Skip to main content

Oxidative Stress and Brain Endothelial Cells

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

In addition to their role in maintaining the anatomical and functional integrity of the blood–brain barrier (BBB) and hemodynamic regulation of blood flow, brain microvascular endothelial cells critically contribute to brain development and homeostasis. Thus, injuries to the brain microvasculature can have deleterious consequences on the neurovascular unit and play an important role in the pathogenesis of several neurological disorders. Reactive oxygen species (ROS) and proinflammatory lipid mediators released either from endothelial cells or from the surrounding brain parenchyma are implicated in endothelial cell injury and vascular damage as well as in regulation of endothelial cell physiological responses. While ROS can initiate an inflammatory response and target membrane lipids, inflammatory lipid mediators can exacerbate oxidative stress by increasing ROS production or can alternatively limit cell damage by homeostatic feedback reactions. This chapter will review the current information pertaining to the role and mechanisms of ROS-dependent regulation of brain endothelial cell function and dysfunction. The role of arachidonic acid, a biologically active and oxidant sensitive polyunsaturated fatty acid, whose levels dramatically increase during inflammation, on ROS generation and subsequent brain vascular damage, will be discussed. Emphasis will be placed on the signaling cooperation by which ROS and arachidonic acid influence brain endothelial cell responses during oxidative stress and inflammation. The clinical significance of ROS- and arachidonic acid-dependent cellular interactions in regulation of brain endothelial cell responses and the therapeutic implications of targeting their signaling effectors will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASK-1:

Apoptosis signal-regulating kinase-1

COX-1:

Cyclooxygenase-1

COX-2:

Cyclooxygenase-2

cPLA2:

Cytosolic phospholipase A2

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun-N-terminal kinase

NO:

Nitric oxide

NO2:

Nitric dioxide

PGE2 :

Prostaglandin E2

PGG2 :

Hydroperoxy endoperoxide prostaglandin G2

sPLA2:

Secreted phospholipase A2

VEGF:

Vascular endothelial growth factor

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood-brain barrier. Nature Rev Neurosci 7:41–53

    CAS  Google Scholar 

  • Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    CAS  PubMed  Google Scholar 

  • Adibhatla RM, Hatcher JF (2007) Secretory phospholipase A2 IIA is upregulated by TNF-α and IL-1α/β after transient focal cerebral ischemia in rats. Brain Res 1134:199–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstead WM (2003) Cyclooxygenase-2-dependent superoxide generation contributes to age-dependent impairment of G protein-mediated cerebrovasodilatation. Anesthesiology 98:1378–1383

    CAS  PubMed  Google Scholar 

  • Babior BM (2000) The NADPH oxidase of endothelial cells. IUBMB Life 50:267–269

    CAS  PubMed  Google Scholar 

  • Basuroy S, Tcheranova D, Bhattacharya S, Leffler CW, Parfenova H (2011) Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis. Am J Physiol 300:C256–C265

    CAS  Google Scholar 

  • Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481–496

    PubMed  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benndorf RA, Schwedhelm E, Gnann A, Taheri R, Kom G, DidiĂ© M, Steenpass A, ErgĂĽn S, Böger RH (2008) Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between oxidative stress and impaired angiogenesis. Cir Res 103:1037–1046

    CAS  Google Scholar 

  • Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F Jr, Hou X, Beauchamp M, Quiniou C, Almazan G, Lachance C, Roberts J 2nd, Varma DR, Chemtob S (2003) Selective neuromicrovascular endothelial cell death by 8-Iso-prostaglandin F2alpha: possible role in ischemic brain injury. Stroke 343:776–782

    Google Scholar 

  • Buschbeck M, Ghomashchi F, Gelb MH, Watson SP, Börsch-Haubold AG (1999) Stress stimuli increase calcium-induced arachidonic acid release through phosphorylation of cytosolic phospholipase A2. Biochem J 344:359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calandria JM, Bazan NG (2010) Neuroprotectin D1 modulates the induction of pro-inflammatory signaling and promotes retinal pigment epithelial cell survival during oxidative stress. Adv Exp Med Biol 664:663–670

    CAS  PubMed  Google Scholar 

  • Chan EC, Jiang F, Peshavariya HM, Dusting GJ (2009) Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther 122:97–108

    CAS  PubMed  Google Scholar 

  • Cho KJ, Seo JM, Kim JH (2011) Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells 32:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci 16:1733–1745

    CAS  Google Scholar 

  • Conway ME, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    CAS  PubMed  Google Scholar 

  • Davidson J, Abul HT, Milton AS, Rotondo D (2001) Cytokines and cytokine inducers stimulate prostaglandin E2 entry into the brain. Pflugers Arch 4424:526–533

    Google Scholar 

  • Dröge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Google Scholar 

  • Dusting GJ, Mancada S, Vane JR (1977) Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13:3–15

    CAS  PubMed  Google Scholar 

  • Easton AS, Abbott NJ (2002) Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood-brain barrier. Brain Res 953:157–169

    CAS  PubMed  Google Scholar 

  • Easton AS, Fraser PA (1998) Arachidonic acid increases cerebral microvascular permeability by free radicals in single pial microvessels of the anaesthetized rat. J Physiol 507:541–547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis EF, Wei EP, Kontos HA (1979) Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and I2. Am J Physiol 237:H381–H385

    CAS  PubMed  Google Scholar 

  • Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, Rapoport SI (2008) Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 49:1414–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felix RA, Barrand MA (2002) P-glycoprotein expression in rat brain endothelial cells: evidence for regulation by transient oxidative stress. J Neurochem 80:64–72

    CAS  PubMed  Google Scholar 

  • Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radicals Biol Med 51:967–977

    CAS  Google Scholar 

  • Goldman R, Ferber E, Zou U (1992) Reactive oxygen species are involved in activation of phospholipase A2. FEBS Lett 309:190

    CAS  PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715S–725S

    CAS  PubMed  Google Scholar 

  • Hamel E (2006) Perivascular nerves and the regulation of the vascular tone. J Appl Physiol 100:1059–1064

    PubMed  Google Scholar 

  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 101:566–576

    CAS  PubMed  Google Scholar 

  • Harrison A, Murphy RC (1995) Isoleukotrienes are biologically active free radical products of lipid peroxidation. J Biol Chem 270:17273–17278

    CAS  PubMed  Google Scholar 

  • Hatashita S, Hoff JT (1990) Brain edema and cerebrovascular permeability during cerebral ischemia in rats. Stroke 21:582–588

    CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    CAS  PubMed  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    CAS  PubMed  Google Scholar 

  • HonorĂ© JC, Kooli A, Hou X, Hamel D, Rivera JC, Picard E, Hardy P, Tremblay S, Varma DR, Jankov RP, Mancini JA, Balazy M, Chemtob S (2010) Sustained hypercapnia induces cerebral microvascular degeneration in the immature brain through induction of nitrative stress. Am J Physiol Regul Integr Comp Physiol 298:R1522–R1530

    PubMed  Google Scholar 

  • Hsu M-J, Hsu CY, Chen BC, Chen M-C, Ou G, Lin C-H (2007) Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis. J Neurosci 27:5719–5729

    CAS  PubMed  Google Scholar 

  • Huber J, Bochkov VN, Binder BR, Leitinger N (2003) The isoprostane 8-iso-PGE2 stimulates endothelial cells to bind monocytes via cyclic AMP- and p38 MAP kinase-dependent signaling pathways. Antioxid Redox Signal 5:163–169

    CAS  PubMed  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glia regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    CAS  PubMed  Google Scholar 

  • Im J, Kim D, Paik SG, Han PL (2006) Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Rad Biol Med 41:960–972

    CAS  PubMed  Google Scholar 

  • Jensen MD, Sheng W, Simonyi A, Johnson GS, Sun AY, Sun GY (2009) Involvement of oxidative pathways in cytokine-induced secretory phospholipase A2-IIA in astrocytes. Neurochem Int 55:362–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jian W, Arora JS, Oe T, Shuvaev VV, Blair IA (2005) Induction of endothelial cell apoptosis by lipid hydroperoxide-derived bifunctional electrophiles. Free Radic Biol Med 39:1162–1176

    CAS  PubMed  Google Scholar 

  • Jiang H, Kruger N, Lahiri DR, Wang D, Vatèle JM, Balazy M (1999) Nitrogen dioxide induces cis-trans-isomerization of arachidonic acid within cellular phospholipids. J Biol Chem 274:16235–16241

    CAS  PubMed  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    CAS  PubMed  Google Scholar 

  • Kanu A, Leffler CW (2011) Arachidonic acid and prostaglandin E2-induced cerebral vasodilation is mediated by carbon monoxide independent of reactive oxygen species in piglets. Am J Physiol Heart Circ Physiol 301:H2482–H2487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanu A, Gilpin D, Fedinec AL, Leffler CW (2006) Cyclooxygenase products stimulate carbon monoxide production by piglet cerebral microvessels. Exp Biol Med 231:181–185

    CAS  Google Scholar 

  • Kermorvant-Duchemin E, Sennlaub F, Sirinyan M, Brault S, Andelfinger G, Kooli A, Germain S, Ong H, d’Orleans-Juste P, Gobeil F Jr, Zhu T, Boisvert C, Hardy P, Jain K, Falck JR, Balazy M, Chemtob S (2005) Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration. Nat Med 11:1339–1345

    CAS  PubMed  Google Scholar 

  • Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    CAS  PubMed  Google Scholar 

  • Kontos HA, Wei EP, Povlishock JT, Christman CW (1984) Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res 3:295–303

    Google Scholar 

  • Kooli A, Kermorvant-Duchemin E, Sennlaub F, Bossolasco M, Hou X, HonorĂ© JC, Dennery PA, Sapieha P, Varma D, Lachapelle P, Zhu T, Tremblay S, Hardy P, Jain K, Balazy M, Chemtob S (2008) Trans-arachidonic acids induce a heme oxygenase-dependent vasorelaxation of cerebral microvasculature. Free Radic Biol Med 44:815–825

    CAS  PubMed  Google Scholar 

  • Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986) PGH synthase and lipooxygenase generate superoxide in the presence of NADH or NADPH. Cir Res 49:612–619

    Google Scholar 

  • Kunstmann S, Mertsch K, Blasig IE, Grune T (1996) High metabolic rates of 4-hydroxynonenal in brain capillary endothelial cells during hypoxia/reoxygenation. Brain Res 740:353–355

    CAS  PubMed  Google Scholar 

  • Lassègue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661

    PubMed Central  PubMed  Google Scholar 

  • Leaver HA, Yap PL, Rogers P, Wright I, Smith G, Williams PE, France AJ, Craig SR, Walker WS, Prescott RJ (1995) Peroxides in human leucocytes in acute septic shock: acute phase changes and mortality. Eur J Clin Invest 25:777–783

    CAS  PubMed  Google Scholar 

  • Lee SR, Lo EH (2003) Interactions between p38-Mitogen-Activated Protein Kinase and caspase-3 in cerebral endothelial cell death after hypoxia-reoxygenation. Stroke 34:2704–2709

    CAS  PubMed  Google Scholar 

  • Lee HS, Han J, Bai HJ, Kim KW (2009) Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J 276:4622–4635

    CAS  PubMed  Google Scholar 

  • Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H (2011) Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 15:1305–1323

    CAS  PubMed  Google Scholar 

  • Luczak K, Balcerczyk A, Soszynski M, Bartosz G (2004) Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol Int 28:483–486

    CAS  PubMed  Google Scholar 

  • Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH (2006) A new approach for the investigation of reperfusion-related brain injury. Biochem Soc Trans 34:1366–1369

    CAS  PubMed  Google Scholar 

  • Mancuso MR, Kuhnert F, Kuo CJ (2008) Developmental angiogenesis of the central nervous system. Lymphat Res Biol 6:3–4

    Google Scholar 

  • Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA (1999) Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem 274:22903–22906

    CAS  PubMed  Google Scholar 

  • Medhora M, Dhanasekaran A, Gruenloh SK, Dunn LK, Gabrilovich M, Falck JR, Harder DR, Jacobs ER, Pratt PF (2007) Emerging mechanisms for growth and protection of the vasculature by cytochrome P450-derived products of arachidonic acid and other eicosanoids. Prostaglandins Other Lipid Mediat 82:19–29

    CAS  PubMed  Google Scholar 

  • Mertsch K, Blasig I, Grune T (2001) 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci Lett 314:135–138

    CAS  PubMed  Google Scholar 

  • Miller AA, Drummond GR, Sobey CG (2006) Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 111:928–948

    CAS  PubMed  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer’s disease. J Neuroinflammation 3:28

    PubMed Central  PubMed  Google Scholar 

  • Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nie D, Tang K, Diglio C, Honn KV (2000) Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood 95:2304–2311

    CAS  PubMed  Google Scholar 

  • Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88:600–608

    CAS  PubMed  Google Scholar 

  • Oldenford WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Google Scholar 

  • Parfenova H, Leffler CW (2008) Cerebroprotective functions of HO-2. Curr Pharm Design 14:443–453

    CAS  Google Scholar 

  • Parfenova H, Levine V, Gunther WM, Pourcyrous M, Leffler CW (2002) COX-1 and COX-2 contributions to basal and IL-1 beta-stimulated prostanoid synthesis in human neonatal cerebral microvascular endothelial cells. Pediatr Res 52:342–348

    CAS  PubMed  Google Scholar 

  • Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem Biophys Res Commun 311:247–253

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  • Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    CAS  PubMed  Google Scholar 

  • Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M (2011) Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 8:101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138:2515–2520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richard DE, Berra E, PouyssĂ©gur J (1999) Angiogenesis: how a tumor adapts to hypoxia. Biochem Biophys Res Commun 266:718–722

    CAS  PubMed  Google Scholar 

  • Rizzo MT (2011) Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 412:671–687

    CAS  PubMed  Google Scholar 

  • Rizzo MT, Carlo-Stella C (1996) Arachidonic acid mediates interleukin-1 and tumor necrosis factor-alpha-induced activation of the c-jun amino-terminal kinases in stromal cells. Blood 88:3792–3800

    CAS  PubMed  Google Scholar 

  • Rizzo MT, Leaver HA (2010) Brain endothelial cell death: modes, signalling pathways and relevance to neural development, homeostasis and disease. Mol Neurobiol 42:52–63

    CAS  PubMed  Google Scholar 

  • Rizzo MT, Nguyen E, Aldo-Benson M, Lambeau G (2000) Secreted phospholipase A(2) induces vascular endothelial cell migration. Blood 96:3809–3815

    CAS  PubMed  Google Scholar 

  • Rosa AO, Rapoport SI (2009) Intracellular- and extracellular-derived Ca2+ influence phospholipase A2-mediated fatty acid release from brain phospholipids. Biochim Biophys Acta (Mol Cell Biol Lipids) 1791:697–705

    CAS  Google Scholar 

  • Rush S, Khan G, Bamisaiye A, Bidwell P, Leaver HA, Rizzo MT (2007) c-jun amin-terminal kinase and mitogen activated protein kinase mediate hepatocyte growth factor-induced migration of brain endothelial cells. Exper Cell Res 313:121–132

    CAS  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Pointek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, P13 kinase and PKB signaling. FASEB J 21:3666–3676

    CAS  PubMed  Google Scholar 

  • Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. Neurochem 106:45–55

    CAS  Google Scholar 

  • Shen HM, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biol Med 40:928–939

    CAS  Google Scholar 

  • Shen Q, Goderie SQ, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    CAS  PubMed  Google Scholar 

  • Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, Kanda T (2012) Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res 37:401–409

    CAS  PubMed  Google Scholar 

  • Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    CAS  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    CAS  PubMed  Google Scholar 

  • SkowroĹ„ska M, ZieliĹ„ska M, WĂłjcik-Stanaszek L, Ruszkiewicz J, Milatovic D, Aschner M, Albrecht J (2012) Ammonia increases paracellular permeability of rat brain endothelial cells by a mechanism encompassing oxidative/nitrosative stress and activation of matrix metalloproteinases. J Neurochem. doi:10.1111/j.1471-4159.2012.07669

    Google Scholar 

  • Sobey CG, Heistad DD, Faraci FM (1997) Mechanisms of bradykinin-induced cerebral vasodilatation in rats: evidence that reactive oxygen species activate K1 channels. Stroke 28:2290–2294

    CAS  PubMed  Google Scholar 

  • Sparvero LJ, Moscato AA, Kochanek M, Pitt BR, Kagan VE, Bayır H (2010) Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem 115:1322–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spychalowicz A, Wilk G, Sliwa T, Ludew D, Guzik TJ (2012) Novel therapeutic approaches in limiting oxidative stress and inflammation. Curr Pharm Biotechnol (ahead of print)

    Google Scholar 

  • Tabuchi S, Uozumi N, Ishii S, Shimizu Y, Watanabe T, Shimizu T (2003) Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. Acta Neurochir Suppl 86:169–172

    CAS  PubMed  Google Scholar 

  • Terada LS, Willingham IR, Rosandich ME, Leff JA, Kindt GW, Repine JE (1991) Generation of superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol 148:191–196

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovascular Res 71:226–235

    CAS  Google Scholar 

  • Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238

    CAS  PubMed  Google Scholar 

  • Van Buul JD, Fernandez-Borja M, Anthony EC, Hordijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7:308–317

    PubMed  Google Scholar 

  • Van der Goes A, Wouters D, Van der Pol SM, Hizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, de Vries HE (2001) Reactive oxygen species enhance the migration of monocytes across the blood-barrier in vitro. FASEB J 15:1852–1854

    PubMed  Google Scholar 

  • Virdis A, Colucci R, Fornai M, Blandizzi C, Duranti E, Pinto S, Bernardini N (2005) Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacol Exp Ther 312:945–953

    CAS  PubMed  Google Scholar 

  • Wang X, Lo EH (2003) Triggers and mediators of hemorrhagic transformation in cerebral ischemia. Mol Neurobiol 28:229–244

    CAS  PubMed  Google Scholar 

  • Ward NL, Lamanna JC (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 26:870–883

    CAS  PubMed  Google Scholar 

  • Wei EP, Kontos HA, Beckman JS (1996) Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271:H1262–H1266

    CAS  PubMed  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11:298–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamato M, Egashira T, Utsumi H (2003) Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 35:1619–1631

    CAS  PubMed  Google Scholar 

  • Yang Y, Rosenberg GA (2011) Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42:3323–3338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yen MH, Lee SH (1987) Effects of cyclooxygenase and lipoxygenase inhibitors on cerebral edema induced by freezing lesions in rats. Eur J Pharmacol 144:369–373

    CAS  PubMed  Google Scholar 

  • Zhang C, Bazan NG (2010) Lipid-mediated cell signaling protects against injury and neurodegeneration. J Nutr 140:858–863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031

    CAS  PubMed  Google Scholar 

  • Zhou H, liu X, Liu L, Yang Z, Zhang S, Tang M, Tang Y, Dong Q, Hu R (2009) Oxidative stress and apoptosis of human brain microvascular endothelial cells induced by free fatty acids. J Int Med Res 37:1897–1903

    CAS  PubMed  Google Scholar 

  • Zipfel GJ, Han H, Ford AL, Lee J-M (2009) Cerebral amyloid angiopathy: progressive disruption of the neurovascular unit. Stroke 40:S16–S19

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Dino Rotondo for advice on eicosanoid vasoactivity, Professor Ian Whittle for discussion of clinical edema, and Chris Brown for artwork. We regret having to omit the work of many colleagues because of space limitations. The original research findings from our laboratories discussed in this chapter were supported by the American Heart Association, the Showalter Foundation and Institutional Funds to M.T.R., and the Chest, Heart and Stroke Foundation (Scotland) to H.A.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rizzo, M.T., Saquib, M., Leaver, H.A. (2014). Oxidative Stress and Brain Endothelial Cells. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_93

Download citation

Publish with us

Policies and ethics