Skip to main content

Oxidative Stress in Fetal Alcohol Spectrum Disorders – Insights for the Development of Antioxidant-Based Therapies

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Alcohol consumption during pregnancy can have severe consequences for the developing fetus, and depending on the pattern of consumption, the dose, and the period of exposure to alcohol, a myriad of functional deficits can be observed. These are grouped under the umbrella term fetal alcohol spectrum disorders (FASD) and can range from subtle behavioral abnormalities to severe cases of fetal alcohol syndrome (FAS). The mechanisms responsible for the long-lasting effects of alcohol exposure are just now beginning to be clarified, and alterations in various intracellular pathways and neuronal circuits are thought to contribute for the neuroanatomical and functional deficits that have been observed in children affected with FASD. Among these, the alcohol-induced generation of reactive oxygen and nitrogen species (ROS and RNS, respectively) and the consequent oxidative damage to lipids, proteins, and DNA are thought to contribute to these deficits. In this chapter, we will review the evidence supporting the involvement of oxidative stress in FASD, giving particular relevance to the pathways of alcohol-induced ROS generation. Given the overwhelming evidence pointing toward the involvement of oxidative stress in the neuropathology of FASD, various in vivo and in vitro studies have been devised in order to test the potential beneficial effects of antioxidant treatment in mitigating the effects of alcohol-induced neurotoxicity. Thus, in this chapter we will also review the evidence indicating that antioxidants such as vitamin E, silymarin, and melatonin can be potential therapeutic candidates for the treatment of some of the functional and behavioral deficits that can be observed in both rodent models of FASD and children afflicted with these neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARBD:

Alcohol-related birth defects

ARND:

Alcohol-related neurological disorders

BAC:

Blood alcohol concentration

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

CAT:

Catalase

CNS:

Central nervous system

FAS:

Fetal alcohol syndrome

FASD:

Fetal alcohol spectrum disorders

GD:

Gestational day

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Glutathione disulfide (oxidized glutathione)

GST:

Glutathione-S-transferase

H2O2 :

Hydrogen peroxide

HO :

Hydroxyl radical

NADPH:

Reduced nicotinamide adenosine dinucleotide phosphate

NO :

Nitric oxide

NOX:

NADPH-oxidase

NT-3:

Neurotrophin-3

O2 •− :

Superoxide anion

ONOO-:

Peroxinitrite

PND:

Postnatal day

PNEE:

Prenatal ethanol exposure

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-α, γ-GCSyn, γ-glutamyl-cysteine synthetase

γ-GTP:

γ-glutamyltranspeptidase

References

  • Abel EL, Hannigan JH (1995) Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol Teratol 17:445–462

    CAS  PubMed  Google Scholar 

  • Allan AM, Chynoweth J, Tyler LA, Caldwell KK (2003) A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm. Alcohol Clin Exp Res 27:2009–2016

    PubMed  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–238

    CAS  PubMed  Google Scholar 

  • Aragon CM, Rogan F, Amit Z (1992) Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem Pharmacol 44:93–98

    CAS  PubMed  Google Scholar 

  • Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL (2001) Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol 43:148–154

    CAS  PubMed  Google Scholar 

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358

    CAS  PubMed  Google Scholar 

  • Baydas G, Yasar A, Tuzcu M (2005) Comparison of the impact of melatonin on chronic ethanol-induced learning and memory impairment between young and aged rats. J Pineal Res 39:346–352

    CAS  PubMed  Google Scholar 

  • Beckman JS (1994) Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann N Y Acad Sci 738:69–75

    CAS  PubMed  Google Scholar 

  • Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626

    CAS  PubMed  Google Scholar 

  • Berman RF, Hannigan JH (2000) Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus 10:94–110

    CAS  PubMed  Google Scholar 

  • Boehme F, Gil-Mohapel J, Cox A, Patten A, Giles E et al (2011) Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders. Eur J Neurosci 33:1799–1811

    PubMed  Google Scholar 

  • Brandon-Warner E, Sugg JA, Schrum LW, McKillop IH (2010) Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 291:120–129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brocardo PS, Gil-Mohapel J, Christie BR (2011) The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev 67:209–225

    CAS  PubMed  Google Scholar 

  • Brocardo PS, Boehme F, Patten A, Cox A, Gil-Mohapel J, Christie BR (2012) Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise. Neuropharmacology 62:1607–1618

    CAS  PubMed  Google Scholar 

  • Brown RT, Coles CD, Smith IE, Platzman KA, Silverstein J et al (1991) Effects of prenatal alcohol exposure at school age. II. Attention and behavior. Neurotoxicol Teratol 13:369–376

    CAS  PubMed  Google Scholar 

  • Burton GW (1994) Vitamin E: molecular and biological function. Proc Nutr Soc 53:251–262

    CAS  PubMed  Google Scholar 

  • Busby A, La Grange L, Edwards J, King J (2002) The use of a silymarin/phospholipid compound as a fetoprotectant from ethanol-induced behavioral deficits. J Herb Pharmacother 2:39–47

    CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chen WJ, Maier SE, Parnell SE, West JR (2003) Alcohol and the developing brain: neuroanatomical studies. Alcohol Res Health 27:174–180

    PubMed  Google Scholar 

  • Chen SY, Dehart DB, Sulik KK (2004) Protection from ethanol-induced limb malformations by the superoxide dismutase/catalase mimetic, EUK-134. FASEB J 18:1234–1236

    CAS  PubMed  Google Scholar 

  • Chen CH, Huang TS, Wong CH, Hong CL, Tsai YH et al (2009) Synergistic anti-cancer effect of baicalein and silymarin on human hepatoma HepG2 cells. Food Chem Toxicol 47:638–644

    CAS  PubMed  Google Scholar 

  • Christie BR, Swann SE, Fox CJ, Froc D, Lieblich SE et al (2005) Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. Eur J Neurosci 21:1719–1726

    PubMed  Google Scholar 

  • Chu J, Tong M, de la Monte SM (2007) Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol 113:659–673

    CAS  PubMed  Google Scholar 

  • Clarren SK, Alvord EC Jr, Sumi SM, Streissguth AP, Smith DW (1978) Brain malformations related to prenatal exposure to ethanol. J Pediatr 92:64–67

    CAS  PubMed  Google Scholar 

  • Coles CD, Brown RT, Smith IE, Platzman KA, Erickson S, Falek A (1991) Effects of prenatal alcohol exposure at school age. I. Physical and cognitive development. Neurotoxicol Teratol 13:357–367

    CAS  PubMed  Google Scholar 

  • Dembele K, Yao XH, Chen L, Nyomba BL (2006) Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring. Am J Physiol Regul Integr Comp Physiol 291:R796–R802

    CAS  PubMed  Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

    CAS  PubMed  Google Scholar 

  • Dong J, Sulik KK, Chen SY (2010) The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett 193:94–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    CAS  PubMed  Google Scholar 

  • Edwards J, Grange LL, Wang M, Reyes E (2000) Fetoprotectivity of the flavanolignan compound siliphos against ethanol-induced toxicity. Phytother Res 14:517–521

    CAS  PubMed  Google Scholar 

  • Edwards RB, Manzana EJ, Chen WJ (2002) Melatonin (an antioxidant) does not ameliorate alcohol-induced Purkinje cell loss in the developing cerebellum. Alcohol Clin Exp Res 26:1003–1009

    CAS  PubMed  Google Scholar 

  • Ethen MK, Ramadhani TA, Scheuerle AE, Canfield MA, Wyszynski DF et al (2009) Alcohol consumption by women before and during pregnancy. Matern Child Health J 13:274–285

    PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    CAS  PubMed  Google Scholar 

  • Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl):S22–S27

    CAS  PubMed  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956

    CAS  PubMed  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63:793–807

    CAS  PubMed  Google Scholar 

  • Gil-Mohapel J, Boehme F, Kainer L, Christie BR (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64:283–303

    CAS  PubMed  Google Scholar 

  • Gil-Mohapel J, Boehme F, Patten A, Cox A, Kainer L et al (2011) Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome. Brain Res 1384:29–41

    CAS  PubMed  Google Scholar 

  • Gonenc S, Uysal N, Acikgoz O, Kayatekin BM, Sonmez A et al (2005) Effects of melatonin on oxidative stress and spatial memory impairment induced by acute ethanol treatment in rats. Physiol Res 54:341–348

    CAS  PubMed  Google Scholar 

  • Goodlett CR, Horn KH, Zhou FC (2005) Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood) 230:394–406

    CAS  Google Scholar 

  • Grisel JJ, Chen WJ (2005) Antioxidant pretreatment does not ameliorate alcohol-induced Purkinje cell loss in the developing rat cerebellum. Alcohol Clin Exp Res 29:1223–1229

    CAS  PubMed  Google Scholar 

  • Guerri C, Bazinet A, Riley EP (2009) Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 44:108–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall WG (1975) Weaning and growth of artificially reared rats. Science 190:1313–1315

    CAS  PubMed  Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    CAS  PubMed  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    CAS  PubMed  Google Scholar 

  • Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    CAS  PubMed  Google Scholar 

  • Hamby-Mason R, Chen JJ, Schenker S, Perez A, Henderson GI (1997) Catalase mediates acetaldehyde formation from ethanol in fetal and neonatal rat brain. Alcohol Clin Exp Res 21:1063–1072

    CAS  PubMed  Google Scholar 

  • Hamilton DA, Kodituwakku P, Sutherland RJ, Savage DD (2003) Children with fetal alcohol syndrome are impaired at place learning but not cued-navigation in a virtual morris water task. Behav Brain Res 143:85–94

    PubMed  Google Scholar 

  • Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78:1223–1232

    CAS  PubMed  Google Scholar 

  • Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y (2008) Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45:1542–1550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    CAS  PubMed  Google Scholar 

  • Heaton MB, Mitchell JJ, Paiva M (2000) Amelioration of ethanol-induced neurotoxicity in the neonatal rat central nervous system by antioxidant therapy. Alcohol Clin Exp Res 24:512–518

    CAS  PubMed  Google Scholar 

  • Heaton MB, Paiva M, Mayer J, Miller R (2002) Ethanol-mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett 334:83–86

    CAS  PubMed  Google Scholar 

  • Heaton MB, Paiva M, Madorsky I, Shaw G (2003) Ethanol effects on neonatal rat cortex: comparative analyses of neurotrophic factors, apoptosis-related proteins, and oxidative processes during vulnerable and resistant periods. Brain Res Dev Brain Res 145:249–262

    CAS  PubMed  Google Scholar 

  • Heaton MB, Madorsky I, Paiva M, Siler-Marsiglio KI (2004a) Ethanol-induced reduction of neurotrophin secretion in neonatal rat cerebellar granule cells is mitigated by vitamin E. Neurosci Lett 370:51–54

    CAS  PubMed  Google Scholar 

  • Heaton MB, Madorsky I, Paiva M, Siler-Marsiglio KI (2004b) Vitamin E amelioration of ethanol neurotoxicity involves modulation of apoptosis-related protein levels in neonatal rat cerebellar granule cells. Brain Res Dev Brain Res 150:117–124

    CAS  PubMed  Google Scholar 

  • Helfer JL, Goodlett CR, Greenough WT, Klintsova AY (2009) The effects of exercise on adolescent hippocampal neurogenesis in a rat model of binge alcohol exposure during the brain growth spurt. Brain Res 1294:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson GI, Devi BG, Perez A, Schenker S (1995) In utero ethanol exposure elicits oxidative stress in the rat fetus. Alcohol Clin Exp Res 19:714–720

    CAS  PubMed  Google Scholar 

  • Henderson GI, Chen JJ, Schenker S (1999) Ethanol, oxidative stress, reactive aldehydes, and the fetus. Front Biosci 4:D541–D550

    CAS  PubMed  Google Scholar 

  • Hou YC, Liou KT, Chern CM, Wang YH, Liao JF et al (2010) Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-kappaB and STAT-1 activation. Phytomedicine 17:963–973

    CAS  PubMed  Google Scholar 

  • Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060

    CAS  PubMed  Google Scholar 

  • Jones KL (1975) The fetal alcohol syndrome. Addict Dis 2:79–88

    CAS  PubMed  Google Scholar 

  • Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. Lancet 302:999–1001

    CAS  PubMed  Google Scholar 

  • Jones KL, Smith DW (1975) The fetal alcohol syndrome. Teratology 12:1–10

    CAS  PubMed  Google Scholar 

  • Kane CJ, Chang JY, Roberson PK, Garg TK, Han L (2008) Ethanol exposure of neonatal rats does not increase biomarkers of oxidative stress in isolated cerebellar granule neurons. Alcohol 42:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karanian J, Yergey J, Lister R, D’Souza N, Linnoila M, Salem N Jr (1986) Characterization of an automated apparatus for precise control of inhalation chamber ethanol vapor and blood ethanol concentrations. Alcohol Clin Exp Res 10:443–447

    CAS  PubMed  Google Scholar 

  • Karnofsky DA (1965) Drugs as teratogens in animals and Man. Annu Rev Pharmacol 10:447–472

    CAS  PubMed  Google Scholar 

  • Kelly SJ, Tran TD (1997) Alcohol exposure during development alters social recognition and social communication in rats. Neurotoxicol Teratol 19:383–389

    CAS  PubMed  Google Scholar 

  • Kelly SJ, Goodlett CR, Hulsether SA, West JR (1988) Impaired spatial navigation in adult female but not adult male rats exposed to alcohol during the brain growth spurt. Behav Brain Res 27:247–257

    CAS  PubMed  Google Scholar 

  • Kerns KA, Don A, Mateer CA, Streissguth AP (1997) Cognitive deficits in nonretarded adults with fetal alcohol syndrome. J Learn Disabil 30:685–693

    CAS  PubMed  Google Scholar 

  • La Grange L, Wang M, Watkins R, Ortiz D, Sanchez ME et al (1999) Protective effects of the flavonoid mixture, silymarin, on fetal rat brain and liver. J Ethnopharmacol 65:53–61

    PubMed  Google Scholar 

  • Ledig M, Tholey G, Kopp P, Mandel P (1989) An experimental study of fetal alcohol syndrome in the rat: biochemical modifications in brain and liver. Alcohol Alcohol 24:231–240

    CAS  PubMed  Google Scholar 

  • Lee SR, Kim MR, Yon JM, Baek IJ, Park CG et al (2009) Black ginseng inhibits ethanol-induced teratogenesis in cultured mouse embryos through its effects on antioxidant activity. Toxicol In Vitro 23:47–52

    CAS  PubMed  Google Scholar 

  • Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    CAS  PubMed  Google Scholar 

  • Liang FQ, Green L, Wang C, Alssadi R, Godley BF (2004) Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res 78:1069–1075

    CAS  PubMed  Google Scholar 

  • Lieber CS, DeCarli LM (1982) The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcohol Clin Exp Res 6:523–531

    CAS  PubMed  Google Scholar 

  • Lu P, Mamiya T, Lu LL, Mouri A, Zou L et al (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB (1999) Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol 163:6800–6809

    CAS  PubMed  Google Scholar 

  • Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B (2001) Acute ethanol administration oxidatively damages and depletes mitochondrial dna in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther 298:737–743

    CAS  PubMed  Google Scholar 

  • Marino MD, Aksenov MY, Kelly SJ (2004) Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 22:363–377

    CAS  PubMed  Google Scholar 

  • May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D et al (2009) Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev 15:176–192

    PubMed  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    CAS  PubMed  Google Scholar 

  • Miller MW (1996) Effect of early exposure to ethanol on the protein and DNA contents of specific brain regions in the rat. Brain Res 734:286–294

    CAS  PubMed  Google Scholar 

  • Mitchell JJ, Paiva M, Heaton MB (1999) Vitamin E and beta-carotene protect against ethanol combined with ischemia in an embryonic rat hippocampal culture model of fetal alcohol syndrome. Neurosci Lett 263:189–192

    CAS  PubMed  Google Scholar 

  • Moreland N, La Grange L, Montoya R (2002) Impact of in utero exposure to EtOH on corpus callosum development and paw preference in rats: protective effects of silymarin. BMC Complement Altern Med 2:10

    PubMed Central  PubMed  Google Scholar 

  • Nash CM, Ibram F, Dringenberg HC, Reynolds JN, Brien JF (2007) Effects of maternal administration of vitamins C and E on ethanol neurobehavioral teratogenicity in the guinea pig. Alcohol 41:577–586

    CAS  PubMed  Google Scholar 

  • Neese S, La Grange L, Trujillo E, Romero D (2004) The effects of ethanol and silymarin treatment during gestation on spatial working memory. BMC Complement Altern Med 4:4

    PubMed Central  PubMed  Google Scholar 

  • Nencini C, Giorgi G, Micheli L (2007) Protective effect of silymarin on oxidative stress in rat brain. Phytomedicine 14:129–135

    CAS  PubMed  Google Scholar 

  • Ojeda ML, Nogales F, Jotty K, Barrero MJ, Murillo ML, Carreras O (2009) Dietary selenium plus folic acid as an antioxidant therapy for ethanol-exposed pups. Birth Defects Res B Dev Reprod Toxicol 86:490–495

    CAS  PubMed  Google Scholar 

  • O’Leary CM, Bower C, Zubrick SR, Geelhoed E, Kurinczuk JJ, Nassar N (2010a) A new method of prenatal alcohol classification accounting for dose, pattern and timing of exposure: improving our ability to examine fetal effects from low to moderate alcohol. J Epidemiol Community Health 64:956–962

    PubMed  Google Scholar 

  • O’Leary CM, Nassar N, Kurinczuk JJ, de Klerk N, Geelhoed E et al (2010b) Prenatal alcohol exposure and risk of birth defects. Pediatrics 126:e843–e850

    PubMed  Google Scholar 

  • Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C (2000) Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis 5:515–521

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pal N, Alkana RL (1997) Use of inhalation to study the effect of ethanol and ethanol dependence on neonatal mouse development without maternal separation: a preliminary study. Life Sci 61:1269–1281

    CAS  PubMed  Google Scholar 

  • Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S (2011) Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm 413:245–253

    CAS  PubMed  Google Scholar 

  • Peng Y, Kwok KH, Yang PH, Ng SS, Liu J et al (2005) Ascorbic acid inhibits ROS production, NF-kappa B activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology 48:426–434

    CAS  PubMed  Google Scholar 

  • Petkov VV, Stoianovski D, Petkov VD, Vyglenova I (1992) Lipid peroxidation changes in the brain in fetal alcohol syndrome. Biull Eksp Biol Med 113:500–502

    CAS  PubMed  Google Scholar 

  • Peuchen S, Bolanos JP, Heales SJ, Almeida A, Duchen MR, Clark JB (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52:261–281

    CAS  PubMed  Google Scholar 

  • Pliskova M, Vondracek J, Kren V, Gazak R, Sedmera P et al (2005) Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology 215:80–89

    CAS  PubMed  Google Scholar 

  • Porter R (1984) The brain: seat of motor control. Corticospinal neurones in movement performance. Med J Aust 140:462–472

    CAS  PubMed  Google Scholar 

  • Pradhan SC, Girish C (2006) Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 124:491–504

    CAS  PubMed  Google Scholar 

  • Ramachandran V, Perez A, Chen J, Senthil D, Schenker S, Henderson GI (2001) In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin Exp Res 25:862–871

    CAS  PubMed  Google Scholar 

  • Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G (2003) Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 74:577–588

    CAS  PubMed  Google Scholar 

  • Reddy SK, Husain K, Schlorff EC, Scott RB, Somani SM (1999) Dose response of ethanol ingestion on antioxidant defense system in rat brain subcellular fractions. Neurotoxicology 20:977–987

    CAS  PubMed  Google Scholar 

  • Redila VA, Olson AK, Swann SE, Mohades G, Webber AJ et al (2006) Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus 16:305–311

    CAS  PubMed  Google Scholar 

  • Reid C, Edwards J, Wang M, Manybeads Y, Mike L et al (1999) Prevention by a silymarin/phospholipid compound of ethanol-induced social learning deficits in rats. Planta Med 65:421–424

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L et al (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11

    CAS  PubMed  Google Scholar 

  • Reyes E, Ott S, Robinson B (1993) Effects of in utero administration of alcohol on glutathione levels in brain and liver. Alcohol Clin Exp Res 17:877–881

    CAS  PubMed  Google Scholar 

  • Rogers J, Wiener SG, Bloom FE (1979) Long-term ethanol administration methods for rats: advantages of inhalation over intubation or liquid diets. Behav Neural Biol 27:466–486

    CAS  PubMed  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  • Serbus DC, Young MW, Light KE (1986) Blood ethanol concentrations following intragastric intubation of neonatal rat pups. Neurobehav Toxicol Teratol 8:403–406

    CAS  PubMed  Google Scholar 

  • Shaw S (1989) Lipid peroxidation, iron mobilization and radical generation induced by alcohol. Free Radic Biol Med 7:541–547

    CAS  PubMed  Google Scholar 

  • Sherwin BT, Jacobson S, Troxell SL, Rogers AE, Pelham RW (1979) A rat model (using a semipurified diet) of the fetal alcohol syndrome. Curr Alcohol 7:15–30

    CAS  PubMed  Google Scholar 

  • Sheth DS, Tajuddin NF, Druse MJ (2009) Antioxidant neuroprotection against ethanol-induced apoptosis in HN2-5 cells. Brain Res 1285:14–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirpoor A, Salami S, Khadem-Ansari MH, Minassian S, Yegiazarian M (2009) Protective effect of vitamin E against ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing male rat brain. Alcohol Clin Exp Res 33:1181–1186

    CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    CAS  PubMed  Google Scholar 

  • Siler-Marsiglio KI, Pan Q, Paiva M, Madorsky I, Khurana NC, Heaton MB (2005) Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Res 1052:202–211

    CAS  PubMed  Google Scholar 

  • Smith AM, Zeve DR, Grisel JJ, Chen WJ (2005) Neonatal alcohol exposure increases malondialdehyde (MDA) and glutathione (GSH) levels in the developing cerebellum. Brain Res Dev Brain Res 160:231–238

    CAS  PubMed  Google Scholar 

  • Sokol RJ, Clarren SK (1989) Guidelines for use of terminology describing the impact of prenatal alcohol on the offspring. Alcohol Clin Exp Res 13:597–598

    CAS  PubMed  Google Scholar 

  • Sokol RJ, Delaney-Black V, Nordstrom B (2003) Fetal alcohol spectrum disorder. JAMA 290:2996–2999

    CAS  PubMed  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    CAS  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL et al (2002) Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex 12:856–865

    PubMed  Google Scholar 

  • Stade B, Ali A, Bennett D, Campbell D, Johnston M et al (2009) The burden of prenatal exposure to alcohol: revised measurement of cost. Can J Clin Pharmacol 16:e91–e102

    PubMed  Google Scholar 

  • Stanton ME, Goodlett CR (1998) Neonatal ethanol exposure impairs eyeblink conditioning in weanling rats. Alcohol Clin Exp Res 22:270–275

    CAS  PubMed  Google Scholar 

  • Streissguth AP, Sampson PD, Barr HM (1989) Neurobehavioral dose-response effects of prenatal alcohol exposure in humans from infancy to adulthood. Ann N Y Acad Sci 562:145–158

    CAS  PubMed  Google Scholar 

  • Streissguth AP, Barr HM, Olson HC, Sampson PD, Bookstein FL, Burgess DM (1994) Drinking during pregnancy decreases word attack and arithmetic scores on standardized tests: adolescent data from a population-based prospective study. Alcohol Clin Exp Res 18:248–254

    CAS  PubMed  Google Scholar 

  • Tran TD, Cronise K, Marino MD, Jenkins WJ, Kelly SJ (2000) Critical periods for the effects of alcohol exposure on brain weight, body weight, activity and investigation. Behav Brain Res 116:99–110

    CAS  PubMed  Google Scholar 

  • Tran TD, Jackson HD, Horn KH, Goodlett CR (2005) Vitamin E does not protect against neonatal ethanol-induced cerebellar damage or deficits in eyeblink classical conditioning in rats. Alcohol Clin Exp Res 29:117–129

    CAS  PubMed  Google Scholar 

  • Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF et al (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2:74–83

    CAS  Google Scholar 

  • Uecker A, Nadel L (1996) Spatial locations gone awry: object and spatial memory deficits in children with fetal alcohol syndrome. Neuropsychologia 34:209–223

    CAS  PubMed  Google Scholar 

  • Valenzuela A, Guerra R, Videla LA (1986) Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene Planta Med 52:438–440

    Google Scholar 

  • Vink J, Auth J, Abebe DT, Brenneman DE, Spong CY (2005) Novel peptides prevent alcohol-induced spatial learning deficits and proinflammatory cytokine release in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 193:825–829

    CAS  PubMed  Google Scholar 

  • Wentzel P, Rydberg U, Eriksson UJ (2006) Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat. Alcohol Clin Exp Res 30:1752–1760

    CAS  PubMed  Google Scholar 

  • West JR, Hamre KM, Pierce DR (1984) Delay in brain growth induced by alcohol in artificially reared rat pups. Alcohol 1:213–222

    CAS  PubMed  Google Scholar 

  • Woods JR Jr, Plessinger MA, Fantel A (1998) An introduction to reactive oxygen species and their possible roles in substance abuse. Obstet Gynecol Clin North Am 25:219–236

    PubMed  Google Scholar 

  • Wozniak JR, Muetzel RL, Mueller BA, McGee CL, Freerks MA et al (2009) Microstructural corpus callosum anomalies in children with prenatal alcohol exposure: an extension of previous diffusion tensor imaging findings. Alcohol Clin Exp Res 33:1825–1835

    PubMed Central  PubMed  Google Scholar 

  • Zadak Z, Hyspler R, Ticha A, Hronek M, Fikrova P et al (2009) Antioxidants and vitamins in clinical conditions. Physiol Res 58(Suppl 1):S13–S17

    CAS  PubMed  Google Scholar 

  • Zi X, Mukhtar H, Agarwal R (1997) Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. Biochem Biophys Res Commun 239:334–339

    CAS  PubMed  Google Scholar 

  • Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30:1500–1505

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.P. is funded by a Graduate Award from the University of Victoria and a Pacific Century Scholarship. P.S.B. was supported by a postdoctoral fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)- Program Science without Borders. J.G.M. acknowledges postdoctoral funding from Natural Sciences and Engineering Research Council of Canada (NSERC) and Michael Smith Foundation for Health Research (MSFHR). B.R.C. is a Michael Smith Senior Scholar and is supported by grants from the Canadian Institutes of Health Research (CIHR), NSERC, MSFHR, and the Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Patten, A., Brocardo, P.S., Gil-Mohapel, J., Christie, B.R. (2014). Oxidative Stress in Fetal Alcohol Spectrum Disorders – Insights for the Development of Antioxidant-Based Therapies. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_37

Download citation

Publish with us

Policies and ethics