Skip to main content

Effects of Reactive Oxygen Species on Sarco-/Endoplasmic Reticulum Ca2+ Pump in Pig Coronary Artery

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants
  • 198 Accesses

Abstract

Reactive oxygen species are intermediates in biochemical reactions which are essential for life. However, different types of reactive oxygen species accumulate in excessive amounts during ischemia–reperfusion and can cause tissue damage. In healthy coronary arteries, Ca2+ sequestered in the sarco-/endoplasmic reticulum (SER) by the SER Ca2+ pump (SERCA) plays a pivotal role in signal transduction. SERCA is readily damaged by high levels of reactive oxygen species accumulated in ischemic–reperfused coronary arteries leading to loss of arterial pliability. This chapter gives background on reactive oxygen species and their effects on SERCA and coronary artery contractility and also outlines the unresolved problems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang II:

Angiotensin II

Ca2+i:

Cytosolic [Ca2+]

ET:

Endothelin

IP3 :

Inositol 1,4,5-trisphosphate

NCX:

Na+-Ca2+-exchanger

PM:

Plasma membrane

ROS:

Reactive oxygen species

SER:

Sarco-/endoplasmic reticulum

SERCA:

SER Ca2+ pump

References

  • Barnes KA, Samson SE, Grover AK (2000) Sarco/endoplasmic reticulum Ca2+−pump isoform SERCA3a is more resistant to superoxide damage than SERCA2b. Mol Cell Biochem 203:17–21

    Article  CAS  PubMed  Google Scholar 

  • Bergendi L, Benes L, Durackova Z, Ferencik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Briasoulis A, Tousoulis D, Antoniades C, Stefanadis C (2009) The oxidative stress menace to coronary vasculature: any place for antioxidants? Curr Pharm Des 15:3078–3090

    Article  CAS  PubMed  Google Scholar 

  • Calloway N, Vig M, Kinet JP, Holowka D, Baird B (2009) Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 20:389–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Mehta JL (2004) Role of oxidative stress in coronary heart disease. Indian Heart J 56:163–173

    PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Cook S (2006) Coronary artery disease, nitric oxide and oxidative stress: the “Yin-Yang” effect – a Chinese concept for a worldwide pandemic. Swiss Med Wkly 136:103–113

    CAS  PubMed  Google Scholar 

  • Davis KA, Samson SE, Best K, Mallhi KK, Szewczyk M, Wilson JX, Kwan CY, Grover AK (2006) Ca2+−mediated ascorbate release from coronary artery endothelial cells. Br J Pharmacol 147:131–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis KA, Samson SE, Hammel KE, Kiss L, Fulop F, Grover AK (2009) Functional linkage of Na+−Ca2+−exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 13:1775–1783

    Article  PubMed  Google Scholar 

  • Demirbag R, Gur M, Yilmaz R, Kunt AS, Erel O, Andac MH (2007) Influence of oxidative stress on the development of collateral circulation in total coronary occlusions. Int J Cardiol 116:14–19

    Article  PubMed  Google Scholar 

  • Elmoselhi AB, Grover AK (1997) Endothelin contraction in pig coronary artery: receptor types and Ca(2+)-mobilization. Mol Cell Biochem 176:29–33

    Article  CAS  PubMed  Google Scholar 

  • Elmoselhi AB, Grover AK (1999) Peroxide sensitivity of endothelin responses in coronary artery smooth muscle: ET(A) vs. ET(B) pathways. Mol Cell Biochem 202:47–52

    Article  CAS  PubMed  Google Scholar 

  • Elmoselhi AB, Butcher A, Samson SE, Grover AK (1994) Free radicals uncouple the sodium pump in pig coronary artery. Am J Physiol 266:C720–C728

    CAS  PubMed  Google Scholar 

  • Elmoselhi AB, Samson SE, Grover AK (1996) SR Ca2+ pump heterogeneity in coronary artery: free radicals and IP3-sensitive and -insensitive pools. Am J Physiol 271:C1652–C1659

    CAS  PubMed  Google Scholar 

  • Floyd R, Wray S (2007) Calcium transporters and signalling in smooth muscles. Cell Calcium 42:467–476

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Khan I (1992) Calcium pump isoforms: diversity, selectivity and plasticity. Review article. Cell Calcium 13:9–17

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE (1988) Effect of superoxide radical on Ca2+ pumps of coronary artery. Am J Physiol 255:C297–C303

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE (1989) Protection of Ca pump of coronary artery against inactivation by superoxide radical. Am J Physiol 256:C666–C673

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE (1993) Coronary artery acidosis: pH and calcium pump stability. Am J Physiol 265:H1486–H1492

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE (1997) Peroxide resistance of ER Ca2+ pump in endothelium: implications to coronary artery function. Am J Physiol 273:C1250–C1258

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE, Fomin VP (1992) Peroxide inactivates calcium pumps in pig coronary artery. Am J Physiol 263:H537–H543

    CAS  PubMed  Google Scholar 

  • Grover AK, Fomin VP, Samson SE (1994) Angiotensin II contractions in coronary artery. Nature of receptors and calcium pools. Mol Cell Biochem 135:11–19

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE, Fomin VP, Werstiuk ES (1995) Effects of peroxide and superoxide on coronary artery: ANG II response and sarcoplasmic reticulum Ca2+ pump. Am J Physiol 269:C546–C553

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE, Misquitta CM (1997) Sarco(endo)plasmic reticulum Ca2+ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. Am J Physiol 273:C420–C425

    CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE, Misquitta CM, Elmoselhi AB (1999) Effects of peroxide on contractility of coronary artery rings of different sizes. Mol Cell Biochem 194:159–164

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Hui J, Samson SE (2000) Catalase activity in coronary artery endothelium protects smooth muscle against peroxide damage. Eur J Pharmacol 387:87–91

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Kwan CY, Samson SE (2003a) Effects of peroxynitrite on sarco/endoplasmic reticulum Ca2+ pump isoforms SERCA2b and SERCA3a. Am J Physiol Cell Physiol 285:C1537–C1543

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Samson SE, Robinson S, Kwan CY (2003b) Effects of peroxynitrite on sarcoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle. Am J Physiol Cell Physiol 284:C294–C301

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1997) Antioxidants and human disease: a general introduction. Nutr Rev 55:S44–S49

    Article  CAS  PubMed  Google Scholar 

  • Hewavitharana T, Deng X, Soboloff J, Gill DL (2007) Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium 42:173–182

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Sandhu V, Misquitta CM, Grover AK (2000) SERCA pump isoform expression in endothelium of veins and arteries: every endothelium is not the same. Mol Cell Biochem 203:11–15

    Article  CAS  PubMed  Google Scholar 

  • Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406:365–382

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi NR, Tchivilev I, Runge M (2006) Genetic markers of oxidative stress and coronary atherosclerosis. Curr Atheroscler Rep 8:177–183

    Article  CAS  PubMed  Google Scholar 

  • Misquitta CM, Mack DP, Grover AK (1999a) Sarco/endoplasmic reticulum Ca2+ (SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium 25:277–290

    Article  CAS  PubMed  Google Scholar 

  • Misquitta CM, Sing A, Grover AK (1999b) Control of sarcoplasmic/endoplasmic-reticulum Ca2+ pump expression in cardiac and smooth muscle. Biochem J 338(Pt 1):167–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pande J, Dimmers G, Akolkar G, Skelley L, Samson SE, Grover AK (2012) Store operated Ca2+ entry dependent contraction of coronary artery smooth muscle: inhibition by peroxide pretreatment. Cell Calcium 51:149–154

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (2007) Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42:103–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt T, Zaib F, Samson SE, Kwan CY, Grover AK (2004) Peroxynitrite resistance of sarco/endoplasmic reticulum Ca2+ pump in pig coronary artery endothelium and smooth muscle. Cell Calcium 36:77–82

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk MM, Davis KA, Samson SE, Simpson F, Rangachari PK, Grover AK (2007) Ca2+−pumps and Na2+−Ca2+−exchangers in coronary artery endothelium versus smooth muscle. J Cell Mol Med 11:129–138

    Article  CAS  PubMed  Google Scholar 

  • Walia M, Sormaz L, Samson SE, Lee RM, Grover AK (2000) Effects of hydrogen peroxide on pig coronary artery endothelium. Eur J Pharmacol 400:249–253

    Article  CAS  PubMed  Google Scholar 

  • Walia M, Kwan CY, Grover AK (2003a) Effects of free radicals on coronary artery. Med Princ Pract 12:1–9

    Article  PubMed  Google Scholar 

  • Walia M, Samson SE, Schmidt T, Best K, Kwan CY, Grover AK (2003b) Effects of peroxynitrite on pig coronary artery smooth muscle. Cell Calcium 34:69–74

    Article  CAS  PubMed  Google Scholar 

  • Walia M, Samson SE, Schmidt T, Best K, Whittington M, Kwan CY, Grover AK (2003c) Peroxynitrite and nitric oxide differ in their effects on pig coronary artery smooth muscle. Am J Physiol Cell Physiol 284:C649–C657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid from the Heart & Stroke Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Pande, J., Grover, A.K. (2014). Effects of Reactive Oxygen Species on Sarco-/Endoplasmic Reticulum Ca2+ Pump in Pig Coronary Artery. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_51

Download citation

Publish with us

Policies and ethics