Skip to main content

Cellular Automata Hardware Implementation

  • Living reference work entry
  • First Online:

Glossary

Dynamic System :

is a system in which a function describes the time dependence of a point in a geometrical space.

Electronic Hardware :

consists of interconnected electronic components which perform analog or logic operations on received and locally stored information to produce as output or store resulting new information or to provide control for output actuator mechanisms.

Field Programmable Gate Array (FPGA) :

is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

VHDL [VHSIC (Very High-Speed Integrated Circuit) Hardware Description Language]:

is a hardware description language (HDL), i.e., a specialized computer language, used to describe the structure and behavior of digital and mixed-signal systems

VLSI (Very Large-Scale Integration):

is the level of computer microchip miniaturization and integration which refers to microchips containing in the hundreds of thousands of transistors.

VLSI Architecture :

is a set of rules and...

This is a preview of subscription content, log in via an institution.

Bibliography

Primary Literature

  • Adamides ED, Iliades P, Argyrakis J, Tsalides P, Thanailakis A (1993) Cellular logic bus arbitration. IEE Proc-E Comput Digit Tech (IEE) 140(6):289–296

    Google Scholar 

  • Albicki A, Khare M (1987) Cellular automata used for test pattern generation. In: Proceedings of the international conference on computer design. IEEE Computer Society Press, Los Alamitos, pp 56–59

    Google Scholar 

  • Altera 2007 Designing and using FPGAs for double precision floating-point math. White Paper

    Google Scholar 

  • Amlani I, Orlov AO, Toth G, Bernstein GH, Lent CS, Snider GL (1999) Digital logic gate using quantum-dot cellular automata. Science 284:289–291

    Article  ADS  Google Scholar 

  • Andreadis I, Karafyllidis I, Tzionas P, Thanailakis A, Tsalides P (1996) A new hardware module for automated visual inspection based on a cellular automaton architecture. J Intell Robot Syst (Springer) 16(1):89–102

    Article  Google Scholar 

  • Bak P, Tang C (1989) Earthquakes as a self-organised critical phenomenon. J Geophys Res 94:15635–15637

    Article  ADS  Google Scholar 

  • Bardell PH (1990) Analysis of cellular automata used as pseudo-random pattern generators. In: Proceedings of the international test conference ’90, pp 762–768

    Chapter  Google Scholar 

  • Bassham L et al. (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST. https://csrc.nist.gov/CSRC/media/Projects/Random-Bit-Generation/documents/sts-2_1_2.zip

  • Bhattacharjee S (1997) Some studies on data compression, error correcting code and boolean function analysis. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull Seismol Soc Am 57(3):341–371

    Google Scholar 

  • Card HC, Thanailakis A, Pries W, McLeod RD (1986) Analysis of bounded linear cellular automata based on a method of image charges. J Comput Syst Sci (Elsevier) 33(3):473–480

    Article  MathSciNet  Google Scholar 

  • Chen RJ, Lai JL (2004) VLSI implementation of the universal 2-D CAT/ICAT system. In: Proceedings of the 11th IEEE international conference on electronics, circuits and systems, pp 187–190

    Google Scholar 

  • Chattopadhyay S (1996) Some studies on theory and applications of additive cellular automata. PhD Thesis, I.I.T., Kharagpur, India

    Google Scholar 

  • Chaudhuri PP, Chowdhury DR, Nandi S, Chattopadhyay S (1997) Additive cellular automata: theory and applications, vol 1. Wiley-IEEE Computer Society Press, Los Alamitos

    MATH  Google Scholar 

  • Chowdhury DR (1992) Theory and applications of additive cellular automata for reliable and testable VLSI circuit design. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Chowdhury DR, Chaudhuri PP (1989) Parallel memory testing: a BIST approach. In: Proceedings of the 3rd international workshop on VLSI design, Bangalore, pp 373–377

    Google Scholar 

  • Chowdhury DR, Basu S, Gupta IS, Chaudhuri PP (1994a) Design of CAECC-cellular automata based error correcting code. IEEE Trans Comput (IEEE) 43(6):759–764

    Article  MathSciNet  MATH  Google Scholar 

  • Chowdhury DR, Sengupta IS, Chaudhuri PP (1994b) A class of two-dimensional cellular automata and applications in random pattern testing. J Electron Test Theory Appl 5(1):67–82

    Article  Google Scholar 

  • Das AK (1990) Additive cellular automata: theory and applications as a built-in self-test structure. Ph.D. Thesis, I.I.T., Kharagpur

    Google Scholar 

  • Das AK, Chaudhuri PP (1989) An efficient on-chip deterministic test pattern generation scheme. Microprocess Microprogram (Elsevier) 26(3):195–204

    Article  Google Scholar 

  • Das AK, Chaudhuri PP (1993) Vector space theoretic analysis of additive cellular automata and its applications for pseudo-exhaustive test pattern generation. IEEE Trans Comput (IEEE) 42(3):340–352

    Article  MathSciNet  Google Scholar 

  • Das Sukanta (2006) Theory and applications of nonlinear cellular automata in vlsi design. Ph.D. thesis, Bengal Engineering And Science University, Shibpur West Bengal

    Google Scholar 

  • Dourvas N, Tsompanas M-AI, Sirakoulis GC, Tsalides P (2015) Hardware acceleration of cellular automata physarum polycephalum model. Parallel Process Lett (World Scientific) 25:1540006. [25 pages]

    Article  MathSciNet  MATH  Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys (Springer) 21(6/7):467–488

    Article  MathSciNet  Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am (IEEE) 223:120–123

    Article  Google Scholar 

  • Georgoudas IG, Sirakoulis GS, Emmanouil MS, Andreadis I (2007) A cellular automaton simulation tool for modelling seismicity in the region of Xanthi. Environ Model Softw (Elsevier) 22(10):1455–1464

    Article  Google Scholar 

  • Georgoudas IG, Sirakoulis GC, Andreadis I (2009) On chip earthquake simulation model using potentials. Nat Hazards (Springer) 50(3):519–537

    Article  Google Scholar 

  • Georgoudas IG, Koltsidas G, Sirakoulis GC, Andreadis I (2010a) A cellular automaton model for crowd evacuation and its auto-defined obstacle avoidance attribute. In: Proceedings of third international workshop on crowds and cellular automata (C&CA-2010) organized within the 9th international conference on cellular automata for research and industry (ACRI2010), Ascoli-Pizeno, pp 455–464

    Google Scholar 

  • Georgoudas IG, Kyriakos P, Sirakoulis GC, Andreadis I (2010b) An FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-induced potential fields. Microprocess Microsyst (Elsevier) 34(7–8):285–300

    Article  Google Scholar 

  • Georgoudas I, Sirakoulis GC, Andreadis I (2011) An anticipative crowd management system preventing clogging in exits during pedestrian evacuation process. IEEE Syst J (IEEE) 5(1):129–141

    Article  ADS  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15

    Google Scholar 

  • Halbach M, Hoffmann R (2004) Implementing cellular automata in FPGA logic. In: Proceedings of the 18th international parallel and distributed processing symposium, Santa Fe, pp 3531–3535

    Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490

    Article  ADS  Google Scholar 

  • Hortensius PD, McLeod RD, Card HC (1989a) Parallel pseudo-random number generation for VLSI systems using cellular automata. IEEE Trans Comput (IEEE) 38(10):1466–1473

    Article  Google Scholar 

  • Hortensius PD, McLeod RD, Pries W, Miller DM, Card HC (1989b) Cellular automata based pseudo-random number generators for built-in self-test. IEEE Trans Comput-Aided Des (IEEE) 8(8):842–859

    Article  Google Scholar 

  • Hortensius PD, McLeod RD, Card HC (1990) Cellular automata based signature analysis for built-in self-test. IEEE Trans Comput (IEEE) 39(10):1273–1283

    Article  Google Scholar 

  • Jendrsczok J, Ediger P, Hoffmann R (2009) A scalable configurable architecture for the massively parallel GCA model. Int J Parallel Emergent Distrib Syst 24(4):275–291

    Article  MathSciNet  MATH  Google Scholar 

  • Kalogeropoulos G, Sirakoulis GC, Karafyllidis I (2013) Cellular automata on FPGA for real-time urban traffic signals control. J Supercomput (Springer) 65:1–18

    Article  Google Scholar 

  • Karafyllidis I, Ioannidis A, Thanailakis A, Tsalides P (1997) Geometrical shape recognition using a cellular automaton architecture and its VLSI implementation. Real-Time Imaging (Springer) 3(4):243–254

    Article  Google Scholar 

  • Karafyllidis I, Thanailakis A (1997) A model for predicting forest fire spreading using cellular automata. Ecol Modell (Elsevier) 99:87–97

    Article  Google Scholar 

  • Karafyllidis I, Andreadis I, Tzionas P, Tsalides P, Thanailakis A (1996) A cellular automaton for the determination of the mean velocity of moving objects and its VLSI implementation. Pattern Recogn (Elsevier) 29(4):689–699

    Article  Google Scholar 

  • Karafyllidis I, Andreadis I, Tsalides P, Thanailakis A (1998) Non-linear hybrid cellular automata as pseudorandom pattern generators for VLSI systems. VLSI Des 7(2):177–189

    Article  Google Scholar 

  • Katis I, Sirakoulis GC (2012) Cellular automata on fpgas for image processing. In: Proceedings of the 16th panhellenic conference on informatics (PCI 2012), Athens, pp 308–313

    Chapter  Google Scholar 

  • Kotoulas L, Tsarouchis D, Sirakoulis GC, Andreadis I (2006) 1-D cellular automaton for pseudorandom number generation and its reconfigurable hardware implementation. In: Proceedings of 2006 I.E. international symposium on circuits and systems (ISCAS’2006), Island of Kos, pp 4627–4630

    Google Scholar 

  • Landman BS, RL R (1971) On a pin versus block relationship for partitions of logic graphs. IEEE Trans Comput C – (IEEE) 20(12):1469–1479

    Article  Google Scholar 

  • Langhammer, M. 2007. Double precision floating point on FPGAs. In: Proceedings of the 3rd annual reconfigurable systems summer Institute. National Center for Supercomputing Applications, Urbana

    Google Scholar 

  • Lanzerotti MY, Fiorenza G, Rand RA (2005) Microminiature packaging and integrated circuitry: the work of {E. F. Rent}, with an application to on-chip interconnection requirements. IBM J Res Develop (IBM) 49(4,5):777–803

    Article  Google Scholar 

  • Lent CS, Tougaw D (1997) A device architecture for computing with quantum dots. Proc IEEE (IEEE) 85(4):541–557

    Article  Google Scholar 

  • Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology (IOP) 4(1):49–57

    Article  ADS  Google Scholar 

  • Mardiris V, Sirakoulis GC, Mizas C, Karafyllidis I, Thanailakis A (2008) A CAD system for modeling and simulation of computer networks using cellular automata. IEEE Trans Syst Man Cybern – Part C (IEEE) 38(2):253–264

    Article  Google Scholar 

  • Mardiris V, Sirakoulis GC, Karafyllidis I (2015) Automated design architecture for 1-D cellular automata using quantum cellular automata. IEEE Trans Comput (IEEE) 64(9):2476–2489

    Article  MathSciNet  MATH  Google Scholar 

  • Marriot AP, Tsalides P, Hicks PJ (1991) VLSI implementation of smart imaging system using two-dimensional cellular automata. IEE Proc-G Circuits Dev Syst (IEE) 138(5):582–586

    Article  Google Scholar 

  • McLeod RD, Hortensius P, Schneider R, Card HC, Bridges G, Pries W (1986) CALBO-cellular automaton logic block observation. In: Proceedings of the Canadian conference on VLSI. IEEE Computer Society Press, Los Alamitos, pp 171–176

    Google Scholar 

  • Minsky M (1982) Cellular vacuum. Int J Theor Phys (Springer) 21(6/7):537–551

    Article  MATH  Google Scholar 

  • Misra S (1992) Theory and applications of additive cellular automata for easily testable VLSI circuit design. Ph.D. thesis, I.I.T., Kharagpur

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2007) Performance modeling of 2D cellular automata on FPGA. In: Proceedings of the international conference on field programmable logic and applications, pp 74–78

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2008) Floating point based cellular automata simulations using a dual FPGA-enabled system. In: Proceedings of the 2nd international workshop on high-performance reconfigurable computing technology and applications, pp 1–8

    Google Scholar 

  • Murtaza S, Hoekstra AG, Sloot PMA (2011) Cellular automata simulations on a FPGA cluster. Int J High Perform Comput Appl 25(2):193–204

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I Fr 2(12):2221–2229

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Intelligence: maze-solving by an amoeboid organism. Nature (Springer Nature) 407(6803):470–470

    Article  ADS  Google Scholar 

  • Nalpantidis L, Amanatiadis A, Sirakoulis GC, Gasteratos A (2011) An efficient hierarchical matching algorithm for processing uncalibrated stereo vision images and its hardware architecture. IET Image Process (IET) 5(5):481–492

    Article  Google Scholar 

  • Nandi S (1994) Additive cellular automata: theory and applications for testable circuit design and data encryption. Ph.D. thesis, I.I.T., Kharagpur

    Google Scholar 

  • Ntinas V, Moutafis B, Trunfio GA, Sirakoulis GC (2017) Parallel fuzzy cellular automata for data-driven simulation of wildfire simulations. J Comput Sci (Elsevier) 21:469–485

    Article  Google Scholar 

  • Omohundro S (1984) Modelling cellular automata with partial differential equations. Phys D Nonlinear Phenomena (Elsevier) 10:128–134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pitsianis N, Tsalides P, Bleris GL, Thanailakis A, Card HC (1989a) Deterministic one-dimensional cellular automata. J Stat Phys (Elsevier) 56(1):99–112

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pitsianis N, Tsalides P, Bleris GL, Thanailakis A, Card HC (1989b) Algebraic theory of bounded one-dimensional cellular automata. Complex Syst 3(2):209–227

    MathSciNet  MATH  Google Scholar 

  • Porter R, Frigo J, Conti A, Harvey N, Kenyon G, Gokhale M (2007) A reconfigurable computing framework for multi-scale cellular image processing. Microprocess Microsyst (Elsevier) 31(8):546–563

    Article  Google Scholar 

  • Pries W, Thanailakis A, Card HC (1986) Group properties of cellular automata and VLSI applications. IEEE Trans Comput (IEEE) 35(12):1013–1024

    Article  MATH  Google Scholar 

  • Progias P, Sirakoulis GC (2013) An FPGA processor for modelling wildfire spread. Math Comput Model (Elsevier) 57(5–6):1436–1452

    Article  Google Scholar 

  • Rukhin Andrew et al (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST. http://csrc.nist.gov/rng/

  • Serra M, Slater T, Muzio JC, Miller DM (1990) Analysis of one dimensional cellular automata and their aliasing probabilities. IEEE Trans Comput-Aided Des (IEEE) 9(7):767–778

    Article  Google Scholar 

  • Sirakoulis GC (2004) A TCAD system for VLSI implementation of the CVD process using VHDL. Integr VLSI J (Elsevier) 37(1):63–81

    Article  MathSciNet  Google Scholar 

  • Sirakoulis GC (2015) The computational paradigm of cellular automata in crowd evacuation. Int J Found Comput Sci (World Scientific) 26(7):851

    Article  MathSciNet  MATH  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Soudris D, Georgoulas N, Thanailakis A (1999) A new simulator for the oxidation process in integrated circuit fabrication based on cellular automata. Model Simul Mater Sci Eng (IOP) 7(4):631–640

    Article  ADS  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Mardiris V, Thanailakis A (2000a) Study of the effects of photoresist surface roughness and defects on developed profiles. Semicond Sci Technol (IOP Publishing) 15:98

    Article  ADS  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A (2000b) A cellular automaton model for the effect of population movement on epidemic propagation. Ecol Model (Elsevier) 133(3):209–223

    Article  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A, Mardiris V (2001) A methodology for VLSI implementation of cellular automata algorithms using VHDL. Adv Eng Softw (Elsevier) 32(3):189–202

    Article  MATH  Google Scholar 

  • Sirakoulis GC, Karafyllidis I, Thanailakis A (2003) A CAD system for the construction and VLSI implementation of cellular automata algorithms using VHDL. Microprocess Microsyst (Elsevier) 27:381–396

    Article  Google Scholar 

  • Srisuchinwong B, York TK, Tsalides P, Hicks PJ, Thanailakis A (1992) VLSI implementation of a mod-p multipliers using Homomorphisms and hybrid cellular automaton-based data compression techniques. IEE Proc-E Comput Digit Tech (IEE) 139(6):486–490

    Article  Google Scholar 

  • Toffoli T (1984a) Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Phys D Nonlinear Phenomena (Elsevier) 10(1–2):117–127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Toffoli T (1984b) CAM: a high-performance cellular automaton machine. Phys D Nonlinear Phenomena (Elsevier) 10(1–2):195–204

    Article  ADS  Google Scholar 

  • Tsalides P (1990) Cellular automata based built-in self-test structures for VLSI systems. IEE Electron Lett (IEE) 26(17):1350–1352

    Article  Google Scholar 

  • Tsalides P, Hicks PJ, York TA (1989) Three dimensional cellular automata and VLSI applications. IEE Proc-E Comput Digit Tech (IEE) 136(6):490–495

    Article  Google Scholar 

  • Tsalides P, York TA, Thanailakis A (1991) Pseudo-random number generators for VLSI systems based on linear cellular automata. IEE Proc-E Comput Digit Tech (IEE) 138(4):241–249

    Article  Google Scholar 

  • Tsalides P, Thanailakis A, Pitsanis N, Bleris GL (1992) Two-dimensional cellular automata: properties and applications of a new VLSI architecture. Comput J (Oxford) 35(4):A377–A386

    Google Scholar 

  • Tsiftsis A, Georgoudas IG, and Sirakoulis GCh (2016) Real data evaluation of a crowd supervising system for stadium evacuation and its hardware implementation. IEΕE Systems 10(2):649–660

    Google Scholar 

  • Tsompanas M-AI, Sirakoulis GC (2012) Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspir Biomim (IOP) 7:036013. (19 pp.)

    Article  ADS  Google Scholar 

  • Tsompanas M-AI, Sirakoulis GC, Adamatzky A (2016) Physarum in silicon: the Greek motorways study. Nat Comput (Springer) 15(2):279–295

    Article  MathSciNet  Google Scholar 

  • Tzionas P, Tsalides P, Thanailakis A (1992) Design and VLSI implementation of a pattern classifier using pseudo 2D cellular automata. IEE Proc-G Circuits Dev Syst (IEE) 139(6):661–668

    Article  Google Scholar 

  • Tzionas P, Tsalides P, Thanailakis A (1996) A new-hybrid cellular automaton/neural network classifier for multi-valued patterns and its VLSI implementation. Integr VLSI J (Elsevier) 20(2):211–237

    Article  MATH  Google Scholar 

  • Ulam S (1952) Random processes and transformations. In: Proceedings of the international congress on mathematics, pp 264–275

    Google Scholar 

  • Vacca M, Wang J, Graziano M, Roch MR, Zamboni M (2015) Feedbacks in QCA: a quantitative approach. IEEE Trans Very Large Scale Integr VLSI Syst (IEEE) 23(10):2233–2243

    Article  Google Scholar 

  • Vichniac GY (1984) Simulating physics with cellular automata. Phys D Nonlinear Phenomena (Elsevier) 10:96–116

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Viola P, Jones MJ, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: 2003 proceedings of IEEE international conference on computer vision, pp 734–741

    Google Scholar 

  • von Neumann J, Burks AW, and others (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw (IEEE) 5: 3–14

    Google Scholar 

  • Vourkas I, Sirakoulis GC (2012) FPGA based cellular automata for environmental modeling. In: Proceedings of the 2012 I.E. international conference on electronics, circuits, and systems (ICECS 2012), Seville, pp 308–313

    Google Scholar 

  • Weston JL, Lee P (2008) FPGA implementation of cellular automata spaces using a CAM based cellular architecture. In: Proceedings of the NASA/ESA conference on adaptive hardware and systems, pp 315–322

    Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Phys D (Elsevier) 10(1–2):1–35

    MathSciNet  MATH  Google Scholar 

  • Wolkow R, Livadaru L, Pitters J, Taucerg M, Piva M, Salomons M, Cloutier M, Martins B (2014) Silicon atomic quantum dots enable beyond-CMOS electronics. In: Field-coupled nanocomputing, Lecture notes in computer science, Springer Berlin Heidelberg, Berlin, Heidelberg. vol 8280, pp 33–58

    Google Scholar 

  • York TK, Tsalides P, Srisuchinwong B, Hicks PJ, Thanailakis A (1991) Design and VLSI implementation of a mod-127 multiplier using cellular automaton-based data compression techniques. IEE Proc-E Comput Digit Tech (IEE) 138(5):351–356

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control (Elsevier) 8(3):338–353

    Article  MATH  Google Scholar 

Book & Reviews

  • Adamatzky A (2010a) Physarum machines: computers from slime mould, vol 74. World Scientific, Singapore/Hackensack

    Book  Google Scholar 

  • Adamatzky A (2010b) Game of life cellular automata. Springer, London

    Book  MATH  Google Scholar 

  • Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hurst SL (1998) VLSI testing: digital and mixed analogue/digital techniques. The Institution of Electrical Engineering (IEE), London

    Book  Google Scholar 

  • Knuth DE (1981) The art of computer programming-seminumerical algorithms. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Maraglia George (1995) The Marsaglia random number CDROM including the Diehard battery of tests of randomness. Florida State University. https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/). Archived from the original on 25 Jan 2016

  • Pettey C (1997) Diffusion (cellular) models. In: Handbook of evolutionary computation. Oxford University Press

    Google Scholar 

  • Preston Kendall Jr, M.J.B. Duff. 1984. Modern cellular automata. Theory and applications Springer

    Google Scholar 

  • Rosin P, Adamatzky A, Sun X (2014) Cellular automata in image processing and geometry. Springer, Cham

    Book  MATH  Google Scholar 

  • Sirakoulis GC, S Bandini (2012) Cellular automata – proceedings of 10th international conference on cellular automata for research and industry, ACRI 2012, Springer

    Google Scholar 

  • Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, Cambridge

    MATH  Google Scholar 

  • Was J, Sirakoulis GC, Bandini S (2014). Cellular automata – proceedings of 11th international conference on cellular automata for research and industry, ACRI 2014. Springer

    Google Scholar 

  • Wolfram S (1994) Cellular automata and complexity: collected papers. Westview Press, Boulder

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sirakoulis, G.C. (2018). Cellular Automata Hardware Implementation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_673-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_673-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics