Skip to main content

Tsunami Hazard and Risk Assessment on the Global Scale

  • Living reference work entry
  • First Online:

Definition of Subject

Tsunamis are infrequent events with the power to cause massive loss of life, large economic losses, and cascading effects such as destruction of critical facilities. The recurrence of truly disastrous tsunamis at any location may range from hundreds to even thousands of years. To manage the risk from these events, scientists use hazard and risk assessment to better understand the threat. Hazard assessment typically involves quantifying the temporal probability of a tsunami metric (e.g., run-up height at a coastal location) being exceeded within a given time frame. Risk assessment quantifies the probability of damage and loss to exposed assets and population by integrating the results of the hazard assessment with the vulnerability of the exposed elements to the given tsunami metric. Tsunami hazard and risk analysis cannot exploit observational data as extensively as more frequent hazards. Instead, numerical models are used to quantify the magnitude and frequency...

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Comprehensive Approach to Probabilistic Risk Assessment (www.ecapra.org)

Abbreviations

Digital Elevation model (DEM):

A digital model of the surface of topography or elevation usually defined as height above or below mean sea level.

Exposure (Elements at risk):

Assets and/or people that are located in areas that may be impacted by a hazard.

Hazard:

A hazard is a man-made or natural phenomenon with the potential to be harmful to population society and the environment. Hazard assessment refers to efforts to characterise the location intensity and/or temporal probability of hazard events.

Hazard curve:

Distribution of a hazard intensity as a function of the temporal probability of exceedance.

Loss exceedance curve:

Distribution of a measure of loss (e.g., economic, fatality) and the probability of exceedance within a given period of time.

Loss return period:

The inverse value of the loss exceedance rate. It represents the mean time interval on which the selected loss level is expected to occur at least once.

Magnitude Frequency Distribution (MFD):

A relation between a measure of the size or intensity of a phenomena (for example an earthquake magnitude) and the probability of being observed within a given time interval.

Mortality rate:

The probability of a fatality given a tsunami metric.

Physical vulnerability:

Potential degree of structural and non-structural damage of an exposed element when subjected to a hazard event. For fully probabilistic risk assessments the vulnerability is represented by vulnerability functions allow calculating the monetary losses associated to them.

Probabilistic Tsunami Hazard Assessment (PTHA):

A probabilistic description of the size and occurrence frequency quantified in terms of an exceedance probability for the values of a physical intensity or tsunami metric (e.g., flow depth).

Probabilistic Tsunami Risk Assessment (PTRA):

A probabilistic description of the size and exceedance frequency of tsunamigenic losses.

Probability density function (PDF):

The probability density function is the derivative of the total (cumulative) probability and gives the relative likelihood of all possible random variables. The integral over all possible random variables in the PDF equals unity.

Probable Maximum Loss (PML):

A probabilistic risk metric that takes account of the expected size of maximum losses associated to extreme events. It is always associated to a mean return period.

Tsunami risk:

A measure of the magnitude and frequency of losses due to tsunamis. It is calculated as the convolution between the hazard and the physical vulnerability of the exposed assets. Quantitatively the Risk is a function of (Hazard, Exposure and Vulnerability). Tsunami risk can be expressed in terms of loss exceedance rates, average annual losses and probable maximum losses.

Vulnerability:

(1) The degree of loss to a given element at risk or set of such elements resulting from a hazard event of a given magnitude or intensity, usually expressed on a scale from 0 (no loss) to 1 (total loss). (2) Degree of damage caused by various levels of loading. Vulnerability may be calculated in a probabilistic or deterministic way for a single structure or a set of structures.

Bibliography

  • Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl Geophys 164:577–592

    Article  ADS  Google Scholar 

  • Barkan R, ten Brink U, Lin J (2009) Far field tsunami simulations of the 1755 Lisbon earthquake: implications for tsunami hazard to the U.S. East Coast and the Caribbean. Mar Geol 264(1–2):109–122

    Article  Google Scholar 

  • Basili R, Tiberti MM, Kastelic V, Romano F, Piatanesi A, Selva J, Lorito S (2013) Integrating geologic fault data into tsunami hazard studies. Nat Hazards Earth Syst Sci 13:1025–1050

    Article  ADS  Google Scholar 

  • Bazzurro P, Luco N (2005) Accounting for uncertainty and correlation in earthquake loss estimation. In: Proceedings of ICOSSAR, Rome, pp. 2687–2694

    Google Scholar 

  • Bernal GA (2014) Metodología para la modelación, cálculo y calibración de parámetros de la amenaza sísmica para la evaluación probabilista del riesgo (in Spanish). PhD thesis, Technical University of Catalonia, Barcelona

    Google Scholar 

  • Berryman K et al (ed) (2005) Review of tsunami hazard and risk in New Zealand. Geological and Nuclear Sciences (GNS), report 2005/104, 140 p

    Google Scholar 

  • Berryman K, Wallace L, Hayes G, Bird P, Wang K, Basili R, Lay T, Stein R, Sagiya T, Rubin C, Barreintos S, Kreemer C, Litchfield N, Pagani M, Gledhill K, Haller K, Costa C (2013) The GEM faulted earth subduction characterisation project, version 1.0, June 2013. http://www.nexus.globalquakemodel.org/gem-faulted-earth/posts

  • Bilek S and Lay T (1999) Rigidity with depth along interpolate megathrust faults in subduction zones, Nature 400, 443-446. doi:10.1038/22739

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  ADS  Google Scholar 

  • Borrero J, Sieh K, Chlieh M, Synolakis C (2006) Tsunami inundation modelling for western Sumatra. Proc Natl Acad Sci U S A 103(52):19673–19677

    Article  ADS  Google Scholar 

  • Brizuela B, Armigliato A, Tinti S (2014) Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru. Nat Hazards Earth Syst Sci 14:1889–1903. doi:10.5194/nhess-14-1889-2014

    Article  ADS  Google Scholar 

  • Burbidge D, Cummins P (2007) Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc. Nat Hazards 43:319–331. doi:10.1007/s11069-007-9116-3

    Article  Google Scholar 

  • Burbidge D, Cummins PR, Mleczko R, Thio HK (2008a) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys. doi:10.1007/s00024-008-0421-x

    Google Scholar 

  • Burbidge D, Mleczko R, Thomas C, Cummins P, Nielsen O, Dhu T (2008b) A probabilistic tsunami hazard assessment for Australia. Geoscience Australia Professional Opinion. No.2008/04

    Google Scholar 

  • Burroughs SF, Tebbens SM (2005) Power-law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342

    Article  ADS  Google Scholar 

  • Cardona OD (2009) La gestión financiera del riesgo de desastre. Instrumentos financieros de retención y transferencia para la Comunidad Andina (in Spanish). PREDECAN, Lima

    Google Scholar 

  • Cardona OD, Ordaz M, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA – comprehensive approach to probabilistic risk assessment: international initiative for risk management efectiveness. In: Proceedings of 15th world conference on earthquake engineering, Lisbon

    Google Scholar 

  • Cardona OD, Ordaz M, Mora MG, Salgado-Gálvez MA, Bernal GA, Zuloaga D, Marulanda MC, Yamín LE, González D (2014) Global risk assessment: a fully probabilistic seismic and tropical cyclone wind risk assessment. Int J Disaster Risk Reduct 10:461–476

    Article  Google Scholar 

  • Carrier GF, Greenspan HP (1958) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4:97–109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • CIMNE, INGENIAR (2015) Update on the probabilistic global of natural risk at the global level: global risk model. Background paper for the global assessment report on disaster risk reduction 2015. http://www.preventionweb.net/english/hyogo/gar/2015/en/home/documents.html#contributing_papers

  • CIMNE, ITEC, INGENIAR, EAI (2013) Probabilistic modelling of natural risks at the global level. Global risk model. Background paper for the global assessment report on disaster risk reduction 2013. http://www.preventionweb.net/english/hyogo/gar/2013/en/home/documents.html#contributing_papers

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • De Bono A, Chatenoux B (2014) A global exposure model for GAR 2015. Input paper for the global assessment report on disaster risk reduction 2015. http://www.preventionweb.net/english/hyogo/gar/2015/en/home/documents.html#contributing_papers

  • Dominey-Howes D, Papathoma M (2007) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004 Indian Ocean tsunami. Nat Hazards 40:113–36

    Article  Google Scholar 

  • Dominey-Howes D, Dunbar P, Varner J, Papathoma-Köhle M (2010) Estimating probable maximum loss from a Cascadia tsunami. Nat Hazards 53(1):43–61

    Article  Google Scholar 

  • Esteva L (1967) Criterios para la construcción de espectros de diseño sísmico (in Spanish). In: Proceedings of the 3rd pan-American symposium of structures, Caracas

    Google Scholar 

  • Geist E, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    Article  Google Scholar 

  • Gonzalez FI, Geist EL, Jaffe B et al (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res Oceans 114:C11023

    Article  ADS  Google Scholar 

  • Griffin JG, Latief H, Kongko W, Harig S, Horspool N, Hanung R, Rojali A, Maher N, Fountain L, Fuchs A, Hossen J, Upi S, Dewanto SE, Cummins PR (2015) An evaluation of onshore digital elevation models for modelling tsunami inundation zones. Front Earth Sci 3:32. doi:10.3389/feart.2015.00032

    Article  ADS  Google Scholar 

  • Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125. doi:10.5194/nhess-10-2109-2010

    Article  ADS  Google Scholar 

  • Harbitz CB, Glimsdal S, Løvholt F, Pedersen GK, Vanneste M, Eidsvig UMK, Bungum H (2009) Tsunami hazard assessment and early warning systems for the North East Atlantic. In: Proceedings of DEWS midterm conference, Potsdam, 7–8 July 2009. http://www.dews-conference.org/front_content.php

  • Harbitz CB, Glimsdal S, Bazin S, Zamora N, Løvholt F, Bungum H, Smebye H, Gauer P, Kjekstad O (2012) Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23

    Article  ADS  Google Scholar 

  • Harbitz CB, Løvholt F, Bungum H (2014a) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72(3):1341–1374

    Article  Google Scholar 

  • Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen GK, Jensen A (2014b) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122. doi:10.1016/j.coastaleng.2014.02.003

    Article  Google Scholar 

  • Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: a three-dimensional model of global subduction zone geometries. J Geophys Res Solid Earth (1978–2012) 117(B1):2156–2202

    Google Scholar 

  • Hebert H, Schindele F, Altinok Y, Alpar B, Gazioglu C (2005) Tsunami hazard in the Marmara Sea (Turkey): a numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Mar Geol 215:23–43

    Article  Google Scholar 

  • Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the Northwestern Indian Ocean. Nat Hazards 56(3):577–593

    Article  Google Scholar 

  • Hooper A, Pietrzak J, Simons W, Cui H, Riva R, Naeije M, Terwisscha van Scheltinga A, Schrama E, Stelling G, Socquet A (2013) Importance of horizontal seafloor motion on tsunami height for the 2011 Mw = 9.0 Tohoku-Oki earthquake. Earth Planet Sci Lett 361(1):469–479

    Article  ADS  Google Scholar 

  • Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14(11):3105–3122

    Article  ADS  Google Scholar 

  • Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T, Martin ME, Prendergast A (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455:1228–1231

    Article  ADS  Google Scholar 

  • Kagan YY, Jackson DD (2013) Tohoku earthquake: a surprise? Bull Seismol Soc Am 103(2B):1181–94

    Article  Google Scholar 

  • Kaiser G, Scheele L, Kortenhaus A, Løvholt F, Römer H, Leschka S (2011) The influence of land cover roughness on high resolution tsunami inundation modeling. Nat Hazards Earth Syst Sci 11:2521–2540

    Article  ADS  Google Scholar 

  • Kaistrenko VM, Pinegina T, Klyachko MA (2003) Evaluation of tsunami hazard for the southern Kamchatka coast using historical and paleotsunami data. In: Yalciner AC, Pelinovsky E, Okal E, Synolakis CE (eds) Submarine landslides and tsunamis. Kluwer, Dordrecht, pp 217–228

    Chapter  Google Scholar 

  • Kanamori H (1972) Mechanisms of tsunami earthquakes. Phys Earth Planet Inter 6:346–359

    Article  ADS  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering, Prentice-Hall international series in civil engineering and engineering mechanics. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kulikov EA, Rabinovich AB, Thomson RE (2005) Estimation of tsunami risk for the coasts of Peru and northern Chile. Nat Hazards 35:185–209

    Article  Google Scholar 

  • LandScan (2013) High resolution global population data set © UT-Battelle, LLC, operator of Oak Ridge National Laboratory, USA. Dataset is available upon demand to ONRL

    Google Scholar 

  • Lane EM, Gillibrand PA, Wang XA (2013) Probabilistic tsunami hazard study of the Auckland region, Part II: inundation modelling and hazard assessment. Pure Appl Geophys 170(9–10):1635–1646

    Article  ADS  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of earth’s crust. In: Proceedings of Europ Geosciences Union General Assembly 2012, Vienna

    Google Scholar 

  • Legg MR, Borrero JC, Synolakis CE (2004) Tsunami Hazards associated with the Catalina fault in Southern California. Earthquake Spectra 20(3):917–950

    Article  Google Scholar 

  • Lin I-C, Tung CC (1982) A preliminary investigation of tsunami hazard. Bull Seismol Soc Am 72(A):2323–2337

    Google Scholar 

  • Liu Y, Santos A, Wang SM, Shi Y, Liu H, Yuen DA (2007) Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter 163:233–244

    Article  ADS  Google Scholar 

  • Lorito S, Tiberti MM, Basili R, Piatanesi A, Valensise G (2008) Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to Southern Italy. J Geophys Res Solid Earth 113(B1):B01301

    Article  ADS  Google Scholar 

  • Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200:574–588

    Article  ADS  Google Scholar 

  • Løvholt F, Bungum H, Harbitz CB, Glimsdal S, Lindholm CD, Pedersen G (2006) Earthquake related tsunami hazard along the western coast of Thailand. Nat Hazards Earth Syst Sci 6:1–19

    Article  Google Scholar 

  • Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res Oceans 113:C09026. doi:10.1029/2007JC004603

    Article  ADS  Google Scholar 

  • Løvholt F, Glimsdal S, Harbitz CB, Nadim F, Zamora N, Peduzzi P, Dao HI, Smebye H (2012a) Tsunami hazard and exposure on the global scale. Earth-Sci Rev 110(1–4):58–73. doi:10.1016/j.earscirev.2011.10.002, ISSN 0012–8252

    Article  ADS  Google Scholar 

  • Løvholt F, Kühn D, Bungum H, Harbitz CB, Glimsdal S (2012b) Historical tsunamis and present tsunami hazard in Eastern Indonesia and the Philippines. J Geophys Res Solid Earth 117:B09310. doi:10.1029/2012JB009425

    ADS  Google Scholar 

  • Løvholt F, Lynett P, Pedersen G (2013) Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Process Geophys 20:379–395. doi:10.5194/npg-20-379-2013

    Article  ADS  Google Scholar 

  • Løvholt F, Glimsdal S, Harbitz CB, Horspool N, Smebye H, de Bono A, Nadim F (2014a) Global tsunami hazard and exposure due to large co-seismic slip. Int J Disaster Risk Reduct 10:406–418

    Article  Google Scholar 

  • Løvholt F, Setiadi NJ, Birkmann J, Harbitz CB, Bach C, Fernando N, Kaiser G, Nadim F (2014b) Tsunami risk reduction – are we better prepared today than in 2004? Int J Disaster Risk Reduct 10:127–142

    Article  Google Scholar 

  • Maqsood T, Wehner M, Ryu H, Edwards M, Dale K, Miller V (2014) GAR15 regional vulnerability functions, Geoscience Australia Record 2014/38

    Google Scholar 

  • Marulanda MC (2013) Modelación probabilista de pérdidas económicas por sismo para la estimación de la vulnerabilidad fiscal del estado y la gestión financiera del riesgo soberano. PhD thesis (in Spanish), Technical University of Catalonia, Barcelona

    Google Scholar 

  • Matias LM, Cunha T, Annunziato A, Baptista MA, Carrilho F (2013) Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat Hazards Earth Syst Sci 13:1–13. doi:10.5194/nhess-13-1-2013

    Article  ADS  Google Scholar 

  • Mercado A (2001) Determination of the tsunami hazard for western Puerto Rico from local sources. Sea Grant College Program University of Puerto Rico, P.R. (Report)

    Google Scholar 

  • Miranda E (1999) Approximate seismic lateral deformation demands in multistory buildings. J Struct Eng 125:417–426

    Article  Google Scholar 

  • Monecke K, Finger W, Klarer D, Kongko W, McAdoo BG, Moore AL, Sudrajat SU (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234

    Article  ADS  Google Scholar 

  • NGDC/WDS Global Historical Tsunami Database: https://www.ngdc.noaa.gov/hazard/tsu_db.shtml

  • NGI and Geoscience Australia (2015) UNISDR global assessment report 2015 – GAR15, Tsunami methodology and result overview. NGI report 20120052-03-R

    Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 74(4):1135–1154

    Google Scholar 

  • Okal E, Synloakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172:995–1015

    Article  ADS  Google Scholar 

  • Okal EA, Borrero JC, Synolakis CE (2006) Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bull Seismol Soc Am 96(5):1634–1648

    Article  Google Scholar 

  • Okal EA, Synolakis CE, Kalligeris N (2011) Tsunami simulations for regional sources in the South China and adjoining Seas. Pure Appl Geophys 168(6–7):1153–1173

    Article  ADS  Google Scholar 

  • Omira R, Baptista MA, Matias L (2014) Probabilistic tsunami hazard in the Northeast Atlantic from near- and far-field tectonic sources. Pure Appl Geophys 172:901–920

    Article  ADS  Google Scholar 

  • Ordaz M (2000) Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto (in Spanish). Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Ordaz M, Miranda E, Reinoso E, Pérez-Rocha LE (2000) Seismic loss estimation model for Mexico City. In: Proceedings of the 12th world conference on earthquake engineering, Auckland

    Google Scholar 

  • Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohohu-Oki earthquake. Nature 475:373–376. doi:10.1038/nature10227

    Article  ADS  Google Scholar 

  • Parsons T, Geist E (2009) Tsunami probability in the Caribbean region. Pure Appl Geophys 165:2089–2116

    Article  ADS  Google Scholar 

  • Pedersen G (2008) Modeling run-up with depth integrated equation models. In: Liu PL-F, Yeh H, Synolakis C (eds) Advanced numerical models for simulating tsunami waves and run-up. World Scientific, Hackensack, pp 3–41

    Chapter  Google Scholar 

  • Pedersen G (2011) Oblique runup of non-breaking solitary waves on an inclined plane. J Fluid Mech 668:582–606. doi:10.1017/S0022112010005343

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pedersen G, Løvholt F (2008) Documentation of a global Boussiesq solver, Preprint series in applied mathematics, Department of Mathematics, University of Oslo, Norway. http://urn.nb.no/URN:NBN:no-27775

  • Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Jet-Propulsion Laboratory D-31639. http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf

  • Roger J, Hebert H (2008) The 1856 Djijelli (Algeria) earthquake and tsunami: source parameters and implications for tsunami hazard in the Balearic Islands. Nat Hazards Earth Syst Sci 8:721–731

    Article  ADS  Google Scholar 

  • Römer H, Willroth P, Kaiser G, Vafeidis AT, Ludwig R, Sterr H, Revilla Diez J (2012) Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand. Nat Hazards Earth Syst Sci 12:2103–2126

    Article  ADS  Google Scholar 

  • Salgado-Gálvez MA, Zuloaga D, Bernal GA, Mora MG, Cardona OD (2014) Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín, Colombia. Bull Earthq Eng 12:671–695

    Article  Google Scholar 

  • Salgado-Gálvez MA, Zuloaga D, Velásquez CA, Carreño ML, Cardona OD, Barbat AH (2015a) Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations. Nat Hazards. DOI: 10.1007/s11069-015-2056-4. (In press)

    Google Scholar 

  • Salgado-Gálvez MA, Cardona OD, Carreño ML, Barbat AH (2015b) Probabilistic seismic hazard and risk assessment in Spain. Monographs on earthquake engineering. CIMNE, Barcelona. doi:10.13140/2.1.3073.1049

    Google Scholar 

  • Satake K (1995) Linear and non-linear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:455–470

    Article  ADS  Google Scholar 

  • Sørensen MB, Spada M, Babeyko A, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res 117(B1):2156–2202. doi:10.1029/2010JB008169

    Article  Google Scholar 

  • Stein S, Okal EA (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582

    Article  ADS  Google Scholar 

  • Stein S, Okal EA (2007) Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seismol Soc Am 97(1A):S279–S295. doi:10.1785/0120050617

    Article  Google Scholar 

  • Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81(6):941–950

    Article  Google Scholar 

  • Suppasri A, Imamura F, Koshimura S (2012) Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. J Earthq Tsunami 6(2). doi:10.1142/S179343111250011X

    Google Scholar 

  • Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y, Abe Y, Imamura F (2013) Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Nat Hazards 66(2):319–341. doi:10.1007/s11069-012-0487-8

    Article  Google Scholar 

  • Synolakis CE, Bernard EN, Titov VV, Kânoglu U, Gonzaléz F (2007) Validation and verification of tsunami numerical models. Pure Appl Geophys 165:2197–2228

    Article  ADS  Google Scholar 

  • Tadepalli S, Synolakis CE (1996) Model for the leading waves of tsunamis. Phys Rev Lett 77(10):2141–2144

    Article  ADS  Google Scholar 

  • ten Brink U (2005) Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause. J Geophys Res 110:B06404. doi:10.1029/2004JB003459

    ADS  Google Scholar 

  • Thio HK, Somerville P, Polet J (2010) Probabilistic tsunami hazard in California, PEER report 2010/108 Pacific Earthquake Engineering Research Center

    Google Scholar 

  • Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199(3–4):221–243

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5(6):763–775

    Article  ADS  Google Scholar 

  • Titov VV, Gonzalez FI (1997) Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA. Technical Memorandum ERL PMEL-112, 11 pp

    Google Scholar 

  • Titov VV, Rabinovich AB, Mofjeld HO, Thomson RE, Gonzalez FI (2005) The global reach of the 26 December 2004 Sumatra tsunami. Science 309(5743):2045–2048

    Article  ADS  Google Scholar 

  • Tsunami Laboratory Novosibirsk, Historical Tsunami Database for the World Ocean (HTDB/WLD), http://tsun.sscc.ru/

  • UN-ISDR (2015) GAR – global assessment report on disaster risk reduction – making development sustainable: the future of disaster risk management. Report. Available from www.preventionweb.net/gar/

  • Venturato AJ, Arcas D, Kanoglu U (2007) Modeling tsunami inundation from a Cascadia subduction zone earthquake for long beach and Ocean Shores, Washington. NOAA technical memorandum OAR PMEL-137. U.S. Deptartment of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory, Seattle, pp 13

    Google Scholar 

  • Wang R, Martın FL, Roth F (2003) Computation of deformation induced by earthquakes in a multi-layered elastic crust – FORTRAN programs EDGRN/EDCMP. Comput Geosci 29(2):195–207

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A large group of scientists have worked on the global tsunami hazard and risk assessment. For this, we would like to thank our co-workers at Geoscience Australia, NGI, and CIMNE: Gareth Davies, Sylfest Glimsdal, Carl Harbitz, Helge Smebye, Farrokh Nadim, Omar Darío Cardona, and Gabriel A. Bernal. In addition we have received considerable support from collaborating organizations. For this we thank Andrea de Bono at UNEP/GRID Geneva for providing us the exposure dataset and for refining them for use in coastal regions, Stefano Lorito, Roberto Basili, and Jacopo Selva at INGV for providing source information for the Mediterranean, Maria Ana Baptista at IPMA for providing source information offshore Portugal, Eric Geist at USGS for providing source information for the Caribbean region, and Hong Kie Thio at AECOM for his assistance on the PTHA calculations. The authors are also indebted to Nick Horspool, formerly at Geoscience Australia, now at GNS, for his contribution to the earliest part of this work. We finally like to thank UN-ISDR, including Andrew Maskrey, Sahar Safaie, Manuela di Mauro, and Julio Serje, for their co-ordination work that made this possible, as well as for funding NGI's work leading to this paper. This paper is published with the permission of the CEO, Geoscience Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Løvholt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Løvholt, F., Griffin, J., Salgado-Gálvez, M. (2015). Tsunami Hazard and Risk Assessment on the Global Scale. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_642-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_642-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics