Skip to main content

Nervous About Developments in Electron Transfer-Reactive Oxygen Species-Oxidative Stress Mechanisms of Neurotoxicity?

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

A broad overview of neurotoxins is presented based on electron transfer, reactive oxygen species, and oxidative stress. Although their mode of action is complex, these aspects evidently play an important role in many cases. It is relevant that metabolites from toxins generally possess electron transfer functionalities, which can participate in redox cycling. Much evidence exists in support of the theoretical framework. Toxic effects at the molecular level include lipid peroxidation, DNA attack, adduction, enzyme inhibition, oxidative attack on the CNS, and cell signaling. The toxins fall into many categories, including drugs, industrial chemicals, abused drugs, reproductive toxins, metal compounds, pesticides, and herbicides. Beneficial effects of antioxidants are documented, which may prove clinically useful. Knowledge of mechanisms operating in CNS insults should prove useful in drug design. This review focusses on recent developments on electron transfer mechanisms in neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JD Jr, Williams LR, Mukherjee SK, Klaidman L, Inouye G, Cummins V, Morales M (2000) In: Poli G, Cadenas E, Packer L (eds) Free radicals in brain pathophysiology. Marcel Dekker, New York, pp 55–77

    Google Scholar 

  • Adams JD, Chang M-L, Klaidman L (2001) Parkinson’s disease-redox mechanisms. Curr Med Chem 8:809–814

    CAS  PubMed  Google Scholar 

  • Andreas K, Ray DE (1999) Nervous system. In: Marquardt H, Schafer F (eds) Toxicology. Academic, New York, pp 463–490

    Google Scholar 

  • Aschner M, Syversen T, Souza DO, Rocha JBT, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    CAS  PubMed  Google Scholar 

  • Atarchi MS, Jalil KE, Labafinezhad Y, Saber M (2009) Effect of exposure of organic solvent mixtures on color vision. J Med Counc IRI Fall 27:307–316

    Google Scholar 

  • Ávila DS, Colle D, Gubert P, Palma AS, Puntel G, Manarin F, Noremberg S, Nascimento PC, Aschner M, Rocha JBT, Soares FAA (2010) A possible neuroprotective action of vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 115:194–201

    PubMed Central  PubMed  Google Scholar 

  • Bale AS, Barone S, Scott CS, Cooper GS (2011) Contemporary issues in toxicology. A review of potential neurotoxic mechanisms among three chlorinated organic solvents. Toxicol Appl Pharmacol. doi:10.1016/j.taap. 2011.05.008

    Google Scholar 

  • Bano M, Bhatt DK (2010) Ameliorative effect of a combination of vitamin E, vitamin C, α-lipoic acid and stilbene resveratrol on lindane induced toxicity in mice olfactory lobe and cerebrum. Indian J Exp Biol 48:150–158

    CAS  PubMed  Google Scholar 

  • Bjørling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50

    PubMed Central  PubMed  Google Scholar 

  • Blumenthal KM, Seibert AL (2003) Voltage-gated sodium channel toxins: poisons, probes and future promise. Cell Biochem Biophys 38:215

    CAS  PubMed  Google Scholar 

  • Bondy SC (1997) In: Wallace KB (ed) Free radical toxicology. Taylor & Francis, New York, pp 221–248

    Google Scholar 

  • Bongivanni B, de Lorenzi P, Ferri A, Konjuh C, Rassetto M, Evanelista de Duffard AM, Cardinali DP, Duffard R (2007) Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells. Neurotox Res 11:93–99

    Google Scholar 

  • Bukowska B (2006) Toxicity of 2,4-dichlorophenoxyacetic acid-molecular mechanisms. Pol J Environ Stud 15:365–374

    CAS  Google Scholar 

  • Butterfield DA (2003) Amyloid β-peptide -associated free radical-induced oxidative stress and neurodegeneration in Alzheimer’s disease brain: mechanisms and consequences. Curr Med Chem 10:2651–2659

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Howard BJ, LaFontaine MA (2001) Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer’s disease and Huntington’s disease. Curr Med Chem 8:815–825

    CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system; neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    CAS  PubMed  Google Scholar 

  • Capela JP, Meisel A, Abreu AR, Branco PS, Ferreira LM, Lobo AM, Remiáo F, Bastos ML, Cavalho F (2006) Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316:53–61

    CAS  PubMed  Google Scholar 

  • Ceccatelli S, Dare E, Moors M (2010) Methyl mercury-induced neurotoxicity and apoptosis. Vhemico-Biol Int 188:301–308

    CAS  Google Scholar 

  • Chen G, Luo J (2010) Anthocyanins: are they beneficial in treating ethanol neurotoxicity. Neurotox Res 17:91–101

    CAS  PubMed  Google Scholar 

  • Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity; focus on natural products. Molecules 16:1021–1043

    CAS  PubMed  Google Scholar 

  • Crumpton TL, Seidler FJ, Slotkin TA (2000) Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Dev Brain Res 121:189–195

    CAS  Google Scholar 

  • Delmaestro E, Trombetta LD (1995) The effects of disulfiram on the hippocampus and cerebellum of the rat brain: a study on oxidative stress. Toxicol Lett 75:235–243

    CAS  PubMed  Google Scholar 

  • Dick FD (2006) Solvent neurotoxicity. Occup Environ Med 63:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Do Nascimento JLM, Oliveira KRM, Crespo-Lopez ME, Macchi BM, Maués LAL, Pinheiro MCN, Silveira LCL, Herculano AM (2008) Methylmercury neurotoxicity and antioxidant defenses. Indian J Med Res 128:373–382

    CAS  PubMed  Google Scholar 

  • Dobbing J (1968) Vulnerable periods in developing brain. In: Davison AN, Dobbing J (eds) Applied neurochemistry. Blackwell, Oxford, pp 287–316

    Google Scholar 

  • Domico LM, Cooper KR, Bernard LP, Zeevalk GD (2007) ROS generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology 28:1079–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dua R, Gill KD (2004) Effect of aluminum phosphide exposure on kinetic properties of cytochrome oxidase and mitochondrial energy metabolism in rat brain. Biochim Biophys Acta 1674:4–11

    CAS  PubMed  Google Scholar 

  • Eaton DL, Darroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol S2:1–125

    Google Scholar 

  • El-Hossary GG, Mansour SM, Mohamed AS (2009) Neurotoxic effects of chlorpyrifos and the possible protective role of antioxidant supplements: an experimental study. J Appl Sci Res 5:1218–1222

    Google Scholar 

  • Fattori V, Abe S, Kobayashi K, Costa LG, Tsuji R (2008) Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 28:370–376

    CAS  PubMed  Google Scholar 

  • Flora SJ, Bhatt K, Metha A (2009) Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats. Toxicol Appl Pharmacol 240:236–244

    CAS  PubMed  Google Scholar 

  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos J, Martins R, Bainy ACD, Merques MR, Dafre AI, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47:449–457

    CAS  PubMed  Google Scholar 

  • Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia SJ, Seidler FJ, Crumpton TL, Slotkin TA (2001) Does the developmental neurotoxicity of chlorpyrifos involve glial targets? macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res 891:54–68

    CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current status. Pharmacol Rev 54:271–284

    CAS  PubMed  Google Scholar 

  • Giordano G, Afsharinejad Z, Guizzetti M, Vitalone A, Kavanagh TJ, Costa LG (2007) Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol 219:181–189

    CAS  PubMed  Google Scholar 

  • Giray B, Gürbay A, Hincal F (2001) Cypermethrin-induced oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol Lett 118:139–146

    CAS  PubMed  Google Scholar 

  • González A, Pariente JA, Salido GM (2007) Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 1178:28–37

    PubMed  Google Scholar 

  • Gulati K, Ray A, Vijayan VK (2007) Free radicals and theophylline neurotoxicity: an experimental study. Cell Mol Biol 53:42–52

    CAS  PubMed  Google Scholar 

  • Gupta RC, Milatovic S, Dettbarn W-D, Aschner M, Milatovic D (2007) Neuronal oxidative injury and dendritic damage induced by carbofuran; protection by memantine. Toxicol Appl Pharmacol 219:97–105

    CAS  PubMed  Google Scholar 

  • Haider SS, Najar MSA (2008) Arsenic induces oxidative stress, shingolipidosis, depletes protein and some antioxidants in various regions of rat brain. Kathmandu Univ Med J 6:6–69

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999a) Free radicals in biology and medicine. Oxford University Press, New York, pp 1–859

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999b) Free radicals in biology and medicine. Oxford University Press, New York, pp 726–729

    Google Scholar 

  • Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL (2005) Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther 314:780–788

    CAS  PubMed  Google Scholar 

  • Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood–brain barrier dysfunction. J Leukoc Biol 78:1223–1232

    CAS  PubMed  Google Scholar 

  • He Y, Cui J, Lee JC-M, Ding S, Chalimoniuk M, Simonyi A, Sun A, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro. doi:10.1042/An20100025

    PubMed Central  PubMed  Google Scholar 

  • Heaton MBH, Mitchell JJ, Paiva M (2000) Amelioration of ethanol-induced neurotoxicity in the neonatal rat central nervous system by antioxidant therapy. Alcohol Clin Exp Res 24:512–518

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Cabbat FS, Cohen G (1975) In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate. J Biol Chem 251:2182–2185

    Google Scholar 

  • Himeda T, Kadoguchi N, Kamiyama Y, Kato H, Maegawa H, Araki T (2006) Neuroprotective effect of arundic acid, an astrocyte-modulating agent, in mouse brain against MPTP (1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine), neurotoxicity. Neuropharmacology 50:329–344

    CAS  PubMed  Google Scholar 

  • Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W, Ali SF (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380

    CAS  PubMed  Google Scholar 

  • Iravani MM, Haddon CO, Rose S, Jenner P (2006) 3-Nitrotyrosine-dependent dopaminergic neurotoxicity following direct nigral administration of a peroxynitrite but not a nitric oxide donor. Brain Res 1067:256–262

    CAS  PubMed  Google Scholar 

  • Jacintho JD, Kovacic P (2003) Neurotransmission and neurotoxicity by nitric oxide, catecholamines, and glutamate: unifying themes of reactive oxygen species and electron transfer. Curr Med Chem 10:2693–2700

    CAS  PubMed  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    CAS  PubMed  Google Scholar 

  • Joy RM (1998) Neurotoxicology: central and peripheral. In: Wexler P (ed) Encyclopedia of toxicology. Academic, New York, pp 389–413

    Google Scholar 

  • Ju TC, Chen SD, Liu CC, Yang DI (2005) Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity. Free Radic Biol Med 38:938–949

    CAS  PubMed  Google Scholar 

  • Kamboj A, Kiran R, Sandhir R (2006a) Carbofuran-induced neurochemical and neurobehavioral alterations in rats: attenuation by N-acetylcysteine. Exp Brain Res 170:567–575

    CAS  PubMed  Google Scholar 

  • Kamboj A, Kumaresan N, Kiran R, Sandhir R (2006b) Neuroprotective potential of N-acetylcysteine in carbofuran neurotoxicity: a biochemical and histopathological study. Toxicol Environ Chem 88:745–753

    CAS  Google Scholar 

  • Kamen-Bouhadiba F, Gana N, Aoued A, Tebboune B (2010) Neurobehavioral testing in workers occupationally exposed to solvents in the manufacturing of paints, glues and varnishes in Oran. J Int Santé Trav 2:40–46

    Google Scholar 

  • Kass GEN (1997a) In: Wallace KB (ed) Free radical toxicology. Taylor & Francis, New York, pp 349–374

    Google Scholar 

  • Kass GEN (1997b) Free-radical-induced changes in signal transduction. In: Wallace KB (ed) Free radical toxicology. Taylor & Francis, Washington, DC, pp 349–374

    Google Scholar 

  • Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21

    CAS  PubMed  Google Scholar 

  • Kinawy AA (2009) Impact of gasoline inhalation on some neurobehavioral characteristics of male rats. BMC Physiol 9:21. doi:10.1186/1472-6793-9-21

    PubMed Central  PubMed  Google Scholar 

  • Kodavanti PRS (1999) In: Tilson HA, Harry GJ (eds) Neurotoxicology. Taylor & Francis, New York, pp 157–178

    Google Scholar 

  • Kovacic P, Becvar LE (2000) Mode of action of anti-infective agents: emphasis on oxidative stress and electron transfer. Curr Pharm Des 6:143–167

    CAS  PubMed  Google Scholar 

  • Kovacic P, Cooksy AL (2005a) Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 64:366–367

    Google Scholar 

  • Kovacic P, Cooksy AL (2005b) Role of diacetyl metabolite in alcohol toxicity and addiction via electron transfer and oxidative stress. Arch Toxicol 79:123–128

    CAS  PubMed  Google Scholar 

  • Kovacic P, Edwards C (2010) Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J Recept Signal Transduct Res 30:133–142

    CAS  PubMed  Google Scholar 

  • Kovacic P, Jacintho JD (2001a) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:773–796

    CAS  PubMed  Google Scholar 

  • Kovacic P, Jacintho JD (2001b) Reproductive toxins: pervasive theme of oxidative stress and electron transfer. Curr Med Chem 8:863–892

    CAS  PubMed  Google Scholar 

  • Kovacic P, Osuna JA (2000) Mechanisms of anticancer agents: focus on oxidative stress and electron transfer. Curr Med Chem 6:277–309

    CAS  Google Scholar 

  • Kovacic P, Somanathan R (2005) Neurotoxicity: the broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem-CNS Agents 5:249–258

    CAS  Google Scholar 

  • Kovacic P, Somanathan R (2008a) Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling and receptors. J Recept Signal Transduct Res 28:323–346

    CAS  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2008b) Ototoxicity and noise trauma; electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants; practical medical aspects. Med Hypotheses 70:914–923

    CAS  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2008c) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 1:56–69

    Google Scholar 

  • Kovacic P, Somanathan R (2009) Pulmonary toxicity and environmental contamination: radicals, electron transfer, and protection by antioxidants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 201. Springer, New York, pp 41–69

    Google Scholar 

  • Kovacic P, Somanathan R (2010) Dermal toxicity and environmental contamination: electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. In: Whitacre DM (ed) Reviews of environmental contaminations and toxicology, vol 203. Springer, New York, pp 119–138

    Google Scholar 

  • Kovacic P, Somanathan R (2011) Integrated approach to nitric oxide in animals and plants (mechanism and bioactivity): cell signaling and radicals. J Recept Signal Transduc 31:111–120

    CAS  Google Scholar 

  • Kovacic P, Thurn LA (2005) Cardiovascular toxins from the perspective of oxidative stress and electron transfer. Curr Vasc Pharmacol 3:107–117

    CAS  PubMed  Google Scholar 

  • Kovacic P, Sacman A, Wu-Weis M (2002) Nephrotoxins: widespread role of oxidative stress and electron transfer. Curr Med Chem 9:823–847

    CAS  PubMed  Google Scholar 

  • Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 5:2601–2623

    Google Scholar 

  • Lee RD, Sm A, Kim SS, Rhee GS, Kwack SJ, Seok JH, Chae SY, Park CH, Choi YW, Kim HS, Cho HY, Lee BM, Park KL (2005) Neurotoxic effects of alcohol and acetaldehyde during embryonic development. J Toxicol Environ Health A 68:2147–2162

    PubMed  Google Scholar 

  • Lee MJ, Yang CH, Jeon JP, Hwang M (2009) Protective effects of isoliquiritigenin against methamphetamine-induced neurotoxicity in mice. J Pharmacol Sci 111:216–220

    CAS  PubMed  Google Scholar 

  • Lee KYC, Nakayama M, Sihara M, Chen Y-N, Araie M (2010) Brimonidine is neuroprotective against glutamate-induced neurotoxicity, oxidative stress, and hypoxia in purified rat retinal ganglion cells. Mol Vis 16:246–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin YC, Uang HW, Lin RJ, Chen IJ, Lo YC (2007) Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. J Pharmacol Exp Ther 323:877–887

    CAS  PubMed  Google Scholar 

  • Ma Z, Wei X, Fontanilla C, Noelker C, Dodel R, Hampel H, Du Y (2006) Caffeic acid phenethyl ester blocks free radical generation and 6-hydroxydopamine-induced neurotoxicity. Life Sci 79:1307–1311

    CAS  PubMed  Google Scholar 

  • Ma W-W, Xiang L, Yu H-L, Yuan L-H, Guo A-M, Xiao Y-X, Li L, Xiao R (2009) Neuroprotection of soybean isoflavone co-administration with folic acid against β-amyloid 1-40-induced neurotoxicity in rats. Br J Nutr 102:502–505

    CAS  PubMed  Google Scholar 

  • Machado A, Herrera AJ, Venero JL, Santiago M, de Pablos RM, Villaran RF, Espinosa-Oliva AM, Argüelles S, Sarmiento M, Delgado-Cortés MJ, Maurińo R, Cano J (2011) Inflammatory animal model for Parkinson’s disease: the intranigral injection of LPS induced the inflammatory process along with the selective degeneration of nigrostriatal dopaminergic neurons. ISRN Neurol 2011. doi:10.5402/2011/476158

    Google Scholar 

  • Mansur SA, Mossa A-TH (2009) Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 93:34–39

    Google Scholar 

  • Marchitti SA, Dietrich RA, Vasiliou V (2007) Neurotoxicity and metabolism of the catecholamine- 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 59:125–150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxin and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49:1328–1341

    PubMed  Google Scholar 

  • Matsuoka M (2007) Neurotoxicity of organic solvents – recent findings. Brain Nerve 59:591–596

    CAS  PubMed  Google Scholar 

  • Mitchell JJ, Paiva M, Heaton MB (1999) The antioxidants vitamin E and β-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol 17:163–168

    CAS  PubMed  Google Scholar 

  • Moran L, Gutteridge JMC, Quinlan GJ (2001) Thiols in cellular redox signaling and control. Curr Med Chem 8:763–772

    CAS  PubMed  Google Scholar 

  • Obulesu M, Venu R, Somashekhar R (2010) Lipid peroxidation in Alzheimer’s disease; emphasis on metal-mediated neurotoxicity. Acta Neurol Scand. doi:10.1111/j.1600-0404.2010.01483.x

    Google Scholar 

  • Pachauri V, Saxena G, Metha A, Mishra D, Flora SJ (2009) Combinational chelation therapy abrogates lead-induced neurodegeneration in rats. Toxicol Appl Pharmacol 240:255–264

    CAS  PubMed  Google Scholar 

  • Park ST, Lim KT, Chung YT, Kim SU (1996) Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17:37–45

    CAS  PubMed  Google Scholar 

  • Pascual J, Morόn L, Zárate J, Gutiérrez A, Churruca I, Echevarría E (2004) Toluene alters p75NTR expression in the rat brainstem. Ind Health 42:75–78

    CAS  PubMed  Google Scholar 

  • Pérez-Severiano F, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina-Campos ON, Ortíz-Plata A, Sánchez-García A, Vileda-Hernández J, Galváan-Arzate S, Aguilera P, Santamaría A (2004) S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative stress damage in rats. Neurochem Int 45:1175–1183

    PubMed  Google Scholar 

  • Poli G, Cheeseman KN, Dianzani MU (1989) In: Slater TF (ed) Free radicals in the pathogenesis of liver injury. Pergamon, New York

    Google Scholar 

  • Ponnusamy K, Mohan M, Nagaraja HS (2008) Protective antioxidant effect of Centella asiatica bioflavonoids on lead acetate induced neurotoxicity. Med J Malaysia 63:SA102

    Google Scholar 

  • Prbhakaran K, Ghosh D, Chapman GD, Gunasekara PG (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76:361–367

    Google Scholar 

  • Raga G, Ramos-Ferández E, Guix FX, Tajes M, Bosch-Moratό M, Palomer E, Godoy J, Belmar S, Cerpa W, Simpkins JW, Inestrosa And NC, Muńoz FJ (2010) Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimer Dis 22:641–652

    Google Scholar 

  • Raina R, Verma PK, Pankaj NK, Prawez S (2009) Induction of oxidative stress and lipid peroxidation in rats chronically exposed to cypermethrin through dermal application. J Vet Sci 20:257–259

    Google Scholar 

  • Ray DE, Fry JR (2006) A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Ther 111:174–193

    CAS  PubMed  Google Scholar 

  • Saulsbury MD, Heyliger SO, Wang K, Johanson DJ (2009) Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 259:1–9

    CAS  PubMed  Google Scholar 

  • Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Google Scholar 

  • Shafer TJ (1999) In: Tilson HA, Harry GJ (eds) Neurotoxicology. Taylor & Francis, New York, pp 99–138

    Google Scholar 

  • Shafer TJ, Bushnell PJ, Benignus VA, Woodward JJ (2005) Perturbation of voltage-sensitive Ca2+ channel function by volatile organic solvents. J Pharmacol Exp Ther 315:1109–1118

    CAS  PubMed  Google Scholar 

  • Sharma HS, Sharma A, Hussain S, Schlager J, Sjöquist PO, Muresanu D (2010) A new antioxidant compound H-290/51 attenuates nanoparticle induced neurotoxicity and enhances neurorepair in hyperthermia. Acta Neurochir Suppl 106:351–357

    PubMed  Google Scholar 

  • Shih Y-T, Chen PS, Wu C-H, Tseng Y-T, Wu Y-C, Lo Y-C (2010) Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radic Biol Med 49:1471–1479

    CAS  PubMed  Google Scholar 

  • Singh U, Jialal I (2009) Alpha-lipoic acid supplementation and diabetes. Nutr Rev 66:646–657

    Google Scholar 

  • Soto-Otero R, Méndez-Álvarez E, Hermida Ameijeiras A, Muńoz-Patińo AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implications in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    CAS  PubMed  Google Scholar 

  • Surh YJ, Kim HJ (2010) Neurotoxic effects of tetrahydroisoquinolines and underlying mechanisms. Exp Neurobiol 19:63–70

    PubMed Central  PubMed  Google Scholar 

  • Tastekin A, Gepdiremen A, Ors R, Buyukokuroglu ME, Halici Z (2005) L-Carnitin protects against glutamate-kainic acid-induced neurotoxicity in cerebellar granular cell culture of rats. Brain Dev 27:570–573

    PubMed  Google Scholar 

  • Thaakur S, Himabindhu G (2009) Effect of alpha lipoic acid on the tardive dyskinesia and oxidative stress induced by haloperidol in rats. J Neural Transm 116:807–814

    CAS  PubMed  Google Scholar 

  • Tong M, Longato L, Nguyen Q-GL, Chen W, Spaisman A, de la Monte SM (2011) Acetaldehyde-mediated neurotoxicity: relevance to fetal alcohol spectrum disorders. Oxid Med Cell Longev. doi:10.1155/2011/213286

    PubMed Central  Google Scholar 

  • Tourińo C, Zimmer A, Valverde O (2010) THC prevents MDMA neurotoxicity in mice. PLoS One 5(2):e9143. doi:10.1371/journal.pone.0009143

    PubMed Central  PubMed  Google Scholar 

  • Tsuji R, Fattori V, Abe S, Costa LG, Kobayashi K (2008) Effects of potential ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain. Neurotoxicol Teratol 30:228–236

    CAS  PubMed  Google Scholar 

  • Vllarán RF, Tomáa-Carmardiel M, de Pablos RM, Santiago M, Herrera AJ, Navarro A, Machado A, Cano J (2008) Endogenous dopamine enhances the neurotoxicity of 3-nitropropionic acid in the striatum through the increase of mitochondrial respiratory inhibition and free radical production. Neurotoxicology 29:244–258

    Google Scholar 

  • Vontas JG, Small GJ, Hemingway J (2001) Glutathione S-transferase as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 357:65–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wielgomas B, Krechniak J (2007) Effect of α-cypermethrin and chlorpyrifos in a 28-day study on free radical parameters and cholinesterase activity in Wister rats. Pol J Environ Stud 16:91–95

    CAS  Google Scholar 

  • Willis CL, Ray DE (2007) Antioxidants attenuate MK-801-induced cortical neurotoxicity in the rat. Neuro Toxicol 28:161–167

    CAS  Google Scholar 

  • Wright RO, Baccarelli A (2007) Metals and neurotoxicology. J Nutr 137:2809–2813

    CAS  PubMed  Google Scholar 

  • Xia Q, Feng X, Huang H, Du L, Yang X, Wang K (2011) Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem 117:38–47

    CAS  PubMed  Google Scholar 

  • Zhang P, Lokuta KM, Turner DE, Liu B (2010a) Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide; differential involvement of microglia and astroglia. J Neurochem 112:434–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W-H, Yang Y, Lin C-J, Wang Q (2010b) Antioxidant attenuation of ROS-involved cytotoxicity induced by paraquat on HL-60 cells. Health 2:253–261

    Google Scholar 

Download references

Acknowledgments

Editorial assistance by Thelma Chavez is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kovacic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kovacic, P., Somanathan, R. (2014). Nervous About Developments in Electron Transfer-Reactive Oxygen Species-Oxidative Stress Mechanisms of Neurotoxicity?. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_90

Download citation

Publish with us

Policies and ethics