Skip to main content

Reactive Oxygen Species (ROS) Signaling in Cardiac Remodeling and Failure

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Despite major advances in treatment, chronic heart failure (CHF) remains one of the leading causes of mortality and morbidity in the western world. Although the stimuli for CHF are wide ranging, the underlying pathophysiological response, known as cardiac remodeling, is broadly similar. The process of cardiac remodeling is characterized by a series of initially adaptive structural and functional alterations which become progressively maladaptive and ultimately lead to CHF. Oxidative stress and reactive oxygen species (ROS) play a well-established role in the development and progression of cardiac remodeling. ROS include both free radicals (e.g., superoxide, hydroxyl) and oxidants (e.g., peroxynitrite, hydrogen peroxide) and exert important physiological actions, in addition to their well-documented harmful effects. Increased ROS production has been widely reported in experimental and clinical CHF and has been linked to several key remodeling processes such as cardiomyocyte hypertrophy, apoptosis, contractile dysfunction, and extracellular matrix remodeling. It is now apparent that myocardial ROS function as key regulators of intracellular signaling that are capable of altering the activity of numerous molecules and pathways to exert subtle modulatory effects on cardiac remodeling. Indeed, several key signaling pathways involved in CHF pathogenesis, including MAPKs, Akt, NF-kB, and AP-1 are known to be redox sensitive, with varying thresholds for activation. The downstream effects of ROS appear to be critically dependent upon a number of factors including the source of ROS, cellular localization, temporal regulation, and stimulus for production, which dictate the highly specific and targeted phenotypic changes associated with cardiac remodeling. Although the precise mechanisms underlying ROS-dependent modulation of myocardial signaling remain unknown, it is plainly evident that a more complete delineation of these pathways in cardiac remodeling and CHF holds clear potential for the identification of improved therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonso-Jaume MA, Bergman MR, Mahimkar R, Cheng S, Jin ZQ, Karliner JS, Lovett DH (2006) Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB. Am J Physiol Heart Circ Physiol 291:H1838–H1846

    CAS  PubMed  Google Scholar 

  • Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS (2001) Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:131–139

    CAS  PubMed  Google Scholar 

  • Anilkumar N, Weber R, Zhang M, Brewer A, Shah AM (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler, Thromb Vascular Biol 28:1347–1354

    CAS  Google Scholar 

  • Anilkumar N, Sirker A, Shah AM (2009) Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci 14:3168–3187

    CAS  Google Scholar 

  • Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250

    CAS  PubMed  Google Scholar 

  • Aragno M, Mastrocola R, Alloatti G, Vercellinatto I, Bardini P, Geuna S, Catalano MG, Danni O, Boccuzzi G (2008) Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats. Endocrinology 149:380–388

    CAS  PubMed  Google Scholar 

  • Askari AT, Brennan ML, Zhou X, Drinko J, Morehead A, Thomas JD, Topol EJ, Hazen SL, Penn MS (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. J Biol Chem 272:217–221

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Belevych A, Kubalova Z, Terentyev D, Hamlin RL, Carnes CA, Gyorke S (2007) Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophys J 93:4083–4092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002) Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    CAS  PubMed  Google Scholar 

  • Beswick RA, Dorrance AM, Leite R, Webb RC (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38:1107–1111

    CAS  PubMed  Google Scholar 

  • Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 106:14385–14390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Gorlach A (2007) Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site. Arterioscler, Thromb Vascular Biol 27:755–761

    CAS  Google Scholar 

  • Boström P, Mann N, Wu J, Quintero PA, Plovie ER, Panáková D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A (2010) C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083

    PubMed Central  PubMed  Google Scholar 

  • Brilla C, Pick R, Tan L, Janicki J, Weber K (1990) Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67:1355–1364

    CAS  PubMed  Google Scholar 

  • Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    CAS  PubMed  Google Scholar 

  • Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF (2000) The MEK1–ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buss SJ, Riffel JH, Malekar P, Hagenmueller M, Asel C, Zhang M, Weiss C, Katus HA, Hardt SE (2012) Chronic Akt blockade aggravates pathological hypertrophy and inhibits physiological hypertrophy. Am J Physiol Heart Circ Physiol 302:H420–H430

    CAS  PubMed  Google Scholar 

  • Buys ES, Raher MJ, Blake SL, Neilan TG, Graveline AR, Passeri JJ, Llano M, Perez-Sanz TM, Ichinose F, Janssens S (2007) Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol 293:H620–H627

    CAS  PubMed  Google Scholar 

  • Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805

    CAS  PubMed  Google Scholar 

  • Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104:2407–2411

    CAS  PubMed  Google Scholar 

  • Cave A, Grieve D, Johar S, Zhang M, Shah AM (2005) NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond B Biol Sci 360:2327–2334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakrabarti S, Varghese S, Vitseva O, Tanriverdi K, Freedman JE (2005) CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler Thromb Vasc Biol 25:2428–2434

    CAS  PubMed  Google Scholar 

  • Chen AF, Chen DD, Daiber A, Faraci FM, Li H, Rembold CM, Laher I (2012) Free radical biology of the cardiovascular system. Clin Sci (Lond) 123:73–91

    CAS  Google Scholar 

  • Chen C, Chai H, Wang X, Jiang J, Jamaluddin MS, Liao D, Zhang Y, Wang H, Bharadwaj U, Zhang S, Li M, Lin P, Yao Q (2008) Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood 112:3205–3216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen JX, Zeng H, Tuo QH, Yu H, Meyrick B, Aschner JL (2007) NADPH oxidase modulates myocardial Akt, ERK1/2 activation, and angiogenesis after hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 292:H1664–H1674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen DD, Dong YG, Liu D, He JG (2009) Epigallocatechin-3-gallate attenuates cardiac hypertrophy partly via MAPKs signals in hypertensive rats. Clin Exp Pharmacol Physiol 36:925–932

    CAS  PubMed  Google Scholar 

  • Cheng H, Force T (2010) Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis 53:114–120

    CAS  PubMed  Google Scholar 

  • Cheng TH, Cheng PY, Shih NL, Chen IB, Wang DL, Chen JJ (2003) Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol 42:1845–1854

    CAS  PubMed  Google Scholar 

  • Cheng T, Shih N, Chen S, Wang D, Chen J (1999) Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes. Cardiovasc Res 41:654–662

    CAS  PubMed  Google Scholar 

  • Chess DJ, Xu W, Khairallah R, O'Shea KM, Kop WJ, Azimzadeh AM, Stanley WC (2008) The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet. Am J Physiol Heart Circ Physiol 295:H2223–H2230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang WC, Chien CT, Lin WW, Lin SL, Chen YM, Lai CF, Wu KD, Chao J, Tsai TJ (2006) Early activation of bradykinin B2 receptor aggravates reactive oxygen species generation and renal damage in ischemia/reperfusion injury. Free Radic Biol Med 41:1304–1314

    CAS  PubMed  Google Scholar 

  • Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure. Circulation 107:3133–3140

    CAS  PubMed  Google Scholar 

  • Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, Marshall C, Sugden PH (2001) Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol 21:1173–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling - concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582

    CAS  PubMed  Google Scholar 

  • Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S, Waltenberger J, Galeotti T (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem 277:3101–3108

    CAS  PubMed  Google Scholar 

  • Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, Buring JE, Manson JE (2007) A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch Intern Med 167:1610–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook SA, Sugden PH, Clerk A (1999) Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429–1434

    CAS  PubMed  Google Scholar 

  • Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status. J Biol Chem 284:1136–1144

    CAS  PubMed  Google Scholar 

  • Creemers EE, Cleutjens JP, Smits JF, Daemen MJ (2001) Matrix metalloproteinase inhibition after myocardial infarction a new approach to prevent heart failure? Circ Res 89:201–210

    CAS  PubMed  Google Scholar 

  • Dai DF, Hsieh EJ, Liu Y, Chen T, Beyer RP, Chin MT, MacCoss MJ, Rabinovitch PS (2012) Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 93:79–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Date M, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, Hirotani S, Matsumura Y, Hori M, Tada M (2002) The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol 39:907–912

    CAS  PubMed  Google Scholar 

  • De Jong J, Schoemaker R, De Jonge R, Bernocchi P, Keijzer E, Harrison R, Sharma H, Ceconi C (2000) Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J Mol Cell Cardiol 32:2083–2089

    PubMed  Google Scholar 

  • Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103:2055–2059

    CAS  PubMed  Google Scholar 

  • Dhalla AK, Hill MF, Singal PK (1996) Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28:506–514

    CAS  PubMed  Google Scholar 

  • Dieterich S, Bieligk U, Beulich K, Hasenfuss G, Prestle J (2000) Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation 101:33–39

    CAS  PubMed  Google Scholar 

  • Dikalov S (2011) Crosstalk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45:1340–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolezal T (2006) Review: Imidapril in heart failure. J Renin Angiotensin Aldosterone Syst 7:146–154

    CAS  PubMed  Google Scholar 

  • Dong F, Zhang X, Ren J (2006) Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor–NADPH oxidase pathway. Hypertension 47:222–229

    CAS  PubMed  Google Scholar 

  • Duncan JG, Ravi R, Stull LB, Murphy AM (2005) Chronic xanthine oxidase inhibition prevents myofibrillar protein oxidation and preserves cardiac function in a transgenic mouse model of cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H1512–H1518

    CAS  PubMed  Google Scholar 

  • Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, Kass DA, Marban E, Hare JM (1999) Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 85:437–445

    CAS  PubMed  Google Scholar 

  • El Azzouzi H, Van Oort RJ, Van Der Nagel R, Sluiter W, Bergmann MW, De Windt LJ (2010) MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload. Eur J Heart Fail 12:4–12

    PubMed  Google Scholar 

  • Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Muller M, Fuchs M, Hilfiker-Kleiner D, Hornig B, Drexler H (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110:2175–2179

    CAS  PubMed  Google Scholar 

  • Fan H, Sun B, Gu Q, Lafond-Walker A, Cao S, Becker LC (2002) Oxygen radicals trigger activation of NF-κB and AP-1 and upregulation of ICAM-1 in reperfused canine heart. Am J Physiol Heart Circ Physiol 282:H1778–H1786

    CAS  PubMed  Google Scholar 

  • Fernandes R, Dreher G, Schenkel P, Fernandes T, Ribeiro M, Araujo A, Belló‐Klein A (2011) Redox status and pro‐survival/pro‐apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 29:617–623

    CAS  PubMed  Google Scholar 

  • Feuerstein GZ, Young PR (2000) Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc Res 45:560–569

    CAS  PubMed  Google Scholar 

  • Fiebeler A, Schmidt F, Müller DN, Park JK, Dechend R, Bieringer M, Shagdarsuren E, Breu V, Haller H, Luft FC (2001) Mineralocorticoid receptor affects AP-1 and nuclear factor-κB activation in angiotensin II–induced cardiac injury. Hypertension 37:787–793

    CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Force T, Hajjar R, Del Monte F, Rosenzweig A, Choukroun G (1999) Signaling pathways mediating the response to hypertrophic stress in the heart. Gene Expr 7:337–348

    CAS  PubMed  Google Scholar 

  • Francis GS (2001) Pathophysiology of chronic heart failure. Am J Med 110:37S–46S

    PubMed  Google Scholar 

  • Frantz S, Fraccarollo D, Wagner H, Behr TM, Jung P, Angermann CE, Ertl G, Bauersachs J (2003) Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 57:749–756

    CAS  PubMed  Google Scholar 

  • Frantz S, Hu K, Bayer B, Gerondakis S, Strotmann J, Adamek A, Ertl G, Bauersachs J (2006) Absence of NF-κB subunit p50 improves heart failure after myocardial infarction. FASEB J 20:1918–1920

    CAS  PubMed  Google Scholar 

  • Frantz S, Stoerk S, Ok S, Wagner H, Angermann CE, Ertl G, Bauersachs J (2004) Effect of chronic heart failure on nuclear factor kappa B in peripheral leukocytes. Am J Cardiol 94:671–673

    CAS  PubMed  Google Scholar 

  • Fu YC, Yin SC, Chi CS, Hwang B, Hsu SL (2006) Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Apoptosis 11:2053–2063

    CAS  PubMed  Google Scholar 

  • Gaitanaki C, Papatriantafyllou M, Stathopoulou K, Beis I (2006) Effects of various oxidants and antioxidants on the p38-MAPK signalling pathway in the perfused amphibian heart. Mol Cell Biochem 291:107–117

    CAS  PubMed  Google Scholar 

  • Gao X, Zhang H, Belmadani S, Wu J, Xu X, Elford H, Potter BJ, Zhang C (2008) Role of TNF-α-induced reactive oxygen species in endothelial dysfunction during reperfusion injury. Am J Physiol Heart Circ Physiol 295:H2242–H2249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garlie JB, Hamid T, Gu Y, Ismahil MA, Chandrasekar B, Prabhu SD (2011) Tumor necrosis factor receptor 2 signaling limits β-adrenergic receptor-mediated cardiac hypertrophy in vivo. Basic Res Cardiol 106:1193–1205

    CAS  PubMed  Google Scholar 

  • Gaspar-Pereira S, Fullard N, Townsend PA, Banks PS, Ellis EL, Fox C, Maxwell AG, Murphy LB, Kirk A, Bauer R (2012) The NF-κB subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am J Pathol 180:929–939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gavin A, Struthers A (2005) Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart 91:749–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghatak A, Brar MJS, Agarwal A, Goel N, Rastogi AK, Vaish AK, Sircar AR, Chandra M (1996) Oxy free radical system in heart failure and therapeutic role of oral vitamin E. Int J Cardiol 57:119–127

    CAS  PubMed  Google Scholar 

  • Gill JS, McKenna WJ, Camm AJ (1995) Free radicals irreversibly decrease Ca2 currents in isolated guinea-pig ventricular myocytes. Eur J Pharmacol 292:337–340

    CAS  PubMed  Google Scholar 

  • Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, Gu Y, Nath AK, Huang Y, Hickey R (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 98:5780–5785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giordano F (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • GISSI-3 (1994) GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico. Lancet 343:1115–1122

    Google Scholar 

  • Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108:1122–1132

    CAS  PubMed  Google Scholar 

  • Gradman AH, Alfayoumi F (2006) From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis 48:326–341

    PubMed  Google Scholar 

  • Grewal IS, Flavell RA (1997) The CD40 ligand. At the center of the immune universe? Immunol Res 16:59–70

    CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826

    CAS  PubMed  Google Scholar 

  • Gupta MK, Neelakantan T, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, Mukhopadhyay CK, Goswami SK (2006) An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxid Redox Signal 8:1081–1093

    CAS  PubMed  Google Scholar 

  • Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-κB. J Mol Biol 375:637–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Young D, Sen S (2005) Inhibition of NF-κB induces regression of cardiac hypertrophy, independent of blood pressure control, in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 289:H20–H29

    CAS  PubMed  Google Scholar 

  • Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY (2012) Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens 25:690–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamblin M, Smith HM, Hill MF (2007) Dietary supplementation with vitamin E ameliorates cardiac failure in type I diabetic cardiomyopathy by suppressing myocardial generation of 8-iso-prostaglandin F2α and oxidized glutathione. J Card Fail 13:884–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamid T, Guo SZ, Kingery JR, Xiang X, Dawn B, Prabhu SD (2011) Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure. Cardiovasc Res 89:129–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-κB and inflammatory activation. Circulation 119:1386–1397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  • Häuselmann SP, Rosc-Schlüter BI, Lorenz V, Plaisance I, Brink M, Pfister O, Kuster GM (2011) β1-Integrin is up-regulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free Radic Biol Med 51:609–618

    PubMed  Google Scholar 

  • Hawkins BJ, Solt LA, Chowdhury I, Kazi AS, Abid MR, Aird WC, May MJ, Foskett JK, Madesh M (2007) G protein-coupled receptor Ca2 -linked mitochondrial reactive oxygen species are essential for endothelial/leukocyte adherence. Mol Cellular Biol 27:7582–7593

    CAS  Google Scholar 

  • Hayashi H, Kobara M, Abe M, Tanaka N, Gouda E, Toba H, Yamada H, Tatsumi T, Nakata T, Matsubara H (2008) Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res 31:363–375

    CAS  PubMed  Google Scholar 

  • Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Google Scholar 

  • Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R, Vaikunth S, Duncan SA, Aronow BJ (2007) Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest 117:3198–3210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herzig TC, Jobe SM, Aoki H, Molkentin JD, Cowley AW, Izumo S, Markham BE (1997) Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci USA 94:7543–7548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    CAS  PubMed  Google Scholar 

  • Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nübe O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    CAS  PubMed  Google Scholar 

  • Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    CAS  PubMed  Google Scholar 

  • Hidalgo C, Donoso P (2008) Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1275–1312

    CAS  PubMed  Google Scholar 

  • Higuchi M, Manna SK, Sasaki R, Aggarwal BB (2002) Regulation of the activation of nuclear factor κB by mitochondrial respiratory function: Evidence for the reactive oxygen species-dependent and-independent pathways. Antioxid Redox Signal 4:945–955

    CAS  PubMed  Google Scholar 

  • Hikoso S, Yamaguchi O, Nakano Y, Takeda T, Omiya S, Mizote I, Taneike M, Oka T, Tamai T, Oyabu J (2009) The IκB kinase β/nuclear factor κB signaling pathway protects the heart from hemodynamic stress mediated by the regulation of manganese superoxide dismutase expression. Circ Res 105:70–79

    CAS  PubMed  Google Scholar 

  • Hilfiker-Kleiner D, Hilfiker A, Castellazzi M, Wollert KC, Trautwein C, Schunkert H, Drexler H (2006) JunD attenuates phenylephrine-mediated cardiomyocyte hypertrophy by negatively regulating AP-1 transcriptional activity. Cardiovasc Res 71:108–117

    CAS  PubMed  Google Scholar 

  • Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195

    CAS  PubMed  Google Scholar 

  • Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hingtgen SD, Li Z, Kutschke W, Tian X, Sharma RV, Davisson RL (2010) Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol Genomics 41:127–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, Sharma RV, Engelhardt JF, Davisson RL (2006) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26:180–191

    CAS  PubMed  Google Scholar 

  • Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105:509–515

    CAS  PubMed  Google Scholar 

  • Hu CM, Chen YH, Chiang MT, Chau LY (2004) Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation 110:309–316

    CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

    CAS  PubMed  Google Scholar 

  • Irukayama-Tomobe Y, Miyauchi T, Sakai S, Kasuya Y, Ogata T, Takanashi M, Iemitsu M, Sudo T, Goto K, Yamaguchi I (2004) Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-α partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation 109:904–910

    CAS  PubMed  Google Scholar 

  • Ismahil MA, Hamid T, Haberzettl P (2011) Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 301:H2050–H2060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jankowska EA, von Haehling S, Czarny A, Zaczynska E, Kus A, Anker SD, Banasiak W, Ponikowski P (2005) Activation of the NF-κB system in peripheral blood leukocytes from patients with chronic heart failure. Eur J Heart Fail 7:984–990

    CAS  PubMed  Google Scholar 

  • Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    PubMed  Google Scholar 

  • Jindal E, Goswami SK (2011) In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radic Biol Med 51:1512–1521

    CAS  PubMed  Google Scholar 

  • Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20:1546–1548

    CAS  PubMed  Google Scholar 

  • Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang PM, Izumo S (2000) Apoptosis and heart failure: a critical review of the literature. Circ Res 86:1107–1113

    CAS  PubMed  Google Scholar 

  • Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    CAS  PubMed  Google Scholar 

  • Kawakami M, Okabe E (1998) Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol 53:497–503

    CAS  PubMed  Google Scholar 

  • Kawano S, Kubota T, Monden Y, Tsutsumi T, Inoue T, Kawamura N, Tsutsui H, Sunagawa K (2006) Blockade of NF-κB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol 291:H1337–H1344

    CAS  PubMed  Google Scholar 

  • Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16:474–486

    CAS  PubMed  Google Scholar 

  • Kim NN, Villegas S, Summerour SR, Villarreal FJ (1999) Regulation of cardiac fibroblast extracellular matrix production by bradykinin and nitric oxide. J Mol Cell Cardiol 31:457–466

    CAS  PubMed  Google Scholar 

  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005) Mitochondria-derived reactive oxygen species and vascular MAP kinases; comparison of angiotensin II and diazoxide. Hypertension 45:438–444

    CAS  PubMed  Google Scholar 

  • Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

    CAS  PubMed  Google Scholar 

  • Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    CAS  PubMed  Google Scholar 

  • Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, Kang PM (2005) Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiol Genomics 21:34–42

    CAS  PubMed  Google Scholar 

  • Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT (2002) Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282:L1324–L1329

    CAS  PubMed  Google Scholar 

  • Kunsch C, Medford RM (1999) Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766

    CAS  PubMed  Google Scholar 

  • Kurrelmeyer K, Kalra D, Bozjurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21:I14–I19

    CAS  PubMed  Google Scholar 

  • Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS (2010) Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 48:1182–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35:615–621

    CAS  PubMed  Google Scholar 

  • Lakshminarayanan V, Lewallen M, Frangogiannis NG, Evans AJ, Wedin KE, Michael LH, Entman ML (2001) Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 159:1301–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    CAS  PubMed  Google Scholar 

  • Lancel S, Qin F, Lennon SL, Zhang J, Tong X, Mazzini MJ, Kang YJ, Siwik DA, Cohen RA, Colucci WS (2010) Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ Res 107:228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    CAS  PubMed  Google Scholar 

  • Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    CAS  PubMed  Google Scholar 

  • Lee SB, Bae IH, Bae YS, Um HD (2006) Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death. J Biol Chem 281:36228–36235

    CAS  PubMed  Google Scholar 

  • Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial. JAMA 294:56–65

    CAS  PubMed  Google Scholar 

  • Leyva F, Anker S, Godsland I, Teixeira M, Hellewell P, Kox W, Poole-Wilson P, Coats A (1998) Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J 19:1814–1822

    CAS  PubMed  Google Scholar 

  • Li HL, Wang AB, Huang Y, Liu DP, Wei C, Williams GM, Zhang CN, Liu G, Liu YQ, Hao DL (2005) Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways. Free Radic Biol Med 38:243–257

    PubMed  Google Scholar 

  • Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    CAS  PubMed  Google Scholar 

  • Li S, Li X, Zheng H, Xie B, Bidasee KR, Rozanski GJ (2008) Pro-oxidant effect of transforming growth factor-β1 mediates contractile dysfunction in rat ventricular myocytes. Cardiovasc Res 77:107–117

    CAS  PubMed  Google Scholar 

  • Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Kao RL, Li C (2004) NF-κB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 287:H1712–H1720

    CAS  PubMed  Google Scholar 

  • Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    CAS  PubMed  Google Scholar 

  • Litwin SE, Grossman W (1993) Diastolic dysfunction as a cause of heart failure. J Am Coll Cardiol 22:A49–A55

    Google Scholar 

  • Liu Q, Chen Y, Auger-Messier M, Molkentin JD (2012) Interaction Between NFκB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res 110:1077–1086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lonn E, Yusuf S, Hoogwerf B, Pogue J, Yi Q, Zinman B, Bosch J, Dagenais G, Mann JF, Gerstein HC (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes. Diabetes Care 25:1919–1927

    CAS  PubMed  Google Scholar 

  • Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan MJ, Shah AM (2008) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51:319–325

    CAS  PubMed  Google Scholar 

  • Lu Z, Xu X, Hu X, Zhu G, Zhang P, Van Deel ED, French JP, Fassett JT, Oury TD, Bache RJ (2008) Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction. Hypertension 51:19–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S, Abboud HE (2012) Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 302:C597–C604

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacCarthy PA, Grieve DJ, Li JM, Dunster C, Kelly FJ, Shah AM (2001) Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 104:2967–2974

    CAS  PubMed  Google Scholar 

  • Machida Y, Kubota T, Kawamura N, Funakoshi H, Ide T, Utsumi H, Li YY, Feldman AM, Tsutsui H, Shimokawa H (2003) Overexpression of tumor necrosis factor-α increases production of hydroxyl radical in murine myocardium. Am J Physiol Heart Circ Physiol 284:H449–H455

    CAS  PubMed  Google Scholar 

  • Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A (1998) Elevated levels of 8-iso-prostaglandin F2α in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539

    CAS  PubMed  Google Scholar 

  • Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    CAS  PubMed  Google Scholar 

  • Mann DL, McMurray JJV, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L (2004) Targeted anticytokine therapy in patients with chronic heart failure. Circulation 109:1594–1602

    CAS  PubMed  Google Scholar 

  • Marchioli R, Levantesi G, Macchia A, Marfisi RM, Nicolosi GL, Tavazzi L, Tognoni G, Valagussa F (2006) Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI-Prevenzione trial. J Cardiovasc Med (Hagerstown) 7:347–350

    Google Scholar 

  • Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    CAS  PubMed  Google Scholar 

  • Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717

    CAS  PubMed  Google Scholar 

  • Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T (2006) Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113:1779–1786

    CAS  PubMed  Google Scholar 

  • Maulik N, Goswami S, Galang N, Das DK (1999) Differential regulation of Bcl-2, AP-1 and NF-κB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Lett 443:331–336

    CAS  PubMed  Google Scholar 

  • Maulik N, Sasaki H, Addya S, Das D (2000) Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett 485:7–12

    CAS  PubMed  Google Scholar 

  • McMurray J, Chopra M, Abdullah I, Smith W, Dargie H (1993a) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14:1493–1498

    CAS  PubMed  Google Scholar 

  • McMurray J, McDonagh T, Morrison C, Dargie H (1993b) Trends in hospitalization for heart failure in Scotland 1980–1990. Eur Heart J 14:1158–1162

    CAS  PubMed  Google Scholar 

  • McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, Harrison DG (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297

    CAS  PubMed  Google Scholar 

  • Mercuro G, Cadeddu C, Piras A, Dessi M, Madeddu C, Deidda M, Serpe R, Massa E, Mantovani G (2007) Early epirubicin-induced myocardial dysfunction revealed by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist 12:1124–1133

    CAS  PubMed  Google Scholar 

  • Minhas KM, Saraiva RM, Schuleri KH, Lehrke S, Zheng M, Saliaris AP, Berry CE, Vandegaer KM, Li D, Hare JM (2006) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98:271–279

    CAS  PubMed  Google Scholar 

  • Moens AL, Takimoto E, Tocchetti CG, Chakir K, Bedja D, Cormaci G, Ketner EA, Majmudar M, Gabrielson K, Halushka MK (2008) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117:2626–2636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gösele C, Heuser A, Fischer R, Schmidt C, Schirdewan A (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet 40:529–537

    CAS  PubMed  Google Scholar 

  • Morita H, Khanal S, Rastogi S, Suzuki G, Imai M, Todor A, Sharov VG, Goldstein S, O'Neill TP, Sabbah HN (2006) Selective matrix metalloproteinase inhibition attenuates progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Am J Physiol Heart Circ Physiol 290:H2522–H2527

    CAS  PubMed  Google Scholar 

  • Muller DN, Dechend R, Mervaala E, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H (2000) NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35:193–201

    CAS  PubMed  Google Scholar 

  • Murata H, Ihara Y, Nakamura H, Yodoi J, Sumikawa K, Kondo T (2003) Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278:50226–50233

    CAS  PubMed  Google Scholar 

  • Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117:1153–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98:794–799

    CAS  PubMed  Google Scholar 

  • Nava E, Noll G, Lüscher TF (1995) Increased activity of constitutive nitric oxide synthase in cardiac endothelium in spontaneous hypertension. Circulation 91:2310–2313

    CAS  PubMed  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    CAS  PubMed  Google Scholar 

  • Oikonomou E, Tousoulis D, Siasos G, Zaromitidou M, Papavassiliou AG, Stefanadis C (2011) The role of inflammation in heart failure: new therapeutic approaches. Hellenic J Cardiol 52:30–40

    PubMed  Google Scholar 

  • Ojaimi C, Qanud K, Hintze TH, Recchia FA (2007) Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics 29:76–83

    CAS  PubMed  Google Scholar 

  • Onai Y, Suzuki J, Maejima Y, Haraguchi G, Muto S, Itai A, Isobe M (2007) Inhibition of NF-κB improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol 292:H530–H538

    CAS  PubMed  Google Scholar 

  • Pacher P, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park YM, Park MY, Suh YL, Park JB (2004) NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun 313:812–817

    CAS  PubMed  Google Scholar 

  • Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49

    CAS  PubMed  Google Scholar 

  • Peng M, Huang L, Xie ZJ, Huang WH, Askari A (1995) Oxidant-induced activations of nuclear factor-kappa B and activator protein-1 in cardiac myocytes. Cell Mol Biol Res 41:189–197

    CAS  PubMed  Google Scholar 

  • Peterson JT, Hallak H, Johnson L, Li H, O'Brien PM, Sliskovic DR, Bocan T, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    CAS  PubMed  Google Scholar 

  • Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–460

    CAS  PubMed  Google Scholar 

  • Planavila A, Rodríguez-Calvo R, Palomer X, Coll T, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M (2008) Atorvastatin inhibits GSK-3β phosphorylation by cardiac hypertrophic stimuli. Biochim Biophys Acta 1781:26–35

    CAS  PubMed  Google Scholar 

  • Qin F, Lennon-Edwards S, Lancel S, Biolo A, Siwik DA, Pimentel DR, Dorn GW, Kang YJ, Colucci WS (2010) Cardiac-specific overexpression of catalase identifies hydrogen peroxide-dependent and-independent phases of myocardial remodeling and prevents the progression to overt heart failure in Gαq-overexpressing transgenic mice. Circ Heart Fail 3:306–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin F, Patel R, Yan C, Liu W (2006) NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med 40:236–246

    CAS  PubMed  Google Scholar 

  • Qin F, Simeone M, Patel R (2007) Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction. Free Radic Biol Med 43:271–281

    CAS  PubMed  Google Scholar 

  • Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067

    CAS  PubMed  Google Scholar 

  • Reddy VS, Prabhu SD, Mummidi S, Valente AJ, Venkatesan B, Shanmugam P, Delafontaine P, Chandrasekar B (2010) Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation. Am J Physiol Heart Circ Physiol 299:H1242–H1254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritchie RH, Schiebinger RJ, Lapointe MC, Marsh JD (1998) Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol Heart Circ Physiol 275:H1370–H1374

    CAS  Google Scholar 

  • Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    CAS  PubMed  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90:1507–1546

    CAS  PubMed  Google Scholar 

  • Rössig L, Hoffmann J, Hugel B, Mallat Z, Haase A, Freyssinet JM, Tedgui A, Aicher A, Zeiher AM, Dimmeler S (2001) Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 104:2182–2187

    PubMed  Google Scholar 

  • Rude MK, Duhaney TA, Kuster GM, Judge S, Heo J, Colucci WS, Siwik DA, Sam F (2005) Aldosterone stimulates matrix metalloproteinases and reactive oxygen species in adult rat ventricular cardiomyocytes. Hypertension 46:555–561

    CAS  PubMed  Google Scholar 

  • Rueckschloss U, Villmow M, Klöckner U (2010) NADPH oxidase-derived superoxide impairs calcium transients and contraction in aged murine ventricular myocytes. Exp Gerontol 45:788–796

    CAS  PubMed  Google Scholar 

  • Ruetten H, Dimmeler S, Gehring D, Ihling C, Zeiher AM (2005) Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res 66:444–453

    CAS  PubMed  Google Scholar 

  • Sakai S, Miyauchi T, Irukayama-Tomobe Y, Ogata T, Goto K, Yamaguchi I (2002) Peroxisome proliferator-activated receptor-g activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clin Sci 103:16S–20S

    CAS  PubMed  Google Scholar 

  • Saliaris AP, Amado LC, Minhas KM, Schuleri KH, Lehrke S, John MS, Fitton T, Barreiro C, Berry C, Zheng M (2007) Chronic allopurinol administration ameliorates maladaptive alterations in Ca2+ cycling proteins and β-adrenergic hyporesponsiveness in heart failure. Am J Physiol Heart Circ Physiol 292:H1328–H1335

    CAS  PubMed  Google Scholar 

  • Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Cardiac Fail 11:473–480

    CAS  Google Scholar 

  • Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Koyasu S, Matsui H, Yamauchi-Takihara K, Harada M (2001) ERK and p38 MAPK, but not NF-κB, are critically involved in reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res 89:661–669

    CAS  PubMed  Google Scholar 

  • Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448

    CAS  PubMed  Google Scholar 

  • Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos D, Resende M, Mill J, Mansur A, Krieger J, Pereira A (2010) Nuclear Factor (NF) κB polymorphism is associated with heart function in patients with heart failure. BMC Med Genet 11:89

    PubMed Central  PubMed  Google Scholar 

  • Sauer H, Rahimi G, Hescheler J, Wartenberg M (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223

    CAS  PubMed  Google Scholar 

  • Sawyer DB, Colucci WS (2000) Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ Res 86:119–120

    CAS  PubMed  Google Scholar 

  • Schäfer M, Schäfer C, Ewald N, Piper H, Noll T (2003) Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circ Res 92:1010–1015

    PubMed  Google Scholar 

  • Schenkel PC, Tavares AM, Fernandes RO, Diniz GP, Bertagnolli M, da Rosa Araujo AS, Barreto-Chaves ML, Ribeiro MFM, Clausell N, Belló-Klein A (2010) Redox-sensitive prosurvival and proapoptotic protein expression in the myocardial remodeling post-infarction in rats. Mol Cell Biochem 341:1–8

    CAS  PubMed  Google Scholar 

  • Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vancon AC, Huang PL, Lee RT (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104:1286–1291

    CAS  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seko Y, Takahashi N, Ishiyama S, Nishikawa T, Kasajima T, Hiroe M, Suzuki S, Ishiwata S, Kawai S, Azuma M, Yagita H, Okumura K, Yazaki Y (1998) Expression of costimulatory molecules B7-1, B7-2, and CD40 in the heart of patients with acute myocarditis and dilated cardiomyopathy. Circulation 97:637–639

    CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    CAS  PubMed  Google Scholar 

  • Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sia YT, Parker TG, Liu P, Tsoporis JN, Adam A, Rouleau JL (2002) Improved post-myocardial infarction survival with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J Am Coll Cardiol 39:148–156

    CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    CAS  PubMed  Google Scholar 

  • Silberman GA, Fan THM, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121:519–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinning C, Schnabel R, Peacock WF (2008) Blankenberg S (2008) Up-and-coming markers: myeloperoxidase, a novel biomarker test for heart failure and acute coronary syndrome application? Congest Heart Fail 14(4 Suppl 1):46–48

    CAS  PubMed  Google Scholar 

  • Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–C60

    CAS  PubMed  Google Scholar 

  • Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, Sawyer DB, Colucci WS (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85:147–153

    CAS  PubMed  Google Scholar 

  • Sorescu D, Griendling KK (2002) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140

    CAS  PubMed  Google Scholar 

  • Spallarossa P, Altieri P, Garibaldi S, Ghigliotti G, Barisione C, Manca V, Fabbi P, Ballestrero A, Brunelli C, Barsotti A (2006) Matrix metalloproteinase-2 and-9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD (P) H oxidase. Cardiovasc Res 69:736–745

    CAS  PubMed  Google Scholar 

  • Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530

    CAS  PubMed  Google Scholar 

  • Spinale FG, Coker ML, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225–238

    CAS  PubMed  Google Scholar 

  • Srivastava S, Chandrasekar B, Bhatnagar A, Prabhu SD (2002) Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase. Am J Physiol Heart Circ Physiol 283:H2612–H2619

    CAS  PubMed  Google Scholar 

  • Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786

    CAS  PubMed  Google Scholar 

  • Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276:14533–14536

    CAS  PubMed  Google Scholar 

  • Stull LB, Leppo MK, Szweda L, Gao WD, Marbán E (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95:1005–1011

    CAS  PubMed  Google Scholar 

  • Sud N, Wells SM, Sharma S, Wiseman DA, Wilham J, Black SM (2008) Asymmetric dimethylarginine inhibits HSP90 activity in pulmonary arterial endothelial cells: role of mitochondrial dysfunction. Am J Physiol Cell Physiol 294:C1407–C1418

    CAS  PubMed  Google Scholar 

  • Sugden PH, Clerk A (2006) Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 8:2111–2124

    CAS  PubMed  Google Scholar 

  • Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46:250–256

    CAS  PubMed  Google Scholar 

  • Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 161:1773–1781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  • Taimor G, Rakow A, Piper HM (2001) Transcription activator protein 1 (AP-1) mediates NO-induced apoptosis of adult cardiomyocytes. FASEB J 15:2518–2520

    CAS  PubMed  Google Scholar 

  • Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286:13304–13313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takemoto Y, Yoshiyama M, Takeuchi K, Omura T, Komatsu R, Izumi Y, Kim S, Yoshikawa J (1999) Increased JNK, AP-1 and NF-κB DNA binding activities in isoproterenol-induced cardiac remodeling. J Mol Cell Cardiol 31:2017–2030

    CAS  PubMed  Google Scholar 

  • Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER, Tavazzi B, Lazzarino G, Paolocci N, Gabrielson KL, Wang Y (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115:1221–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Honda M, Takabatake T (2001) Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol 37:676–685

    CAS  PubMed  Google Scholar 

  • Tang WH, Wu Y, Nicholls SJ, Hazen SL (2011) Plasma myeloperoxidase predicts incident cardiovascular risks in stable patients undergoing medical management for coronary artery disease. Clin Chem 57:33–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taniyama Y, Walsh K (2002) Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol 34:1241–1247

    CAS  PubMed  Google Scholar 

  • Thakur S, Du J, Hourani S, Ledent C, Li JM (2010) Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 285:40104–40113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian J, Liu J, Garlid KD, Shapiro JI, Xie Z (2003) Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial K(ATP) channels. Mol Cell Biochem 242:181–187

    CAS  PubMed  Google Scholar 

  • Treasure CB, Klein JL, Vita JA, Manoukian SV, Renwick GH, Selwyn AP, Ganz P, Alexander RW (1993) Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 87:86–93

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Ide T, Shiomi T, Kang D, Hayashidani S, Suematsu N, Wen J, Utsumi H, Hamasaki N, Takeshita A (2001) 8-oxo-dGTPase, which prevents oxidative stress-induced DNA damage, increases in the mitochondria from failing hearts. Circulation 104:2883–2885

    CAS  PubMed  Google Scholar 

  • Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antioxid Redox Signal 7:1388–1397

    CAS  PubMed  Google Scholar 

  • Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30:1789–1801

    CAS  PubMed  Google Scholar 

  • Ueland T, Aukrust P, Yndestad A, Otterdal K, Frøland SS, Dickstein K, Kjekshus J, Gullestad L, Damås JK (2005) Soluble CD40 ligand in acute and chronic heart failure. Eur Heart J 26:1101–1107

    CAS  PubMed  Google Scholar 

  • Ukai T, Cheng CP, Tachibana H, Igawa A, Zhang ZS, Cheng HJ, Little WC (2001) Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation 103:750–755

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. J Biol Chem 273:15022–15029

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91phox-containing NAD (P) H oxidase in vascular endothelial growth factor–induced signaling and angiogenesis. Circ Res 91:1160–1167

    CAS  PubMed  Google Scholar 

  • Van der Heiden K, Cuhlmann S, le Luong L, Zakkar M, Evans P (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118:593–605

    Google Scholar 

  • van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    PubMed  Google Scholar 

  • Vasilyev N, Williams T, Brennan ML, Unzek S, Zhou X, Heinecke JW, Spitz DR, Topol EJ, Hazen SL, Penn MS (2005) Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation 112:2812–2820

    CAS  PubMed  Google Scholar 

  • Viedt C, Soto U, Krieger-Brauer HI, Fei J, Elsing C, Kubler W, Kreuzer J (2000) Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 20:940–948

    CAS  PubMed  Google Scholar 

  • von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species–induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  • Walsh K (2006) Akt signaling and growth of the heart. Circulation 113:2032–2034

    PubMed  Google Scholar 

  • Wang ZH, Chen YX, Zhang CM, Wu L, Yu Z, Cai XL, Guan Y, Zhou ZN, Yang HT (2011) Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am J Physiol Heart Circ Physiol 301:H1695–H1705

    CAS  PubMed  Google Scholar 

  • Watson PA, Birdsey N, Huggins GS, Svensson E, Heppe D, Knaub L (2010) Cardiac-specific overexpression of dominant-negative CREB leads to increased mortality and mitochondrial dysfunction in female mice. Am J Physiol Heart Circ Physiol 299:H2056–H2068

    CAS  PubMed  Google Scholar 

  • Weber K, Sun Y, Guarda E (1994) Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 23:869–877

    CAS  PubMed  Google Scholar 

  • Wei L, Fahey T, Struthers A, MacDonald T (2009) Association between allopurinol and mortality in heart failure patients: a long‐term follow‐up study. Int J Clin Pract 63:1327–1333

    CAS  PubMed  Google Scholar 

  • Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenzel S, Taimor G, Piper HM, Schlüter KD (2001) Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase activation, AP-1 binding activity, and TGF-ß expression in adult ventricular cardiomyocytes. FASEB J 15:2291–2293

    CAS  PubMed  Google Scholar 

  • Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4:44–52

    PubMed  Google Scholar 

  • Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507

    CAS  PubMed  Google Scholar 

  • Widder JD, Fraccarollo D, Galuppo P, Hansen JM, Jones DP, Ertl G, Bauersachs J (2009) Attenuation of angiotensin II–induced vascular dysfunction and hypertension by overexpression of thioredoxin 2. Hypertension 54:338–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong JL, Créton R, Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7:801–814

    CAS  PubMed  Google Scholar 

  • Wosniak J Jr, Santos CX, Kowaltowski AJ, Laurindo FR (2009) Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II-mediated increase in Nox isoform expression and activity in vascular smooth muscle cells. Antioxid Redox Signal 11:1265–1278

    CAS  PubMed  Google Scholar 

  • Wu S, Gao J, Ohlemeyer C, Roos D, Niessen H, Köttgen E, Geβner R (2005) Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes. Free Radic Biol Med 39:1601–1610

    CAS  PubMed  Google Scholar 

  • Xia M, Li G, Ma J, Ling W (2010) Phosphoinositide 3-kinase mediates CD40 ligand-induced oxidative stress and endothelial dysfunction via Rac1 and NADPH oxidase 2. J Thromb Haemost 8:397–406

    CAS  PubMed  Google Scholar 

  • Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB (2002) Role of reactive oxygen species and NAD(P)H oxidase in α1-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282:C926–C934

    CAS  PubMed  Google Scholar 

  • Xie S, Nie R, Wang J, Li F, Yuan W (2009) Transcription factor decoys for activator protein-1 (AP-1) inhibit oxidative stress-induced proliferation and matrix metalloproteinases in rat cardiac fibroblasts. Transl Res 153:17–23

    CAS  PubMed  Google Scholar 

  • Xie Z, Kometiani P, Liu J, Li J, Shapiro JI, Askari A (1999) Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 274:19323–19328

    CAS  PubMed  Google Scholar 

  • Xie Z, Xie J (2005) The Na/K-ATPase-mediated signal transduction as a target for new drug development. Front Biosci 10:3100–3109

    CAS  PubMed  Google Scholar 

  • Xu KY, Zweier JL, Becker LC (1997) Hydroxyl radical inhibits sarcoplasmic reticulum Ca2 -ATPase function by direct attack on the ATP binding site. Circ Res 80:76–81

    CAS  PubMed  Google Scholar 

  • Xu Q, Dalic A, Fang L, Kiriazis H, Ritchie R, Sim K, Gao XM, Drummond G, Sarwar M, Zhang YY (2011) Myocardial oxidative stress contributes to transgenic β2‐adrenoceptor activation‐induced cardiomyopathy and heart failure. Br J Pharmacol 162:1012–1028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, Sadoshima J (2003) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112:1395–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang HY, Liu JC, Chen YL, Chen CH, Lin H, Lin JW, Chiu WT, Chen JJ, Cheng TH (2005) Inhibitory effect of trilinolein on endothelin-1-induced c-fos gene expression in cultured neonatal rat cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 372:160–167

    CAS  PubMed  Google Scholar 

  • Yang J, Marden JJ, Fan C, Sanlioglu S, Weiss RM, Ritchie TC, Davisson RL, Engelhardt JF (2003) Genetic redox preconditioning differentially modulates AP-1 and NFκB responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol Ther 7:341–353

    CAS  PubMed  Google Scholar 

  • Yasunari K, Maeda K, Watanabe T, Nakamura M, Yoshikawa J, Asada A (2004) Comparative effects of valsartan versus amlodipine on left ventricular mass and reactive oxygen species formation by monocytes in hypertensive patients with left ventricular hypertrophy. J Am Coll Cardiol 43:2116–2123

    CAS  PubMed  Google Scholar 

  • Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53:1336–1343

    CAS  PubMed  Google Scholar 

  • Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160

    CAS  PubMed  Google Scholar 

  • Zelarayan L, Renger A, Noack C, Zafiriou MP, Gehrke C, Van Der Nagel R, Dietz R, De Windt L, Bergmann MW (2009) NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 84:416–424

    CAS  PubMed  Google Scholar 

  • Zhang C, Hein TW, Wang W, Ren Y, Shipley RD, Kuo L (2006) Activation of JNK and xanthine oxidase by TNF-α impairs nitric oxide-mediated dilation of coronary arterioles. J Mol Cellular Cardiol 40:247–257

    CAS  Google Scholar 

  • Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L, Nagai Y, Fujisawa Y, Miyatake A, Abe Y (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65:230–238

    CAS  PubMed  Google Scholar 

  • Zhang GX, Lu XM, Kimura S, Nishiyama A (2007) Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76:204–212

    CAS  PubMed  Google Scholar 

  • Zhang HJ, Zhao W, Venkataraman S, Robbins MEC, Buettner GR, Kregel KC, Oberley LW (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277:20919–20926

    CAS  PubMed  Google Scholar 

  • Zhang L, Jiang H, Gao X, Zou Y, Liu M, Liang Y, Yu Y, Zhu W, Chen H, Ge J (2011a) Heat shock transcription factor-1 inhibits H2O2-induced apoptosis via down-regulation of reactive oxygen species in cardiac myocytes. Mol Cell Biochem 347:21–28

    CAS  PubMed  Google Scholar 

  • Zhang Y, Kang YM, Tian C, Zeng Y, Jia LX, Ma X, Du J, Li HH (2011b) Overexpression of Nrdp1 in the heart exacerbates doxorubicin-induced cardiac dysfunction in mice. PLoS One 6:e21104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Brewer AC, Schröder K, Santos CX, Grieve DJ, Wang M, Anilkumar N, Yu B, Dong X, Walker SJ, Brandes RP, Shah AM (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 107:18121–18126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Looi YH, Brewer AC, Shah AM (2009) Cardiomyocyte-specific overexpression of Nox4 attenuates adverse cardiac remodeling after myocardial infarction. Circulation 120:S1097

    Google Scholar 

  • Zhao Y, McLaughlin D, Robinson E, Harvey AP, Hookham MB, Shah AM, McDermott BJ, Grieve DJ (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res 70:9287–9297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98:1177–1185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Shi YP, Wu D, Ji YJ, Wang X, Chen HL, Wu SS, Huang DJ, Jiang W (2011) Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA Cell Biol 30:809–819

    PubMed  Google Scholar 

  • Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71:310–321

    CAS  PubMed  Google Scholar 

  • Zima AV, Copello JA, Blatter LA (2004) Effects of cytosolic NADH/NAD levels on sarcoplasmic reticulum Ca2+ release in permeabilized rat ventricular myocytes. J Physiol 555:727–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinkevich NS, Gutterman DD (2011) ROS-induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol 301:H647–H653

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam P. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Harvey, A.P., Grieve, D.J. (2014). Reactive Oxygen Species (ROS) Signaling in Cardiac Remodeling and Failure. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_50

Download citation

Publish with us

Policies and ethics