Skip to main content

Developments in Antioxidants – Retrospective and Prospective Insights

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Despite the inconclusive and largely inconsistent reports on the role of antioxidants (ANT) in human health, the multidimensional research approach in this discipline has provided significant evidence for their health benefits. Within the emerging functional healthcare paradigm, research on dietary antioxidant agents has taken center stage in the fight against oxidative damage. Several, mostly plant-derived food sources have been qualitatively and quantitatively assessed as antioxidant agents and for antioxidant activities. In advancing this research dimension, a number of in vitro methods for evaluating the free radical scavenging capacities of ANT agents have evolved concurrently, some of which are more advanced than others. Through these research advancements together with a few successful in vivo studies, dietary supplementation has been formulated for some food stuffs. However, one of the greatest challenges in this field is the applicability of the mechanistic results to human intervention models. Current and future research focus should center on addressing these challenges if the full antioxidant benefits to humans are to be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562

    Article  CAS  Google Scholar 

  • Apak R, Güçlü K, Özyürek M, Karademir SE, Erça E (2006) The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nutr 57:292–304

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay M, Chakraborty R, Raychaudhuri U (2007) A process for preparing a natural antioxidant enriched dairy product (Sandesh). LWT 40:842–851

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571

    Article  CAS  Google Scholar 

  • Belitz HD, Grosch W (1999) Phenolic compounds, food chemistry. Springer, Berlin

    Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bios MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  Google Scholar 

  • Bors W, Heller W, Michel C, Saran M (1992) Structural principles of flavonoids antioxidants. In: Csom G, Feh J (eds) Free radical and the liver. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Catoni C, Peters A, Schaefer M (2008) Life history trade-offs are influenced by the diversity, availability and interactions of dietary antioxidants. Anim Behav 76:1107–1119

    Article  Google Scholar 

  • Chu Y-H, Chang C-L, Hsu H-F (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    Article  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  CAS  PubMed  Google Scholar 

  • Damianaki A, Bakogeorgou E, Kampa M, Notas G, Hatzoglou A, Panagiotou S, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Potent inhibitory action of red wine polyphenols on human breast cancer cells. J Cell Biochem 78:429–441

    Article  CAS  PubMed  Google Scholar 

  • Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  CAS  PubMed  Google Scholar 

  • Fogliano V, Verde V, Randazzo G, Ritieni A (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as colour reagents. J Biol Chem 12:239–243

    CAS  Google Scholar 

  • Folin O, Denis W (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    CAS  Google Scholar 

  • Food and Nutrition Board, National Research Council (1989) Recommended dietary allowances. National Academy Press, Washington, DC

    Google Scholar 

  • Frankel EN (1993) In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends Food Sci Technol 4:220–225

    Article  CAS  Google Scholar 

  • Gutteridge JMC, Halliwell B (2010) Antioxidants: molecules, medicines and myths. Biochem Biophys Res Commun 393:561–564

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik K, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Herodež ŠS, Hadolin M, Škerget M, Knez Ž (2003) Solvent extraction study of antioxidants from balm (Melissa officinalis L.) leaves. Food Chem 80:275–282

    Article  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan J, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444

    Article  CAS  PubMed  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  • Kampa M, Hatzoglou A, Notas G, Damianaki A, Bakogeorgou E, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr Cancer 37:223–233

    Article  CAS  PubMed  Google Scholar 

  • Kontogiorgis AC, Pontiki AE, Hadjipavlou-Litina D (2005) A review on quantitative structure–activity relationships (QSAR) of natural and synthetic antioxidant compounds. Mini Rev Med Chem 5:563–574

    Article  CAS  PubMed  Google Scholar 

  • Kroon P, Williamson G (2005) Polyphenols: dietary components with established benefits to health. J Sci Food Agric 85:1239–1240

    Article  CAS  Google Scholar 

  • Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339

    Article  CAS  Google Scholar 

  • Lapidot T, Harel S, Akiri B, Granit R, Kranner J (1999) pH-dependent forms of red-wine anthocyanins as antioxidants. J Agric Food Chem 47:67–70

    Article  CAS  PubMed  Google Scholar 

  • Levine M, Dhariwal KD, Welch RW, Wang Y, Park JB (1995) Determination of optimal vitamin C requirements in humans. Am J Clin Nutr 62:1347–1356

    Google Scholar 

  • Lien EJ, Ren S, Bui H-H, Wang R (1999) Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med 26:285–294

    Article  CAS  PubMed  Google Scholar 

  • Lindsay DG, Clifford MN (2000) Critical reviews produced within the EU concerted action ‘nutritional enhancement of plant-based food in European trade’ (NEODIET). J Sci Food Agric 80:793–1137

    Article  Google Scholar 

  • Manach C, Scalbert A, Morand C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  PubMed  Google Scholar 

  • Marinova EM, Yanishlieva NVI (1996) Antioxidative activity of phenolic acids on triacylglycerols and fatty acid methyl esters from olive oil. Food Chem 56:139–145

    Article  CAS  Google Scholar 

  • Miller HM (1971) A simplified method for the evaluation of antioxidants. J Am Oil Chem Soc 45:91–98

    Article  Google Scholar 

  • Miller NJ, Rice-Evans CA, Davies MJ, Gopinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84:407–412

    CAS  PubMed  Google Scholar 

  • Moure A, Cruz JM, Franco D, Domíngueza JM, Sineiro J, Domíngueza H, Nùñez MJ, Parajo JC (2001) Natural antioxidants from residual sources. Food Chem 72:145–171

    Article  CAS  Google Scholar 

  • Muanza D, Robert R, Sparks W (1998) Antioxidant derived from lentil and its preparation and uses. US Patent. US5762936

    Google Scholar 

  • Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111

    Article  CAS  PubMed  Google Scholar 

  • Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  PubMed  Google Scholar 

  • Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49:503–515

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MNV (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release 113:189–207

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolouration assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcin 10:1003–1008

    Article  CAS  Google Scholar 

  • Rusak G, Komes D, Likic S, Dunja H, Maja K (2008) Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem 110:852–858

    Article  CAS  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Szeto YT, Tomlinson B, Benzie IFF (2002) Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Br J Nutr 87:55–59

    Article  CAS  PubMed  Google Scholar 

  • Van der Berg R, Haenen GRMM, Van der Berg H, Bast A (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66:511–517

    Article  Google Scholar 

  • Wilhelm R, Klaus K, Juergen S (2000) Method for increasing the content of flavonoids and phenolic substances in plants. BASF AG, Patent AO1N37/42

    Google Scholar 

  • Wojdyło A, Oszmiański J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    Article  Google Scholar 

  • Xi J, Shen D, Li Y, Zhang R (2011) Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. Int J Pharm 408:97–101

    Article  CAS  Google Scholar 

  • Yamaguchi F, Yoshimura Y, Nakazawa H, Ariga T (1999) Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H2O2/NaOH/DMSO system. J Agric Food Chem 47:2544–2548

    Article  CAS  PubMed  Google Scholar 

  • Yanishlieva-Maslarova NN, Heinonen M (2001) Sources of natural antioxidants. In: Yanishlieva PN, Gordon M (eds) Antioxidants in food. CRC Press, Boca Raton

    Google Scholar 

  • Zhou K, Yu L (2004) Effects of extraction solvent on wheat bran antioxidant activity estimation. Lebensm Wiss Technol 37:717–721

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of KwaZulu-Natal and Claude Leon Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ndhlala, A.R., Ncube, B., Van Staden, J. (2014). Developments in Antioxidants – Retrospective and Prospective Insights. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_33

Download citation

Publish with us

Policies and ethics