Skip to main content

Reactive Oxygen Species and Antioxidants in Pulmonary Hypertension and Right Heart Failure

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Pulmonary hypertension is a devastating condition, and currently available treatment options have not provided satisfactory results with regard to the prognosis of patients. Increased pulmonary arterial resistance stains the right heart, ultimately leading to right heart failure and death. Thus, new therapeutic strategies are needed. Evidence suggests that the mechanisms of the development of pulmonary hypertension, in particular pulmonary vascular remodeling, and the development of right heart remodeling involve reactive oxygen species. In animal models of pulmonary hypertension, various molecules with antioxidant properties have been shown to attenuate pulmonary vascular as well as right ventricular remodeling. Evidence for the benefit of antioxidant therapy in human pulmonary hypertension patients is, however, lacking. This chapter compiles information on cell, animal, and human studies that provide evidence for the role of reactive oxygen species and the beneficial effects of antioxidants in pulmonary hypertension and right heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Fe2+ :

Ferrous ion

Fe3+ :

Ferric ion

HO. :

Hydroxyl radical

H2O2 :

Hydrogen peroxide

O2 :

Molecular oxygen

O2 •− :

Superoxide anion radical

PAH:

Pulmonary arterial hypertension

ROS:

Reactive oxygen species

RV:

Right ventricle

SOD:

Superoxide dismutase

References

  • Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, Dyck JR, Gomberg-Maitland M, Thébaud B, Husain AN, Cipriani N, Rehman J (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barst RJ, McGoon M, McLaughlin V, Tapson V, Rich S, Rubin L, Wasserman K, Oudiz R, Shapiro S, Robbins IM, Channick R, Badesch D, Rayburn BK, Flinchbaugh R, Sigman J, Arneson C, Jeffs R, Beraprost Study Group (2003) Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 41:2119–2125

    CAS  PubMed  Google Scholar 

  • Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S, McLaughlin V, Hill N, Tapson VF, Robbins IM, Zwicke D, Duncan B, Dixon RA, Frumkin LR, STRIDE-1 Study Group (2004) Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 169:441–447

    PubMed  Google Scholar 

  • Barst RJ, Langleben D, Badesch D, Frost A, Lawrence EC, Shapiro S, Naeije R, Galiè N (2006) Treatment of pulmonary arterial hypertension with the selective endothelin-a receptor antagonist sitaxsentan. J Am Coll Cardiol 47:2049–2056

    CAS  PubMed  Google Scholar 

  • Benza RL, Miller DP, Frost A, Barst RJ, Krichman AM, McGoon MD (2010) Analysis of the lung allocation score estimation of risk of death in patients with pulmonary arterial hypertension using data from the REVEAL registry. Transplantation 90:298–305

    PubMed  Google Scholar 

  • Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960

    PubMed  Google Scholar 

  • Bonvallet ST, Zamora MR, Hasunuma K, Sato K, Hanasato N, Anderson D, Sato K, Stelzner TJ (1994) BQ123, an ETA-receptor antagonist, attenuates hypoxic pulmonary hypertension in rats. Am J Physiol 266:H1327–H1331

    CAS  PubMed  Google Scholar 

  • Bowdy BD, Marple SL, Pauly TH, Coonrod JD, Gillespie MN (1990) Oxygen radical-dependent bacterial killing and pulmonary hypertension in piglets infected with group B streptococci. Am Rev Respir Dis 141:648–653

    CAS  PubMed  Google Scholar 

  • Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769

    PubMed  Google Scholar 

  • Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, Black SM (2003) Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res 92:683–691

    CAS  PubMed  Google Scholar 

  • Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ (2001) Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358:1119–1123

    CAS  PubMed  Google Scholar 

  • Chemla D, Castelain V, Herve P, Lecarpentier Y, Brimioulle S (2002) Haemodynamic evaluation of pulmonary hypertension. Eur Respir J 20:1314–1331

    CAS  PubMed  Google Scholar 

  • Cody RJ, Haas GJ, Binkley PF, Capers Q, Kelley R (1992) Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure. Circulation 85:504–509

    CAS  PubMed  Google Scholar 

  • Cracowski JL, Cracowski C, Bessard G, Pepin JL, Bessard J, Schwebel C, Stanke-Labesque F, Pison C (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164:1038–1042

    CAS  PubMed  Google Scholar 

  • Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, Hu F, Ballabh P, Podlutsky A, Losonczy G, de Cabo R, Mathew R, Wolin MS, Ungvari Z (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54:668–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davie N, Haleen SJ, Upton PD, Polak JM, Yacoub MH, Morrell NW, Wharton J (2002) ETA and ETB receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 165:398–405

    PubMed  Google Scholar 

  • Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD (2009) NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 297:L596–L607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ecarnot-Laubriet A, Rochette L, Vergely C, Sicard P, Teyssier JR (2003) The activation pattern of the antioxidant enzymes in the right ventricle of rat in response to pressure overload is of heart failure type. Heart Dis 5:308–312

    CAS  PubMed  Google Scholar 

  • Eddahibi S, Raffestin B, Clozel M, Levame M, Adnot S (1995) Protection from pulmonary hypertension with an orally active endothelin receptor antagonist in hypoxic rats. Am J Physiol 268:H828–H835

    CAS  PubMed  Google Scholar 

  • Eddahibi S, Raffestin B, Pham I, Launay JM, Aegerter P, Sitbon M, Adnot S (1997) Treatment with 5-HT potentiates development of pulmonary hypertension in chronically hypoxic rats. Am J Physiol 272:H1173–H1181

    CAS  PubMed  Google Scholar 

  • Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, Adnot S (2000) Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J Clin Invest 105:1555–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simonneau G, Dartevelle P, Hamon M, Adnot S (2001) Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 198:1141–1150

    Google Scholar 

  • Elmedal B, de Dam MY, Mulvany MJ, Simonsen U (2004) The superoxide dismutase mimetic, tempol, blunts right ventricular hypertrophy in chronic hypoxic rats. Br J Pharmacol 141:105–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260:21–29

    PubMed  Google Scholar 

  • Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351:1655–1665

    CAS  PubMed  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Reda WJ, Wedgwood S, Czech L, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2008) Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L979–L987

    PubMed  PubMed Central  Google Scholar 

  • Farrow KN, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Davis JM, Russell JA, Steinhorn RH (2010) SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299:L109–L116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    CAS  PubMed  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  • Galiè N, Humbert M, Vachiery JL, Vizza CD, Kneussl M, Manes A, Sitbon O, Torbicki A, Delcroix M, Naeije R, Hoeper M, Chaouat A, Morand S, Besse B, Simonneau G (2002) Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind placebo-controlled trial. J Am Coll Cardiol 39:1496–1502

    PubMed  Google Scholar 

  • Galiè N, Manes A, Branzi A (2003) Prostanoids for pulmonary arterial hypertension. Am J Respir Med 2:123–137

    PubMed  Google Scholar 

  • Galiè N, Manes A, Branzi A (2004) The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 61:227–237

    PubMed  Google Scholar 

  • Galiè N, Badesch D, Oudiz R, Simonneau G, McGoon MD, Keogh AM, Frost AE, Zwicke D, Naeije R, Shapiro S, Olschewski H, Rubin LJ (2005) Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol 46:529–535

    PubMed  Google Scholar 

  • Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G, ESC Committee for Practice Guidelines (CPG) (2009a) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 30:2493–2537

    PubMed  Google Scholar 

  • Galiè N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML, Branzi A (2009b) A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J 30:394–403

    PubMed  PubMed Central  Google Scholar 

  • Ghofrani HA, Voswinckel R, Reichenberger F, Olschewski H, Haredza P, Karadas B, Schermuly RT, Weissmann N, Seeger W, Grimminger F (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol 44:1488–1496

    CAS  PubMed  Google Scholar 

  • Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP, Steward DJ (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    CAS  PubMed  Google Scholar 

  • Gosemann JH, Friedmacher F, Hunziker M, Alvarez L, Corcionivoschi N, Puri P (2013) Increased activation of NADPH oxidase 4 in the pulmonary vasculature in experimental diaphragmatic hernia. Pediatr Surg Int 29:3–8

    PubMed  Google Scholar 

  • Green DE, Murphy TC, Kang BY, Kleinhenz JM, Szyndralewiez C, Page P, Sutliff RL, Hart CM (2012) The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell Mol Biol 47:718–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  • Grobe AC, Wells SM, Benavidez E, Oishi P, Azakie A, Fineman JR, Black SM (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am J Physiol Lung Cell Mol Physiol 290:L1069–L1077

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (1985) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hassoun PM, Thappa V, Landman MJ, Fanburg BL (1992) Endothelin 1: mitogenic activity on pulmonary artery smooth muscle cells and release from hypoxic endothelial cells. Proc Soc Exp Biol Med 199:165–170

    CAS  PubMed  Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    CAS  PubMed  Google Scholar 

  • Herve P, Launay JM, Scrobohaci ML, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249–254

    CAS  PubMed  Google Scholar 

  • Hirata Y, Takagi Y, Fukuda Y, Marumo F (1989) Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 78:225–228

    CAS  PubMed  Google Scholar 

  • Hoshikawa Y, Ono S, Suzuki S, Tanita T, Chida M, Song C, Noda M, Tabata T, Voelkel NF, Fujimura S (2001) Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol 90:1299–1306

    CAS  PubMed  Google Scholar 

  • Huang J, Kaminski PM, Edwards JG, Yeh A, Wolin MS, Frishman WH, Gewitz MH, Mathew R (2008) Pyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension. Am J Physiol Lung Cell Mol Physiol 294:L1250–L1259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:S13–S24

    Google Scholar 

  • Humbert M, Montani D, Perros F, Dorfmüller P, Adnot S, Eddahibi S (2008) Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol 49:113–118

    CAS  PubMed  Google Scholar 

  • Humbert M, Sitbon O, Yaïci A, Montani D, O’Callaghan DS, Jaïs X, Parent F, Savale L, Natali D, Günther S, Chaouat A, Chabot F, Cordier JF, Habib G, Gressin V, Jing ZC, Souza R, Simonneau G, French Pulmonary Arterial Hypertension Network (2010) Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J 36:549–555

    CAS  PubMed  Google Scholar 

  • Irodova NL, Lankin VZ, Konovalova GK, Kochetov AG, Chazova IE (2002) Oxidative stress in patients with primary pulmonary hypertension. Bull Exp Biol Med 133:580–582

    CAS  PubMed  Google Scholar 

  • Irukayama-Tomobe Y, Sakai S, Miyauchi T (2000) Chronic treatment with probucol effectively inhibits progression of pulmonary hypertension in rats. Life Sci 67:2017–2023

    CAS  PubMed  Google Scholar 

  • Janakidevi K, Fisher MA, Del Vecchio PJ, Tiruppathi C, Figge J, Malik AB (1992) Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells. Am J Physiol 263:C1295–C1301

    CAS  PubMed  Google Scholar 

  • Jankov RP, Kantores C, Pan J, Belik J (2008) Contribution of xanthine oxidase-derived superoxide to chronic hypoxic pulmonary hypertension in neonatal rats. Am J Physiol Lung Cell Mol Physiol 294:L233–L245

    CAS  PubMed  Google Scholar 

  • Jin HF, Du SX, Zhao X, Wei HL, Wang YF, Liang YF, Tang CS, Du JB (2008) Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. Acta Pharmacol Sin 29:1157–1166

    CAS  PubMed  Google Scholar 

  • Kamezaki F, Tasaki H, Yamashita K, Tsutsui M, Koide S, Nakata S, Tanimoto A, Okazaki M, Sasaguri Y, Adachi T, Otsuji Y (2008) Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 177:219–226

    CAS  PubMed  Google Scholar 

  • Kinsella JP, Parker TA, Davis JM, Abman SH (2005) Superoxide dismutase improves gas exchange and pulmonary hemodynamics in premature lambs. Am J Respir Crit Care Med 172:745–749

    PubMed  PubMed Central  Google Scholar 

  • Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr (2007) Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 292:H1812–H1820

    CAS  PubMed  Google Scholar 

  • Lachmanová V, Hnilicková O, Povýsilová V, Hampl V, Herget J (2005) N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 77:175–182

    PubMed  Google Scholar 

  • Lai YL, Wu HD, Chen CF (1998) Antioxidants attenuate chronic hypoxic pulmonary hypertension. J Cardiovasc Pharmacol 32:714–720

    CAS  PubMed  Google Scholar 

  • Lakshminrusimha S, Russell JA, Wedgwood S, Gugino SF, Kazzaz JA, Davis JM, Steinhorn RH (2006) Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med 174:1370–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshminrusimha S, Wiseman D, Black SM, Russell JA, Gugino SF, Oishi P, Steinhorn RH, Fineman JR (2007) The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 293:H1491–H1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langleben D, Fox RB, Jones RC, Reid LM (1989) Effects of dimethylthiourea on chronic hypoxia-induced pulmonary arterial remodelling and ventricular hypertrophy in rats. Clin Invest Med 12:235–240

    CAS  PubMed  Google Scholar 

  • Lawrie A, Spiekerkoetter E, Martinez EC, Ambartsumian N, Sheward WJ, MacLean MR, Harmar AJ, Schmidt AM, Lukanidin E, Rabinovitch M (2005) Interdependent serotonin transporter and receptor pathways regulate S100A4/Mts1, a gene associated with pulmonary vascular disease. Circ Res 97:227–235

    CAS  PubMed  Google Scholar 

  • Lee SL, Wang WW, Lanzillo JJ, Fanburg BL (1994) Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture. Am J Physiol 266:L46–L52

    CAS  PubMed  Google Scholar 

  • Lee SL, Wang WW, Fanburg BL (1998) Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radic Biol Med 24:855–858

    PubMed  Google Scholar 

  • Lee SL, Wang WW, Finlay GA, Fanburg BL (1999) Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol 277:L282–L291

    CAS  PubMed  Google Scholar 

  • Lee SL, Simon AR, Wang WW, Fanburg BL (2001) H2O2 signals 5-HT-induced ERK MAP kinase activation and mitogenesis of smooth muscle cells. Am J Physiol 281:L646–L652

    CAS  Google Scholar 

  • Liu Y, Suzuki YJ, Day RM, Fanburg BL (2004) Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 95:579–586

    CAS  PubMed  Google Scholar 

  • Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2–L10

    CAS  PubMed  Google Scholar 

  • Liu L, Marcocci L, Wong CM, Park AM, Suzuki YJ (2008) Serotonin-mediated protein carbonylation in the right heart. Free Radic Biol Med 45:847–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandegar M, Yuan JX (2002) Role of K+ channels in pulmonary hypertension. Vascul Pharmacol 38:25–33

    CAS  PubMed  Google Scholar 

  • Mittal M, Roth M, König P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hänze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

    CAS  PubMed  Google Scholar 

  • Miyauchi T, Yorikane R, Sakai S, Sakurai T, Okada M, Nishikibe M, Yano M, Yamaguchi I, Sugishita Y, Goto K (1993) Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ Res 73:887–897

    CAS  PubMed  Google Scholar 

  • Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK (2009) Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 54:S20–S31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nauser TD, Stites SW (2003) Pulmonary hypertension: new perspectives. Congest Heart Fail 9:155–162

    PubMed  Google Scholar 

  • Nisbet RE, Graves AS, Kleinhenz DJ, Rupnow HL, Reed AL, Fan TH, Mitchell PO, Sutliff RL, Hart CM (2009) The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 40:601–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odhiambo A, Perlman DH, Huang H, Costello CE, Farber HW, Steinberg MH, McComb ME, Klings ES (2007) Identification of oxidative post-translational modification of serum albumin in patients with idiopathic pulmonary arterial hypertension and pulmonary hypertension of sickle cell anemia. Rapid Commun Mass Spectrom 21:2195–2203

    CAS  PubMed  Google Scholar 

  • Okada M, Yamashita C, Okada M, Okada K (1995) Endothelin receptor antagonists in a beagle model of pulmonary hypertension: contribution to possible potential therapy? J Am Coll Cardiol 25:1213–1217

    CAS  PubMed  Google Scholar 

  • Park AM, Wong CM, Jelinkova L, Liu L, Nagase H, Suzuki YJ (2010) Pulmonary hypertension-induced GATA4 activation in the right ventricle. Hypertension 56:1145–1151

    CAS  PubMed  Google Scholar 

  • Pauly TH, Bowdy BD, Haven CA, Barr SB, Gillespie MN (1988) Evidence for hydroxyl radical involvement in group B streptococcus-induced pulmonary hypertension and arterial hypoxemia in young piglets. Pediatr Res 24:735–739

    CAS  PubMed  Google Scholar 

  • Pauly TH, Smith M, Gillespie M (1991) Bilirubin as an antioxidant: effect on group B streptococci-induced pulmonary hypertension in infant piglets. Biol Neonate 60:320–326

    CAS  PubMed  Google Scholar 

  • Preston IR, Tang G, Tilan JU, Hill NS, Suzuki YJ (2005) Retinoids and pulmonary hypertension. Circulation 111:782–790

    CAS  PubMed  Google Scholar 

  • Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593–599

    CAS  PubMed  Google Scholar 

  • Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781

    CAS  PubMed  Google Scholar 

  • Redout EM, van der Toorn A, Zuidwijk MJ, van de Kolk CW, van Echteld CJ, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2010) Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298:H1038–H1047

    CAS  PubMed  Google Scholar 

  • Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000:pe1

    CAS  PubMed  Google Scholar 

  • Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346:896–903

    CAS  PubMed  Google Scholar 

  • Runo JR, Loyd JE (2003) Primary pulmonary hypertension. Lancet 361:1533–1544

    PubMed  Google Scholar 

  • Safdar Z (2011) Treatment of pulmonary arterial hypertension: the role of prostacyclin and prostaglandin analogs. Respir Med 105:818–827

    PubMed  Google Scholar 

  • Sakai S, Miyauchi T, Sakurai T, Yamaguchi I, Kobayashi M, Goto K, Sugishita Y (1996) Pulmonary hypertension caused by congestive heart failure is ameliorated by long-term application of an endothelin receptor antagonist. Increased expression of endothelin-1 messenger ribonucleic acid and endothelin-1-like immunoreactivity in the lung in congestive heart failure in rats. J Am Coll Cardiol 28:1580–1588

    CAS  PubMed  Google Scholar 

  • Sato K, Webb S, Tucker A, Rabinovitch M, Obrien RF, McMurtry IF, Stelzne TJ (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn-hooded rat. Am Rev Respir Dis 145:793–797

    CAS  PubMed  Google Scholar 

  • Sawada H, Mitani Y, Maruyama J, Jiang BH, Ikeyama Y, Dida FA, Yamamoto H, Imanaka-Yoshida K, Shimpo H, Mizoguchi A, Maruyama K, Komada Y (2007) A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats. Chest 132:1265–1274

    CAS  PubMed  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    CAS  PubMed  Google Scholar 

  • Shook LA, Pauly TH, Horstman SJ, Marple SL, Gillespie MN (1990) Dimethylthiourea reverses sepsis-induced pulmonary hypertension in piglets. Am J Med Sci 300:29–32

    CAS  PubMed  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S–12S

    PubMed  Google Scholar 

  • Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105–3111

    CAS  PubMed  Google Scholar 

  • Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker for mediator of disease? Ann Intern Med 114:464–469

    CAS  PubMed  Google Scholar 

  • Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K, Karwande SV, Stringham JC, Bull DA, Gleich M, Kennedy TP, Hoidal JR (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673

    CAS  PubMed  Google Scholar 

  • Sun X, Ku DD (2006) Allicin in garlic protects against coronary endothelial dysfunction and right heart hypertrophy in pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 291:H2431–H2438

    CAS  PubMed  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Ford GD (1992) Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. Am J Physiol 262:H114–H116

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Ford GD (1994) Mathematical model supporting the superoxide theory of oxygen toxicity. Free Radic Biol Med 16:63–72

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Day RM, Tan CC, Sandven TH, Liang Q, Molkentin JD, Fanburg BL (2003) Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. J Biol Chem 278:17525–17531

    CAS  PubMed  Google Scholar 

  • Suzuki YJ, Nagase H, Wong CM, Vinod Kumar S, Jain V, Park AM, Day RM (2007) Regulation of Bcl-xL expression in lung vascular smooth muscle. Am J Respir Cell Mol Biol 36:678–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney M, Yuan JX (2000) Hypoxic pulmonary vasoconstriction: role of voltage-gated potassium channels. Respir Res 1:40–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M (2010) Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 35:1079–1087

    CAS  PubMed  Google Scholar 

  • Ueno M, Miyauchi T, Sakai S, Goto K, Yamaguchi I (2000) Endothelin-a-receptor antagonist and oral prostacyclin analog are comparably effective in ameliorating pulmonary hypertension and right ventricular hypertrophy in rats. J Cardiovasc Pharmacol 36:S305–S310

    CAS  PubMed  Google Scholar 

  • Uzun O, Balbay O, ComunoÄŸlu NU, Yavuz O, Nihat Annakkaya A, Güler S, Silan C, ErbaÅŸ M, Arbak P (2006) Hypobaric-hypoxia-induced pulmonary damage in rats ameliorated by antioxidant erdosteine. Acta Histochem 108:59–68

    CAS  PubMed  Google Scholar 

  • Wedgwood S, Dettman RW, Black SM (2001) ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol 281:L1058–L1067

    CAS  Google Scholar 

  • Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH (2013) Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 18:1765–1776

    Google Scholar 

  • Wolin MS (1996) Reactive oxygen species and vascular signal transduction mechanisms. Microcirculation 3:1–17

    CAS  PubMed  Google Scholar 

  • Wong CM, Cheema AK, Zhang L, Suzuki YJ (2008) Protein carbonylation as a novel mechanism in redox signaling. Circ Res 102:310–318

    CAS  PubMed  Google Scholar 

  • Wong CM, Preston IR, Hill NS, Suzuki YJ (2012) Iron chelation inhibits the development of pulmonary vascular remodeling. Free Radic Biol Med 53:1738–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide producing vascular endothelial cells. Nature 332:411–415

    CAS  PubMed  Google Scholar 

  • Yang DL, Zhang HG, Xu YL, Gao YH, Yang XJ, Hao XQ, Li XH (2010) Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats. Clin Exp Pharmacol Physiol 37:150–155

    CAS  PubMed  Google Scholar 

  • Yoshibayashi M, Nishioka K, Nakao K, Saito Y, Matsumura M, Ueda T, Temma S, Shirakami G, Imura H, Mikawa H (1991) Plasma endothelin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothelin in pulmonary circulation. Circulation 84:2280–2285

    CAS  PubMed  Google Scholar 

  • Zamora MR, Stelzner TJ, Webb S, Panos RJ, Ruff LJ, Dempsey EC (1996) Overexpression of endothelin-1 and enhanced growth of pulmonary artery smooth muscle cells from fawn-hooded rats. Am J Physiol 270:L101–L109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Institutes of Health (R01HL72844 and R01HL97514) to Y.J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro J. Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Pavlickova, L., Zungu-Edmondson, M., Suzuki, Y.J. (2014). Reactive Oxygen Species and Antioxidants in Pulmonary Hypertension and Right Heart Failure. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_123

Download citation

Publish with us

Policies and ethics