Skip to main content

Measurements of Reactive Oxygen Species in Cardiovascular Studies

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

In the cardiovascular system, reactive oxygen species (ROS) are produced mainly by NADPH oxidases, uncoupled nitric oxide synthase, and mitochondria. Superoxide and hydrogen peroxide are two major players in ROS-mediated cell signaling and oxidative stress, which contribute to the development of a number of pathological conditions including heart failure, ischemia, arteriosclerosis, and hypertension. Meanwhile, studies of physiological and pathological roles of ROS are significantly limited by the lack of site-specific and selective ROS detection. Detection of ROS at the specific subcellular sites of their generation is important for better understanding of their sources and mechanisms regulating ROS production and to develop treatment preventing uncontrolled redox signaling events leading to oxidative stress and cell malfunctions. In this chapter we review existing methods for ROS detection with emphasis on reliable methods for site-specific and selective ROS measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackrell BA, Kearney EB, Mayr M (1974) Role 3f oxalacetate in the regulation of mammalian succinate dehydrogenase. J Biol Chem 249(7):2021–2027

    CAS  PubMed  Google Scholar 

  • Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112(5):725–735. doi:10.1172/JCI17786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291(5):H2067–H2074

    Article  CAS  PubMed  Google Scholar 

  • Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180(2):248–257

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhong Z, Xu Z, Chen L, Wang Y (2010) 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 44(6):587–604

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Dickinson BC, Chang CJ (2008) A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J Am Chem Soc 130(30):9638–9639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51(7):1289–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalov SI, Dikalova AE, Mason RP (2002) Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Arch Biochem Biophys 402(2):218–226

    Article  CAS  PubMed  Google Scholar 

  • Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49(4):717–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45:1340–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dikalov SI, Kirilyuk IA, Voinov M, Grigor’ev IA (2011) EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radic Res 45(4):417–430

    Article  CAS  PubMed  Google Scholar 

  • Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299(3):H673–H679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction. Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102(4):488–496

    Article  CAS  PubMed  Google Scholar 

  • Fink B, Laude K, McCann L, Doughan A, Harrison DG, Dikalov S (2004) Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay. Am J Physiol Cell Physiol 287(4):C895–C902

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M (2000) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 20(10):2175–2183

    Article  CAS  PubMed  Google Scholar 

  • Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353(Pt 2):411–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin North Am 93(3):621–635

    Article  CAS  PubMed  Google Scholar 

  • Imrich A, Ning YY, Kobzik L (1999) Intracellular oxidant production and cytokine responses in lung macrophages: evaluation of fluorescent probes. J Leukoc Biol 65(4):499–507

    CAS  PubMed  Google Scholar 

  • Janiszewski M, Souza HP, Liu X, Pedro MA, Zweier JL, Laurindo FR (2002) Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radic Biol Med 32(5):446–453

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman B (2011) Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39(5):1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Kelley EE, Khoo NK, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48(4):493–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2008) Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim Biophys Acta 1777(5):397–403

    Article  CAS  PubMed  Google Scholar 

  • Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, Mueller M, Drexler H (2007) Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 27(4):943–948

    Article  CAS  PubMed  Google Scholar 

  • Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30(4):653–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lippert AR, Van de Bittner GC, Chang CJ (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res 44(9):793–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malinouski M, Zhou Y, Belousov VV, Hatfield DL, Gladyshev VN (2011) Hydrogen peroxide probes directed to different cellular compartments. PLoS One 6(1):e14564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markvicheva KN, Bilan DS, Mishina NM, Gorokhovatsky AY, Vinokurov LM, Lukyanov S, Belousov VV (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19(3):1079–1084

    Article  CAS  PubMed  Google Scholar 

  • McNally JS, Saxena A, Cai H, Dikalov S, Harrison DG (2005) Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler Thromb Vasc Biol 25(8):1623–1628

    Article  CAS  PubMed  Google Scholar 

  • Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ (2005) Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 127(47):16652–16659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller FJ Jr, Chu X, Stanic B, Tian X, Sharma RV, Davisson RL, Lamb FS (2010) A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid Redox Signal 12(5):583–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90(4):E58–E65

    Article  PubMed  Google Scholar 

  • Mueller CF, Laude K, McNally JS, Harrison DG (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25(2):274–278

    Article  CAS  PubMed  Google Scholar 

  • Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22(11):1761–1768

    Article  PubMed  Google Scholar 

  • Rinaldi M, Moroni P, Paape MJ, Bannerman DD (2007) Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Vet Immunol Immunopathol 115(1–2):107–125

    Article  CAS  PubMed  Google Scholar 

  • Sikora A, Zielonka J, Lopez M, Dybala-Defratyka A, Joseph J, Marcinek A, Kalyanaraman B (2011) Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC Analyses, and quantum mechanical study of the free radical pathway. Chem Res Toxicol 24(5):687–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silberman GA, Fan TH, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC Jr (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121(4):519–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47):44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34(1):5–14

    Article  CAS  PubMed  Google Scholar 

  • Vasquez-Vivar J, Hogg N, Pritchard KA Jr, Martasek P, Kalyanaraman B (1997) Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Lett 403(2):127–130

    Article  CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33(3):337–349

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Joseph J, Vasquez-Vivar J, Karoui H, Nsanzumuhire C, Martasek P, Tordo P, Kalyanaraman B (2000) Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications. FEBS Lett 473(1):58–62

    Article  CAS  PubMed  Google Scholar 

  • Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48(8):983–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zielonka J, Srinivasan S, Hardy M, Ouari O, Lopez M, Vasquez-Vivar J, Avadhani NG, Kalyanaraman B (2008) Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Free Radic Biol Med 44(5):835–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Dikalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dikalov, S.I., Nazarewicz, R.R. (2014). Measurements of Reactive Oxygen Species in Cardiovascular Studies. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_45

Download citation

Publish with us

Policies and ethics