Skip to main content

Free Radicals and Pathogens – Role for Reactive Intermediates in Innate Immunity

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Microorganisms that enter the body and cause disease are referred to as pathogenic microorganisms or pathogens. Microbial invasion is detected by pattern recognition receptors, and innate defense mechanisms including production of reactive oxygen and nitrogen species (ROS and RNS) and pro-inflammatory signaling are subsequently triggered within minutes of bacterial attack. Thereby, innate immunity is regarded to be the first line of host defense and acts through general antimicrobial mechanisms such as acidification, the production of antimicrobial peptides or enzymes, and the generation of toxic molecules including ROS/RNS. ROS-producing enzymes are located in the cytoplasmic and phagosome membranes and to a minor degree in the cytosol, in mitochondria, in the endoplasmic reticulum, and in peroxisomes in all aerobic cells. In order to prevent potentially damaging effects of ROS production, cells produce several endogenous enzymes such as superoxide dismutase (SOD), catalase, or glutathione peroxidase, which reduce superoxide to hydrogen peroxide and hydrogen peroxide to water. This chapter mainly focuses on ROS and RNS production in cells of the innate immune system with regard to antimicrobial activity and the microbial strategies of pathogens to escape from host oxidative defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Sater AA, Saïd-Sadier N, Lam VM, Singh B, Pettengill MA, Soares F, Tattoli I, Lipinski S, Girardin SE, Rosenstiel P, Ojcius DM (2010) Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J Biol Chem 285:41637–41645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH (2013) NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol 4:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Arazna M, Pruchniak MP, Demkow U (2013) Neutrophil extracellular traps in bacterial infections: strategies for escaping from killing. Respir Physiol Neurobiol 187(1):74–77

    Article  CAS  PubMed  Google Scholar 

  • Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26:435–439

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Billmann-Born S, Lipinski S, Bock J, Till A, Rosenstiel P, Schreiber S (2011) The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 90:593–602

    Article  CAS  PubMed  Google Scholar 

  • Bliska JB, Black DS (1995) Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect Immun 63:681–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Röllinghoff M, Diefenbach A (2000a) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Röllinghoff M, Diefenbach A (2000b) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  PubMed  Google Scholar 

  • Bolisetty S, Jaimes EA (2013) Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 14:6306–6344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bortoluci KR, Medzhitov R (2010) Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci 67:1643–1651

    Article  CAS  PubMed  Google Scholar 

  • Cassatella MA, Bazzoni F, Flynn RM, Dusi S, Trinchieri G, Rossi F (1990) Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem 265:20241–20246

    CAS  PubMed  Google Scholar 

  • Chakravortty D, Hensel M (2003) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect 5:621–627

    Article  CAS  PubMed  Google Scholar 

  • Chakravortty D, Hansen-Wester I, Hensel M (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CY, Morse SA (1999) Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress. Microbiology (Reading, Engl) 145(Pt 10):2967–2975

    CAS  Google Scholar 

  • Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Groote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, Dinauer MC, Libby SJ, Vazquez-Torres A, Xu Y, Fang FC (1997) Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001

    Article  PubMed Central  PubMed  Google Scholar 

  • De Oliveira-Junior EB, Bustamante J, Newburger PE, Condino-Neto A (2011) The human NADPH oxidase: primary and secondary defects impairing the respiratory burst function and the microbicidal ability of phagocytes. Scand J Immunol 73:420–427

    Article  PubMed  Google Scholar 

  • Diefenbach A, Schindler H, Donhauser N, Lorenz E, Laskay T, MacMicking J, Röllinghoff M, Gresser I, Bogdan C (1998) Type 1 interferon (IFNalpha/beta) and type 2 nitric oxide synthase regulate the innate immune response to a protozoan parasite. Immunity 8:77–87

    Article  CAS  PubMed  Google Scholar 

  • Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupré-Crochet S, Erard M, Nüβe O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94. Epub ahead of print

    Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832

    Article  CAS  PubMed  Google Scholar 

  • Fang FC (2011) Antimicrobial actions of reactive oxygen species. MBio 2(5):pii:e00141-11

    Google Scholar 

  • Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8

    Article  PubMed  Google Scholar 

  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallois A, Klein JR, Allen LA, Jones BD, Nauseef WM (2001) Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166:5741–5748

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Standiford TJ, Rahman A, Newstead M, Holland SM, Dinauer MC, Liu Q, Malik AB (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox−/− and gp91phox−/− mice. J Immunol 168:3974–3982

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, Mobley HL, Wilson KT (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA 98:13844–13849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gobert AP, Cheng Y, Wang J-Y, Boucher J-L, Iyer RK, Cederbaum SD, Casero RA Jr, Newton JC, Wilson KT (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168:4692–4700

    Article  CAS  PubMed  Google Scholar 

  • Guimarães-Costa AB, Nascimento MTC, Wardini AB, Pinto-da-Silva L.H, Saraiva EM (2012) ETosis: a microbicidal mechanism beyond cell death. J Parasitol Res

    Google Scholar 

  • Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155–1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinecke JW, Li W, Francis GA, Goldstein JA (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91:2866–2872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082

    Article  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M (2012) The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm 2012:849136

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolios G, Rooney N, Murphy CT, Robertson DA, Westwick J (1998) Expression of inducible nitric oxide synthase activity in human colon epithelial cells: modulation by T lymphocyte derived cytokines. Gut 43:56–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodziejski PJ, Musial A, Koo J-S, Eissa NT (2002) Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc Natl Acad Sci USA 99:12315–12320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodziejski PJ, Koo J-S, Eissa NT (2004) Regulation of inducible nitric oxide synthase by rapid cellular turnover and cotranslational down-regulation by dimerization inhibitors. Proc Natl Acad Sci USA 101:18141–18146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, Uzel G, DeRavin SS, Priel DAL, Soule BP, Zarember KA, Malech HL, Holland SM, Gallin JI (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363:2600–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  • Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT (2011a) Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. J Immunol 186:3632–3641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis RS, Kolesnik TB, Kuang Z, D’Cruz AA, Blewitt ME, Masters SL, Low A, Willson T, Norton RS, Nicholson SE (2011b) TLR regulation of SPSB1 controls inducible nitric oxide synthase induction. J Immunol 187:3798–3805

    Article  CAS  PubMed  Google Scholar 

  • Li H, Förstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    Article  CAS  PubMed  Google Scholar 

  • Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530

    Article  CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, Accavitti-Loper MA, Madden VJ, Sun L, Ye Z, Lich JD, Heise MT, Chen Z, Ting JP-Y (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573–577

    Article  CAS  PubMed  Google Scholar 

  • Musial A, Eissa NT (2001) Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem 276:24268–24273

    Article  CAS  PubMed  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VAK, Lee S-J, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AMK (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A, Yamashita K (2011) Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 413:75–79

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke EJ, Chevalier C, Pinto AV, Thiberge JM, Ielpi L, Labigne A, Radicella JP (2003) Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci USA 100:2789–2794

    Article  PubMed Central  PubMed  Google Scholar 

  • Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93

    Article  CAS  PubMed  Google Scholar 

  • Rada B, Hably C, Meczner A, Timár C, Lakatos G, Enyedi P, Ligeti E (2008) Role of Nox2 in elimination of microorganisms. Semin Immunopathol 30:237–253

    Article  CAS  PubMed  Google Scholar 

  • Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T (2011) Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 18:581–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, Cassard-Doulcier A-M (2006) The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35:135–142

    Article  CAS  PubMed  Google Scholar 

  • Schmidt N, Pautz A, Art J, Rauschkolb P, Jung M, Erkel G, Goldring MB, Kleinert H (2010) Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes. Biochem Pharmacol 79:722–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C (1999) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Chen S, Dempsey PW, Sorrentino R, Alsabeh R, Slepenkin AV, Peterson E, Doherty TM, Underhill D, Crother TR, Arditi M (2009) The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection. PLoS Pathog 5:e1000379

    Article  PubMed Central  PubMed  Google Scholar 

  • Sorbara MT, Philpott DJ (2011) Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol Rev 243:40–60

    Article  CAS  PubMed  Google Scholar 

  • Spooner R, Yilmaz O (2011) The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 12:334–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  CAS  PubMed  Google Scholar 

  • Stent A, Every AL, Sutton P (2012) Helicobacter pylori defense against oxidative attack. Am J Physiol Gastrointest Liver Physiol 302:G579–G587

    Article  PubMed  Google Scholar 

  • Sumimoto H, Ueno N, Yamasaki T, Taura M, Takeya R (2004) Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: roles for their regulatory proteins. Jpn J Infect Dis 57:S24–S25

    PubMed  Google Scholar 

  • Takeya R, Ueno N, Sumimoto H (2006) Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells. Meth Enzymol 406:456–468

    Article  CAS  PubMed  Google Scholar 

  • Tattoli I, Carneiro LA, Jéhanno M, Magalhaes JG, Shu Y, Philpott DJ, Arnoult D, Girardin SE (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9:293–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timár CI, Lőrincz ÁM, Ligeti E (2013) Changing world of neutrophils. Pflügers Arch Eur J Physiol (DOI: 10.1007/s00424-013-1285-1). epub ahead of print

    Google Scholar 

  • Uno K, Kato K, Atsumi T, Suzuki T, Yoshitake J, Morita H, Ohara S, Kotake Y, Shimosegawa T, Yoshimura T (2007) Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 293:G1004–G1012

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, Dinauer MC, Mastroeni P, Fang FC (2000) Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655–1658

    Article  CAS  PubMed  Google Scholar 

  • Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC (2007) The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • Vulcano M, Dusi S, Lissandrini D, Badolato R, Mazzi P, Riboldi E, Borroni E, Calleri A, Donini M, Plebani A, Notarangelo L, Musso T, Sozzani S (2004) Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells. J Immunol 173:5749–5756

    Article  CAS  PubMed  Google Scholar 

  • Wai SN, Nakayama K, Umene K, Moriya T, Amako K (1996) Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Mol Microbiol 20:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Weinberg JB (1998) Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med 4:557–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011a) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West AP, Shadel GS, Ghosh S (2011b) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Hsu Y-MS, Bi L, Songyang Z, Lin X (2009) CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol 10:1208–1214

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guntram A. Grassl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Steck, N., Grassl, G.A. (2014). Free Radicals and Pathogens – Role for Reactive Intermediates in Innate Immunity. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_103

Download citation

Publish with us

Policies and ethics