothrix strains isolated from dogs with endocarditis are Erysipelothrix tonsillarum. J Vet Med B Infect Dis Vet Public Health 47:311–313

    PubMed  Google Scholar 

  • Takahashi T, Fujisawa T, Umeno A, Kozasa T, Yamamoto K, Sawada T (2008) A taxonomic study on Erysipelothrix by DNA-DNA hybridization experiments with numerous strains isolated from extensive origins. Microbiol Immunol 52:469–478

    PubMed  CAS  Google Scholar 

  • Takeshi K, Makino S, Ikeda T, Takada N, Nakashiro A, Nakanishi K, Oguma K, Katoh Y, Sunagawa H, Ohyama T (1999) Direct and rapid detection by PCR of Erysipelothrix sp. DNAs prepared from bacterial strains and animal tissues. J Clin Microbiol 37:4093–4098

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura Y, Takahashi T, Zarkasie K, Nakamura M, Yoshimura H (1993) Differentiation of Erysipelothrix rhusiopathiae and Erysipelothrix tonsillarum by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cell proteins. Int J Syst Bacteriol 43:111–114

    PubMed  CAS  Google Scholar 

  • Tamura M, Tsushida T, Shinohara K (2007) Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe 13:32–35

    PubMed  CAS  Google Scholar 

  • Tanabe S, Grenier D (2012) Characterization of volatile sulfur compound production by Solobacterium moorei. Arch Oral Biol 57:1639–1643

    PubMed  CAS  Google Scholar 

  • Tlougan BE, Podjasek JO, Adams BB (2010) Aquatic sports dermatoses: part 3. On the water. Int J Dermatol 49:1111–1120

    PubMed  Google Scholar 

  • To H, Nagai S (2007) Genetic and antigenic diversity of the surface protective antigen proteins of Erysipelothrix rhusiopathiae. Clin Vaccine Immunol 14:813–820

    PubMed  CAS  PubMed Central  Google Scholar 

  • To H, Koyama T, Nagai S, Tuchiya K, Nunoya T (2009) Development of quantitative real-time polymerase chain reaction for detection of and discrimination between Erysipelothrix rhusiopathiae and other Erysipelothrix species. J Vet Diagn Invest 21:701–706

    PubMed  Google Scholar 

  • Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K (2008) Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–981

    PubMed  Google Scholar 

  • Traer EA, Williams MR, Keenan JN (2008) Erysipelothrix rhusiopathiae infection of a total knee arthroplasty an occupational hazard. J Arthroplasty 23:609–611

    PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    PubMed  CAS  PubMed Central  Google Scholar 

  • Validation List N 74 (2000) Int J Syst Evol Microbiol 50:949–950

    Google Scholar 

  • Validation List N 75 (2000) Int J Syst Evol Microbiol 50:1415–1417

    Google Scholar 

  • Validation List N 110 (2006) Int J Syst Evol Microbiol 56:1459–1460

    Google Scholar 

  • Validation List N 115 (2007) Int J Syst Evol Microbiol 57:893–897

    Google Scholar 

  • Valiente Moro C, Thioulouse J, Chauve C, Normand P, Zenner L (2009) Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res Microbiol 160:63–70

    PubMed  CAS  Google Scholar 

  • van der Vorm ER, von Rosenstiel IA, Spanjaard L, Dankert J (1999) Gas gangrene in an immunocompromised girl due to a Clostridium ramosum infection. Clin Infect Dis 28:923–924

    PubMed  Google Scholar 

  • Van Eldere J, Robben J, De Pauw G, Merckx R, Eyssen H (1988) Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans. Appl Environ Microbiol 54:2112–2117

    PubMed  PubMed Central  Google Scholar 

  • Vaughan-Higgins RJ, Bradfield K, Friend JA, Riley TV, Vitali SD (2013) Erysipelas in a numbat (Myrmecobius fasciatus). J Zoo Wildl Med 44:208–211

    PubMed  Google Scholar 

  • Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315

    PubMed  Google Scholar 

  • Venn-Watson S, Daniels R, Smith C (2012) Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis Aquat Organ 99:237–242

    PubMed  Google Scholar 

  • Veraldi S, Girgenti V, Dassoni F, Gianotti R (2009) Erysipeloid: a review. Clin Exp Dermatol 34:859–862

    PubMed  CAS  Google Scholar 

  • Verbarg S, Rheims H, Emus S, Frühling A, Kroppenstedt RM, Stackebrandt E, Schumann P (2004) Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. Int J Syst Evol Microbiol 54:221–225

    PubMed  CAS  Google Scholar 

  • Von Graevenitz A, Osterhout G, Dick J (1991) Grouping of some clinically relevant gram-positive rods by automated fatty acid analysis. Diagnostic implications. APMIS 99:147–154

    Google Scholar 

  • Wade WG (2009) Genus I. Eubacterium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 865–881

    Google Scholar 

  • Wagner RD, Johnson SJ, Cerniglia CE, Erickson BD (2011) Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases. Antimicrob Agents Chemother 55:4990–4998

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L (2011) High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11:7

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Fidalgo S, Chang BJ, Mee BJ, Riley TV (2002) The detection and recovery of Erysipelothrix spp. in meat and abattoir samples in Western Australia. J Appl Microbiol 92:844–850

    PubMed  CAS  Google Scholar 

  • Wang Q, Chang BJ, Riley TV (2010) Erysipelothrix rhusiopathiae. Vet Microbiol 140:405–417

    PubMed  Google Scholar 

  • Wei H, Dong L, Wang T, Zhang M, Hua W et al (2010) Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiol Ecol 73:577–586

    PubMed  CAS  Google Scholar 

  • White TG, Mirikitani FK (1976) Some biological and physical chemical properties of Erysipelothrix rhusiopathiae. Cornell Vet 66:152–163

    PubMed  CAS  Google Scholar 

  • Wilkinson BJ, Jones D (1977) A numerical taxonomic survey of Listeria and related bacteria. J Gen Microbiol 98:399–421

    PubMed  CAS  Google Scholar 

  • Willems A, Moore WEC, Weiss N, Collins MD (1997) Phenotypic and phylogenetic characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: description of Holdemania filiformis gen. nov., sp. nov. Int J Syst Bacteriol 47:1201–1204

    PubMed  CAS  Google Scholar 

  • Williams SM, Hafner S, Sundram Y (2007) Liver granulomas due to Eubacterium tortuosum in a seven-week-old Bobwhite quail. Avian Dis 51:797–799

    PubMed  Google Scholar 

  • Wood RL (1965) A selective liquid medium utilizing antibiotics for isolation of Erysipelothrix insidiosa. Am J Vet Res 26:1303–1308

    PubMed  CAS  Google Scholar 

  • Wood RL (1974a) Isolation of pathogenic Erysipelothrix rhusiopathiae from feces of apparently healthy swine. Am J Vet Res 35:41–43

    PubMed  CAS  Google Scholar 

  • Wood RL (1974b) Erysipelothrix infection. In: Hubbert WT, McCullough WF, Schnurrenberger PR (eds) Diseases transmitted from animals to man, 6th edn. Thomas, Springfield, pp 271–281

    Google Scholar 

  • Wood RL (1984) Swine erysipelas—a review of prevalence and research. J Am Vet Med Assoc 184:944–949

    PubMed  CAS  Google Scholar 

  • Wood RL, Packer R (1972) Isolation of Erysipelothrix rhusiopathiae from soil and manure of swine-raising premises. Am J Vet Res 33:1611–1620

    PubMed  CAS  Google Scholar 

  • Woodbine M (1950) Erysipelothrix rhusiopathiae. Bacteriology and chemotherapy. Bacteriol Rev 14:161–178

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamazaki Y (2006) A multiplex polymerase chain reaction for discriminating Erysipelothrix rhusiopathiae from Erysipelothrix tonsillarum. J Vet Diagn Invest 18:384–387

    PubMed  Google Scholar 

  • Yang QB, Fan LN, Shi Q (2010) Polymerase chain reaction-denaturing gradient gel electrophoresis, cloning, and sequence analysis of bacteria associated with acute periapical abscesses in children. J Endod 36:218–223

    PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    PubMed  CAS  Google Scholar 

  • Zhang C, Hou BX, Zhao HY, Sun Z (2012a) Microbial diversity in failed endodontic root-filled teeth. Chin Med J (Engl) 125(6):1163–1168

    Google Scholar 

  • Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L (2012b) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7:e42529

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng G, Summanen PH, Talan D, Bennion R, Rowlinson MC, Finegold SM (2010) Phenotypic and molecular characterization of Solobacterium moorei isolates from patients with wound infection. J Clin Microbiol 48:873–876

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Verbarg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Verbarg, S., Göker, M., Scheuner, C., Schumann, P., Stackebrandt, E. (2014). The Families Erysipelotrichaceae emend., Coprobacillaceae fam. nov., and Turicibacteraceae fam. nov.. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_205

Download citation

Publish with us

Policies and ethics