Skip to main content

Posttranslational Modifications of Cardiac Ryanodine Receptors/Calcium Release Channels by Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)

  • Reference work entry
  • First Online:
Book cover Systems Biology of Free Radicals and Antioxidants

Abstract

Ryanodine receptors have a central role as the calcium release channels of the sarcoplasmic reticulum. In the heart, they allow the massive release of calcium that triggers heart muscle contraction. Ryanodine receptors are very sensitive to redox agents that produce reversible redox modifications, such as S-nitrosylation and S-glutathionylation of hyper-reactive cysteine residues. In this chapter, we will discuss the effects of some of these modifications and the available evidence for their physiological role and the possible enzymatic sources responsible for these modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GSH:

Glutathione

GSNO:

Nitrosoglutathione

GSSG:

Oxidized glutathione

HNO:

Nitroxyl

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RyR:

Ryanodine receptors

SERCA2a:

Sarcoplasmic reticulum Ca2+-ATPase a

SR:

Sarcoplasmic reticulum

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

References

  • Akki A, Zhang M, Murdoch C, Brewer A, Shah AM (2009) NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol 47:15–22

    Article  CAS  PubMed  Google Scholar 

  • Aracena P, Sanchez G, Donoso P, Hamilton SL, Hidalgo C (2003) S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels. J Biol Chem 278:42927–42935

    Article  CAS  PubMed  Google Scholar 

  • Aracena P, Tang W, Hamilton SL, Hidalgo C (2005) Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Antioxid Redox Signal 7:870–881

    Article  CAS  PubMed  Google Scholar 

  • Aracena-Parks P, Goonasekera SA, Gilman CP, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 281:40354–40368

    Article  CAS  PubMed  Google Scholar 

  • Balligand JL, Feron O, Dessy C (2009) ENOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89:481–534

    Article  CAS  PubMed  Google Scholar 

  • Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G (2001) Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 276:20144–20153

    Article  CAS  PubMed  Google Scholar 

  • Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84:387–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Gyorke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–H1236

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, vol xxiv, 2nd edn. Kluwer, Dordrecht, 427p

    Book  Google Scholar 

  • Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, Hofmann U, Bonz A, Frantz S, Cartwright EJ, Neyses L, Maier LS, Maier SK, Renne T, Schuh K, Ritter O (2007) Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 100:e32–e44

    Article  CAS  PubMed  Google Scholar 

  • Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  CAS  PubMed  Google Scholar 

  • Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong E, Tumbev V, Abramson J, Salama G, Stoyanovsky DA (2005) Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors. Cell Calcium 37:87–96

    Article  CAS  PubMed  Google Scholar 

  • Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci 16:553–567

    Article  CAS  Google Scholar 

  • Fukuto JM, Carrington SJ (2011) HNO signaling mechanisms. Antioxid Redox Signal 14:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7:381–391

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104:20612–20617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gyorke S, Carnes C (2008) Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 119:340–354

    Article  PubMed Central  PubMed  Google Scholar 

  • Ji Y, Akerboom TP, Sies H, Thomas JA (1999) S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys 362:67–78

    Article  CAS  PubMed  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  • Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim G, Venetucci L, Eisner DA, Casadei B (2008) Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res 77:256–264

    Article  CAS  PubMed  Google Scholar 

  • Liu VW, Huang PL (2008) Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. Cardiovasc Res 77:19–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marengo JJ, Hidalgo C, Bull R (1998) Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J 74:1263–1277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75:220–228

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ruiz A, Cadenas S, Lamas S (2011) Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 51:17–29

    Article  CAS  PubMed  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398

    Article  CAS  PubMed  Google Scholar 

  • Meszaros LG (2004) Suppression of spontaneous calcium release events by nitric oxide in rat ventricular myocytes. J Muscle Res Cell Motil 25:604–605

    PubMed  Google Scholar 

  • Michel T (2010) NO way to relax: the complexities of coupling nitric oxide synthase pathways in the heart. Circulation 121:484–486

    Article  PubMed  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohr S, Hallak H, de Boitte A, Lapetina EG, Brune B (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274:9427–9430

    Article  CAS  PubMed  Google Scholar 

  • Nabeebaccus A, Zhang M, Shah AM (2011) NADPH oxidases and cardiac remodelling. Heart Fail Rev 16:5–12

    Article  CAS  PubMed  Google Scholar 

  • Nediani C, Raimondi L, Borchi E, Cerbai E (2011) Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 14:289–331

    Article  CAS  PubMed  Google Scholar 

  • Otani H (2009) The role of nitric oxide in myocardial repair and remodeling. Antioxid Redox Signal 11:1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873

    Article  CAS  PubMed  Google Scholar 

  • Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–1445

    Article  CAS  PubMed  Google Scholar 

  • Sanchez G, Hidalgo C, Donoso P (2003) Kinetic studies of calcium-induced calcium release in cardiac sarcoplasmic reticulum vesicles. Biophys J 84:2319–2330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P (2005) Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol 39:982–991

    Article  CAS  PubMed  Google Scholar 

  • Sanchez G, Escobar M, Pedrozo Z, Macho P, Domenech R, Hartel S, Hidalgo C, Donoso P (2008) Exercise and tachycardia increase NADPH oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovasc Res 77:380–386

    Article  CAS  PubMed  Google Scholar 

  • Sartoretto JL, Kalwa H, Pluth MD, Lippard SJ, Michel T (2011) Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proc Natl Acad Sci USA 108:15792–15797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK, Drummond GR (2007) Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovasc Res 75:349–358

    Article  CAS  PubMed  Google Scholar 

  • Sengupta R, Holmgren A (2012) The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Biochim Biophys Acta 1820:689–700

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 98:11158–11162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Xu L, Eu JP, Stamler JS, Meissner G (2003) Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. J Biol Chem 278:8184–8189

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yamaguchi N, Xu L, Eu JP, Stamler JS, Meissner G (2008) Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 47:13985–13990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamargo J, Caballero R, Gomez R, Delpon E (2010) Cardiac electrophysiological effects of nitric oxide. Cardiovasc Res 87:593–600

    Article  CAS  PubMed  Google Scholar 

  • Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardounel AJ, Carnes CA, Gyorke S (2008) Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, Di Benedetto G, O'Rourke B, Gao WD, Wink DA, Toscano JP, Zaccolo M, Bers DM, Valdivia HH, Cheng H, Kass DA, Paolocci N (2007) Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ Res 100:96–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tung CC, Lobo PA, Kimlicka L, Van Petegem F (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–588

    Article  CAS  PubMed  Google Scholar 

  • Tziomalos K, Hare JM (2009) Role of xanthine oxidoreductase in cardiac nitroso-redox imbalance. Front Biosci 14:237–262

    Article  CAS  Google Scholar 

  • Voss AA, Lango J, Ernst-Russell M, Morin D, Pessah IN (2004) Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. J Biol Chem 279:34514–34520

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Viatchenko-Karpinski S, Sun J, Gyorke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Gyorke S, Ziolo MT (2010) Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 588:2905–2917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Okuda S, Oda T, Tokuhisa T, Tateishi H, Mochizuki M, Noma T, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2005) Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112:3633–3643

    Article  CAS  PubMed  Google Scholar 

  • Yuchi Z, Van Petegem F (2011) Common allosteric mechanisms between ryanodine and inositol-1,4,5-trisphosphate receptors. Channels (Austin) 5:120–123

    Article  CAS  Google Scholar 

  • Zahradnikova A, Minarovic I, Venema RC, Meszaros LG (1997) Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium 22:447–454

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230

    Article  CAS  PubMed  Google Scholar 

  • Ziolo MT, Kohr MJ, Wang H (2008) Nitric oxide signaling and the regulation of myocardial function. J Mol Cell Cardiol 45:625–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Fondo Nacional de Investigacion Cientifica y Tecnologica; grants 1080481, 1110257, and 1080497; by Fondecyt-FONDAP 15010006 and BNI P-09-015F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Donoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Donoso, P., Hidalgo, C., Sánchez, G. (2014). Posttranslational Modifications of Cardiac Ryanodine Receptors/Calcium Release Channels by Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_72

Download citation

Publish with us

Policies and ethics