Skip to main content

Exploring the Effect of Redox Enzyme Modulation on the Biology of Mouse Aging

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The oxidative stress theory of aging has been the most studied and tested mechanistic theory of why organisms age. However, most recent data on this theory suggest that broadly altering levels of oxidative stress or accumulation of oxidative damage has limited effects on the regulation of lifespan in mammals. This has led to the proposition that aging may be regulated through oxidation-induced changes to cellular redox state and redox signaling rather than through general oxidative stress mechanisms. Redox regulation of cell survival and homeostasis through modulating the pathways necessary for gene regulation, protein activation and deactivation, and apoptosis might then amplify minor alterations in oxidative stress to have drastic effects on an organism. In this chapter, we discuss the evidence that alterations in cellular redox state are associated with mammalian aging and discuss the mouse models available to test whether redox regulation is a significant factor in the aging process. In general, these data suggest that mammalian aging may be regulated in part by cellular redox state and support further investigation to address whether modulation of redox state can significantly alter lifespan and healthspan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrios R, Shi Z-Z, Kala SV, Wiseman AL, Welty SE, Kala G, Bahler AA, Ou C-N, Lieberman MW (2001) Oxygen-induced pulmonary injury in g-glutamyl transpeptidase-deficient mice. Lung 179(5):319–330

    Article  CAS  PubMed  Google Scholar 

  • Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ (2008) Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Hormon IGF Res 18(6):455–471

    Article  CAS  Google Scholar 

  • Bondareva AA, Capecchi MR, Iverson SV, Li Y, Lopez NI, Lucas O, Merrill GF, Prigge JR, Siders AM, Wakamiya M, Wallin SL, Schmidt EE (2007) Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 43(6):911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic ß cells. PLoS Biol 4(2):e31

    Article  PubMed  PubMed Central  Google Scholar 

  • Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD + metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6(4):e19194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown-Borg HM, Bode AM, Bartke A (1999) Antioxidative mechanisms and plasma growth hormone levels: potential relationship in the aging process. Endocrine 11(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2005) Glutathione metabolism in long-living ames dwarf mice. Exp Gerontol 40(1–2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG, Uthus EO (2005) Growth hormone alters methionine and glutathione metabolism in ames dwarf mice. Mech Ageing Dev 126(3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125(4):325–335

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP (2005) Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280(40):33766–33774

    Article  CAS  PubMed  Google Scholar 

  • Chévez-Barrios P, Wiseman AL, Rojas E, Ou C-N, Lieberman MW (2000) Cataract development in γ-glutamyl transpeptidase-deficient mice. Exp Eye Res 71(6):575–582

    Article  PubMed  Google Scholar 

  • Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A, Schneider M, Beck H, Hatzopoulos AK, Just U, Sinowatz F, Schmahl W, Chien KR, Wurst W, Bornkamm GW, Brielmeier M (2004) Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol 24(21):9414–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW (2000) Knockout of the mouse glutamate cysteine ligase catalytic subunit (gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279(2):324–329

    Article  CAS  PubMed  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824

    Article  PubMed  Google Scholar 

  • Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Finch C (1994) Longevity, senescence and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254

    Article  CAS  PubMed  Google Scholar 

  • Giordano G, Afsharinejad Z, Guizzetti M, Vitalone A, Kavanagh TJ, Costa LG (2007) Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol 219(2–3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Bridges RJ, Meister A (1978) Evidence that the gamma-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and selective inhibition of enzymes. Proc Natl Acad Sci USA 75(11):5405–5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2003) Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice. Exp Gerontol 38(3):253

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Oxford University Press, Oxford, UK

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  • Hazelton GA, Lang CA (1980) Glutathione contents of tissues in the aging mouse. Biochem J 188(1):25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Immenschuh S, Baumgart-Vogt E, Tan M, Iwahara S-I, Ramadori G, Dariush Fahimi H (2003) Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J Histochem Cytochem 51(12):1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Jakupoglu C, Przemeck GK, Schneider M, Moreno SG, Mayr N, Hatzopoulos AK, de Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, Conrad M (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25(5):1980–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33(9):1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18(11):1246–1248

    CAS  PubMed  Google Scholar 

  • Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A (2001) Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res 61(5):1849–1854

    CAS  PubMed  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484

    Article  CAS  PubMed  Google Scholar 

  • Lee BC, Dikiy A, Kim HY, Gladyshev VN (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim Biophys Acta 1790(11):1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chevez-Barrios P, Wang Y, Habib GM, Goodman JC, Huang SL, Lebovitz RM, Matzuk MM (1996) Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA 93(15):7923–7926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoro E (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126(9):913–922

    Article  CAS  PubMed  Google Scholar 

  • Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketo MM (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178(1):179–185

    Article  CAS  PubMed  Google Scholar 

  • McConnachie LA, Mohar I, Hudson FN, Ware CB, Ladiges WC, Fernandez C, Chatterton-Kirchmeier S, White CC, Pierce RH, Kavanagh TJ (2007) Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol Sci 99(2):628–636

    Article  CAS  PubMed  Google Scholar 

  • Medawar PB (1955) The definition and measurement of senescence. In: Wolstenholme GEW (ed) Ciba foundation colloquia on ageing, vol I. J. & A. Churchill, London, pp 4–15

    Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52(1):711–760

    Article  CAS  PubMed  Google Scholar 

  • Miller RA (1999) Kleemeier award lecture: are there genes for aging? J Gerontol Ser A Biol Sci Med Sci 54(7):B297–B307

    Article  CAS  Google Scholar 

  • Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4(4):693–696

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Sekhar KR, Hale AB, Channon KM, Farrugia G, Freeman ML, Gangula PR (2011) Loss of NRF2 impairs gastric nitrergic stimulation and function. Free Radic Biol Med 51(3):619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonn L, Williams RR, Erickson RP, Powis G (2003) The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 23(3):916–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M, Liu Y, Qi W, Li Y, Chaudhuri A, Van Remmen H, Richardson A, Ikeno Y (2008) Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic Biol Med 44(5):882–892

    Article  CAS  PubMed  Google Scholar 

  • Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez VI, Cortez LA, Lew CM, Rodriguez M, Webb CR, Van Remmen H, Chaudhuri A, Qi W, Lee S, Bokov A, Fok W, Jones D, Richardson A, Yodoi J, Zhang Y, Tominaga K, Hubbard GB, Ikeno Y (2011) Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice. J Gerontol A Biol Sci Med Sci 66(12):1286–1299

    Article  PubMed  Google Scholar 

  • Perluigi M, Di Domenico F, Giorgi A, Schinina ME, Coccia R, Cini C, Bellia F, Cambria MT, Cornelius C, Butterfield DA, Calabrese V (2010) Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J Neurosci Res 88(16):3498–3507

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Oblong JE, Gasdaska PY, Berggren M, Hill SR, Kirkpatrick DL (1994) The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res 6(10–11):539–544

    CAS  PubMed  Google Scholar 

  • Prolla TA, Bohr VA, de Souza-Pinto NC (2010) Mitochondria and aging. Mech Ageing Dev 131(7–8):449–450

    Article  PubMed  Google Scholar 

  • Rebrin I, Kamzalov S, Sohal RS (2003) Effects of age and caloric restriction on glutathione redox state in mice. Free Radic Biol Med 35(6):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebrin I, Sohal RS (2004) Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol 39(10):1513–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebrin I, Forster MJ, Sohal RS (2007) Effects of age and caloric intake on glutathione redox state in different brain regions of C57BL/6 and DBA/2 mice. Brain Res 1127(1):10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas E, Valverde M, Kala SV, Kala G, Lieberman MW (2000) Accumulation of DNA damage in the organs of mice deficient in γ-glutamyltranspeptidase. Mutat Res Fundam Mol Mech Mutagen 447(2):305–316

    Article  CAS  Google Scholar 

  • Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon AB, Flores LC, Li Y, Van Remmen H, Richardson A, Ikeno Y (2012) Reduction of glucose intolerance with high fat feeding is associated with anti-inflammatory effects of thioredoxin 1 overexpression in mice. Pathobiol Aging Age Relat Dis 2:17101

    CAS  Google Scholar 

  • Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24(5):699–704

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, Yodoi J (2008) Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. Journal of Pharmacology and Experimental Therapeutics 325(2):380–388

    Article  CAS  PubMed  Google Scholar 

  • Shi Z-Z, Han B, Habib GM, Matzuk MM, Lieberman MW (2001) Disruption of {gamma}-glutamyl leukotrienase results in disruption of Leukotriene D4 synthesis in vivo and attenuation of the acute inflammatory response. Mol Cell Biol 21(16):5389–5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 33(4):255–259

    Article  PubMed  Google Scholar 

  • Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci USA 96(7):4131–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kiriya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T (2006) Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 131(4):1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turoczi T, Chang VW-H, Engelman RM, Maulik N, Ho Y-S, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35(6):695–704

    Article  CAS  PubMed  Google Scholar 

  • Umekawa T, Sugiyama T, Kihira T, Murabayashi N, Zhang L, Nagao K, Kamimoto Y, Ma N, Yodoi J, Sagawa N (2008) Overexpression of thioredoxin-1 reduces oxidative stress in the placenta of transgenic mice and promotes fetal growth via glucose metabolism. Endocrinology 149(8):3980–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS ONE 5(2):e1000361

    Google Scholar 

  • Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit gclm(−/−) knockout mouse. J Biol Chem 277(51):49446–49452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH training grant T32 AG021890-05 (ABS), an Ellison Medical Foundation New Scholar Award (VP), the Geriatric Research Education and Clinical Center of the South Texas Veterans Health Care System, San Antonio TX, and the San Antonio Nathan Shock Center of Excellence in the Basic Biology of Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Salmon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Salmon, A.B., Richardson, A., Pérez, V.I. (2014). Exploring the Effect of Redox Enzyme Modulation on the Biology of Mouse Aging. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_20

Download citation

Publish with us

Policies and ethics