Skip to main content

Structural and Metabolic Determinants of Mitochondrial Superoxide and its Detection Methods

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Mitochondria are one of the major sources of superoxide (O2 •−). Several mitochondrial sites have been implicated in O2 •− production. Complex I mainly releases O2 •− inside the mitochondrial matrix, while complex III produces O2 •− both inside and outside of mitochondria. Recent data suggest complex I as a main source of mitochondrial O2 •− under physiological conditions due to reverse electron transport (RET). In various organs, mitochondria have different metabolic activities and distribution in the cells. For example, in the brain, mitochondria may produce succinate from glutamate and/or pyruvate in transaminase reactions. In neuronal tissue, most mitochondria are located at synaptic junctions, and in the absence of neuronal activity, mitochondria become overcharged and may produce O2 •− due to the succinate-driven RET. In neurons and heart, mitochondrial succinate dehydrogenase is inhibited by endogenous oxaloacetate, which is the subject to phenotypic variations. Complex III-mediated O2 •− production normally is small but has been implicated in responses to hypoxia and inhibition of complex IV by NO. Mitochondrial SOD2 catalyzes the dismutation of O2 •− into neutral hydrogen peroxide (H2O2), which can diffuse through lipid membrane and detected outside of mitochondria. Therefore, production of mitochondrial reactive oxygen species (ROS) can be studied by following formation of H2O2. This chapter reviews ROS generation by mitochondria, metabolic regulation, and methods for measurements of mitochondrial ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

    Book  Google Scholar 

  • Andreev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 70(2):200–224

    Article  Google Scholar 

  • Angdisen J, Moore VD, Cline JM, Payne RM, Ibdah JA (2005) Mitochondrial trifunctional protein defects: molecular basis and novel therapeutic approaches. Curr Drug Targets Immune Endocr Metabol Disord 5(1):27–40

    Article  CAS  PubMed  Google Scholar 

  • Avadhani NG, Buetow DE (1972) Protein synthesis with isolated mitochondrial polysomes. Biochem Biophys Res Commun 46:773–778

    Article  CAS  PubMed  Google Scholar 

  • Balazs R (1965a) Control of glutamate metabolism. The effect of pyruvate. J Neurochem 12:63–76

    Article  CAS  PubMed  Google Scholar 

  • Balazs R (1965b) Control of glutamate oxidation in brain and liver mitochondrial systems. Biochem J 95:497–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioener Biomembr 31(4):347–366

    Article  CAS  Google Scholar 

  • Beghi E, Logroscino G, Hardiman O, Millul A, Mitchell D, Swingler R, Traynor BJ (2010) Amyotrophic lateral sclerosis, physical exercise, trauma, and sports: results of a population-based pilot case control study. Amyotroph Lateral Scler 11(3):289–292

    Article  PubMed Central  PubMed  Google Scholar 

  • Belaiche C, Holt A, Saada A (2009) Nonylphenol ethoxylate plastic additives inhibit mitochondrial respiratory chain complex I. Clin Chem 55:1883–1884

    Article  CAS  PubMed  Google Scholar 

  • Beltrán B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S (2000) The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A 97(26):14602–14607

    Article  PubMed Central  PubMed  Google Scholar 

  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54(3):311–314

    Article  CAS  PubMed  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    Article  CAS  PubMed  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(6):409–414

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Rad Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138

    Article  CAS  PubMed  Google Scholar 

  • Chang MC, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126:15392–15393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davey PJ, Haslam JM, Linnane AW (1970) Biogenesis of mitochondria. 12. The effects of aminoglycoside antibiotics on the mitochondrial and cytoplasmic protein-synthesizing systems of Saccharomyces cerevisiae. Arch Biochem Biophys 136:54–64

    Article  CAS  PubMed  Google Scholar 

  • Demel RA, Jansen JW, van Dijck PW, van Deenen LL (1977) The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta 465(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Desaulniers N, Moerland TS, Sidell BD (1996) High lipid content enhances the rate of oxygen diffusion through fish skeletal muscle. Am J Physiol 271(1 Pt 2):R42–R47

    CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130:9638–9639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic Targeting of Mitochondrial Superoxide in Hypertension. Circ Res 107:106–116.

    Google Scholar 

  • Dlaskova A, Hlavata L, Jezek J, Jezek P (2008) Mitochondrial complex I superoxide production is attenuated by uncoupling. Int J Biochem Cell Biol 40(10):2098–20109

    Article  CAS  PubMed  Google Scholar 

  • Doughan AK, Dikalov SI (2007) Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 9(11):1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Dzikovski BG, Livshits VA, Marsh D (2003) Oxygen permeation profile in lipid membranes: comparison with transmembrane polarity profile. Biophys J 85(2):1005–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23(13):5928–5935

    CAS  PubMed  Google Scholar 

  • Floryk D, Houstĕk J (1999) Tetramethyl rhodamine methyl ester (TMRM) is suitable for cytofluorometric measurements of mitochondrial membrane potential in cells treated with digitonin. Biosci Rep 19(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O*-2), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  PubMed  Google Scholar 

  • Held P (2012) An introduction to reactive oxygen species. Measurement of ROS in cells. White Paper. BioTek Instruments, Winooski

    Google Scholar 

  • Kelley EE, Khoo NK, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48(4):493–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klimova T, Chandel NS (2008) Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ 15(4):660–666

    Article  CAS  PubMed  Google Scholar 

  • Kopeikina-Tsiboukidou L, Deliconstantinos D (1983) Functional changes of rat brain mitochondrial enzymes induced by monomeric cholesterol. Int J Biochem 15(12):1403–1407

    Article  CAS  PubMed  Google Scholar 

  • Kudin AP, Malinska D, Kunz WS (2008) Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta 1777(7–8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. PNAS 103(20):7607–7612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert AJ, Brand MD (2004) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382(2):511–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2008) Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta 1777(5):397–403

    Article  CAS  PubMed  Google Scholar 

  • LaNoue KF, Williamson JR (1971) Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria. Metabolism 20(2):119–140

    Article  CAS  PubMed  Google Scholar 

  • LaNoue KF, Bryla J, Williamson JR (1972) Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. J Biol Chem 247:667–679

    CAS  PubMed  Google Scholar 

  • Liochev SL (1996) The role of iron-sulfur clusters in in vivo hydroxyl radical production. Free Radic Res 25(5):369–384

    Article  CAS  PubMed  Google Scholar 

  • Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011:809696

    Article  PubMed Central  PubMed  Google Scholar 

  • Madden TD, Vigo C, Bruckdorfer KR, Chapman D (1980) The incorporation of cholesterol into inner mitochondrial membranes and its effect on lipid phase transition. Biochim Biophys Acta 599(2):528–537

    Article  CAS  PubMed  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  • Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269(36):22459–22462

    CAS  PubMed  Google Scholar 

  • Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127:16652–16659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miwa S, Brand MD (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans 31(Pt 6):1300–1301

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Botti H, Batthyany C, Rubbo H, Radi R, Denicola D (2005) Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem 280(10):8850–8854

    Article  PubMed  Google Scholar 

  • Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757(9–10):1096–10109

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nalecz KA, Miecz D, Berezowski V, Cechelli R (2004) Carnitine: transport and physiological functions in brain. Molec Asp Med 25:551–567

    Article  CAS  Google Scholar 

  • Ohnishi ST, Ohnishi O, Muranaka S, Fujita H, Kimura H, Uemura K, K Y, Utsumi K (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J Bioenerg Biomembr 37:1–15

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Dikalov S, Shalbueva N, Taylor G, Sherer T, Greenamyre JT (2005) Rotenone model of Parkinson’s disease: multiple brain mitochondria dysfunctions after short-term systemic rotenone intoxication. J Biol Chem 280:42026–42035

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species and tissue specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292(2):C708–C718

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Schonfeld P, Dikalov S, Hemendinger R, Bonkovsky HL, Brooks BR (2009) The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J Biol Chem 284(21):14448–14456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panov AV, Vavilin VA, Lyalkhovich VV, Brooks BR, Bonkovsky HL (2010a) Effects of defatted bovine serum albumin on respiratory activities of brain and liver mitochondria from C57Bl/6G mice and Sprague Dawley rats. Bull Exp Biol Med 149(2):187–190

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Kubalik N, Brooks BR (2010b) Effects of palmitoyl carnitine on brain, spinal cord and heart mitochondria from wild type and transgenic SOD1 rats. 21st international symposium on ALS/MND, Orlando 11–13 December, 2010. Amyotroph Lateral Scler 11(Suppl 1):115

    Google Scholar 

  • Panov A, Dikalov S, Dambinova S (2011) Tissue-specific metabolic regulations of respiration and ROS production of the heart, brain and spinal cord mitochondria. In: FASEB meeting, Washington, DC, 10–14 April 2011

    Google Scholar 

  • Panov A, Steuerwald N, Vavilin V, Dambinova S, Bonkovsky HL (2012) Role of neuronal mitochondrial metabolic phenotype in pathogenesis of ALS. In: Maurer MH (ed) Amyotrophic lateral sclerosis. Intech Open Access Publisher, Croatia, pp 225–248. ISBN 979-953-307-199-1

    Google Scholar 

  • Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Power GG, Stegall H (1970) Solubility of gases in human red blood cell ghosts. J Appl Physiol 29:145–149

    CAS  PubMed  Google Scholar 

  • Reynafarje B, Costa LE, Lehninger AL (1985) Oxygen solubility in aqueous media determined by a kinetic method. Anal Biochem 145:406–418

    Article  CAS  PubMed  Google Scholar 

  • Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA 103:15038–15043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  • Schägger H (2001) Respiratory chain supercomplexes. IUBMB Life 52:119–128

    Article  PubMed  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed Central  PubMed  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29(2):169–202

    Article  CAS  PubMed  Google Scholar 

  • Stanley CJ, Perham RN (1980) Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method. Biochem J 191:147–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86(5):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Subczynski WK, Hyde JS (1983) Concentration of oxygen in lipid bilayers using a spin-label method. Biophys J 41(3):283–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794–798

    CAS  PubMed  Google Scholar 

  • Tretter L, Takacs K, Hegedus V, Adam-Vizi V (2007) Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem 100(3):650–663

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) ΔΨ-dependent and independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    Article  CAS  PubMed  Google Scholar 

  • Windrem DA, Plachy WZ (1980) The diffusion solubility of oxygen in lipid bilayers. Biochim Biophys Acta 600:655–665

    Article  CAS  PubMed  Google Scholar 

  • Wirmer J, Westhof E (2006) Molecular contacts between antibiotics and the 30S ribosomal particle. Methods Enzymol 415:180–202

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12(3):94–101

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Panov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Panov, A., Dikalov, S.I. (2014). Structural and Metabolic Determinants of Mitochondrial Superoxide and its Detection Methods. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_6

Download citation

Publish with us

Policies and ethics