Skip to main content

Volcano Deformation: Insights into Magmatic Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 305 Accesses

Glossary

Assimilation:

Process of incorporation and digestion of material from wall rock into magma. The resulting magma is sometimes referred to as hybrid or contaminated.

Basalt:

Volcanic rock or lava that is characteristically dark in color and low in viscosity, contains 45 to 54 wt.% silica (SiO2), and is rich in iron and magnesium. Basalt lavas are typically much lower in viscosity than rhyolite lavas.

Bayesian:

Refers to methods in probability and statistics named after Thomas Bayes (c. 1701–1761), an English statistician and philosopher who formulated Bayes’ theorem, which provides a means to update a prior probability distribution to account for new evidence.

Benchmark:

A relatively permanent, natural, or artificial geodetic marker fixed to the Earth and bearing a marked point whose coordinates in some specified reference system have been determined precisely. Sometimes written “bench mark.”

Brine:

Water containing a high concentration of one or more dissolved salts is called a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Agram PS, Jolivet R, Riel B, Lin YN, Simons M, Hetland E, Doin MP, Lasserre C (2013) New radar interferometric time series analysis toolbox released. EOS Trans Am Geophys Union 94:69–70. https://doi.org/10.1002/2013EO070001

    Article  ADS  Google Scholar 

  • Agustsson K, Stefansson R, Linde AT, Einarsson P, Sacks IS, Gudmundsson GB, Thorbjarndottir B (2000) Successful prediction and warning of the 2000 eruption of Hekla based on seismicity and strain changes. Eos Trans Am Geophys Union 81(48). Fall Meeting Supplement, Abstract F1337

    Google Scholar 

  • Ali ST, Feigl KL, Carr BB, Masterlark T, Sigmundsson F (2014) Geodetic measurements and numerical models of rifting in Northern Iceland for 1993–2008. Geophys J Int 196:1267–1280. https://doi.org/10.1093/gji/ggt462

    Article  ADS  Google Scholar 

  • Anderson EM (1936) Dynamics of the formation of cone-sheets, ring-dykes, and cauldron-subsidences. Proc R Soc Edinburgh 56:128–157

    Article  Google Scholar 

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116,. :B07204, 20. https://doi.org/10.1029/2010JB007939

  • Anderson K, Segall P (2013) Bayesian inversion of data from effusive volcanic eruptions using physics-based models; application to Mount St. Helens 2004–2008. J Geophys Res 118(5):2017–2037. https://doi.org/10.1002/jgrb.50169

    Article  Google Scholar 

  • Arnet F, Kahle H-G, Klingelé E, Smith RB, Meertens CM, Dzurisin D (1997) Temporal gravity and height changes of Yellowstone caldera, 1977–1994. Geophys Res Lett 24(22):2741–2744

    Article  ADS  Google Scholar 

  • Avallone A, Briole P (2000) Analysis of 5 years of SAR interferometry data from the Gulf of Corinth (Greece). EOS Trans Am Geophys Union 81:F327

    Google Scholar 

  • Bagnardi M, Poland MP, Carbone D, Baker S, Battaglia M, Amelung F (2014) Gravity changes and deformation at Kīlauea Volcano, Hawai ‘i, associated with summit eruptive activity, 2009–2012. J Geophys Res 119(9):7288–7305. https://doi.org/10.1002/2014JB011506

    Article  Google Scholar 

  • Battaglia M, Segall P, Roberts C (2003) The mechanics of unrest at Long Valley caldera, California; 2. Constraining the nature of the source using geodetic and micro-gravity data. In: Sorey ML, McConnell VS, Roeloffs E (eds) Crustal Unrest in Long Valley Caldera, California: new interpretations from geophysical and hydrologic monitoring and deep drilling. Elsevier, Amsterdam. J Volcanol Geotherm Res 127(3–4):219–245

    Google Scholar 

  • Berg B (1993) Locating global minima in optimization problems by a random-cost approach. Nature 361:708–710

    Article  ADS  Google Scholar 

  • Berrino G, Corrado G, Riccardi U (2006) On the capability of recording gravity stations to detect signals coming from volcanic activity: the case of Vesuvius. J Volcanol Geotherm Res 150:270–282. https://doi.org/10.1016/j.jvolgeores.2005.07.015

    Article  ADS  Google Scholar 

  • Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophys J Int 170:1165–1179. https://doi.org/10.1111/j.1365-246X.2007.03415.x

    Article  ADS  Google Scholar 

  • Biggs J, Lu Z, Fournier T, Freymueller JT (2010) Magma flux at Okmok Volcano, Alaska, from a joint inversion of continuous GPS, campaign GPS, and interferometric synthetic aperture radar. J Geophys Res 115(B12401):11. https://doi.org/10.1029/2010JB007577

    Article  Google Scholar 

  • Blewitt G, Hammond WC, Kreemer C (2009) Geodetic observation of contemporary deformation in the northern Walker Lane: 1. Semipermanent GPS strategy. In: Oldow JS, Cashman PH (eds) Late Cenozoic structure and evolution of the Great Basin–Sierra Nevada transition, Geological Society of America special paper, vol 447. Geological Society of America, Boulder, pp 1–15. https://doi.org/10.1130/2009.2447(01)

    Chapter  Google Scholar 

  • Bonaccorso A, Davis PM (1999) Models of ground deformation from vertical volcanic conduits with application to eruptions of Mount St. Helens and Mount Etna. J Geophys Res 104(B5):10531–10542

    Article  ADS  Google Scholar 

  • Bonaccorso A, Currenti G, Del Negro C (2013) Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability; a thirty years study at Mt. Etna volcano. J Volcanol Geotherm Res 251:127–136

    Article  ADS  Google Scholar 

  • Bonafede M, Ferrari C (2009) Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium. Tectonophysics 471:4–13

    Article  ADS  Google Scholar 

  • Bonforte A, Colesanti C, Ferretti A, Guglielmino F, Palano M, Prati C, Puglisi G, Rocca F (2004) Remote sensing for ground deformation analysis during the eruptive event of July 2001 at Mt. Etna, paper presented at ESA SP-550. FRINGE 2003 Workshop, 1 June 2004

    Google Scholar 

  • Brown GC, Rymer H (1991) Microgravity monitoring of active volcanoes: a review of theory and practice. Cahiers du Centre European de Geodynamique et de Seismologie 4:279–304

    Google Scholar 

  • Canitano A, Bernard P, Linde AT, Sacks S, Boudin F (2014) Correcting high-resolution borehole strainmeter data from complex external influences and partial-solid coupling; the case of Trizonia, Rift of Corinth (Greece). Pure Appl Geophys 171(8):1759–1790

    Article  ADS  Google Scholar 

  • Cannavò F, Camacho AG, González PJ, Mattia M, Puglisi G, Fernández J (2015) Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises. Scientific Reports 5:10970. https://doi.org/10.1038/srep10970

  • Caputo M (1979) Two-thousand years of geodetic and geophysical observations in the Phlegraean fields near Naples. Geophys J R Astron Soc 56:319–328

    Article  ADS  Google Scholar 

  • Carbone D, Poland MP (2012) Gravity fluctuations induced by magma convection at Kīlauea volcano, Hawai‘i. Geology 40:803–806

    Article  ADS  Google Scholar 

  • Carbone D, Budetta G, Greco F (2003a) Possible mechanisms of magma redistribution under Mt. Etna during the 1994–1999 period detected through microgravity measurements. Geophys J Int 153:187–200

    Article  ADS  Google Scholar 

  • Carbone D, Budetta G, Greco F (2003b) Bulk processes prior to the 2001 Mount Etna eruption, highlighted through microgravity studies. J Geophys Res 108(B12). https://doi.org/10.1029/2003JB002542

  • Carbone D, Poland MP, Patrick MR, Orr TR (2013) Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i. Earth Planet Sci Lett 376:178–185. https://doi.org/10.1016/j.epsl.2013.06.024

    Article  ADS  Google Scholar 

  • Cervelli P, Murray MH, Segall P, Aoki Y, Kato T (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106(B6):11217–11237. https://doi.org/10.1029/2000JB900399

    Article  ADS  Google Scholar 

  • Chang W-L, Smith RB, Wicks C, Farrell JM, Puskas CM (2007) Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006. Science 318(5852):952–956. https://doi.org/10.1126/science.1146842

    Article  ADS  Google Scholar 

  • Chouet B (2003) Volcano seismology. Pure Appl Geophys 160:739–788. https://doi.org/10.1007/PL00012556

    Article  ADS  Google Scholar 

  • Christiansen RL (2001) The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geological survey professional paper 729-G, p 145, 3 plates, scale 1:125,000

    Google Scholar 

  • Collins BD, Kayen RE (2006) Land-based lidar mapping – a new surveying technique to shed light on rapid topographic change. US Geological Survey Fact Sheet 2006–3111, p 4. http://pubs.usgs.gov/fs/2006/3111/

  • Currenti G, Bonaccorso A, Del Negro C, Scandura D, Boschi E (2010) Elasto-plastic modeling of volcano ground deformation. Earth Planet Sci Lett 296(3–4):311–318

    Article  ADS  Google Scholar 

  • D’Auria L, Giudicepietro F, Martini M, Lanari R (2012) The 4D imaging of the source of ground deformation at Campi Flegrei caldera (southern Italy). J Geophys Res 117:B08209. https://doi.org/10.1029/2012JB009181

    Article  ADS  Google Scholar 

  • Davis PM (1983) Surface deformation associated with a dipping hydrofracture. J Geophys Res 88(B7):5826–5834

    Article  ADS  Google Scholar 

  • Davis PM (1986) Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J Geophys Res 91:7429–7438

    Article  ADS  Google Scholar 

  • de Zeeuw-van Dalfsen E, Rymer H, Sigmundsson F, Sturkell E (2005) Net gravity decrease at Askja Volcano, Iceland; constraints on processes responsible for continuous caldera deflation, 1988–2003. J Volcanol Geotherm Res 139:227–239

    Article  ADS  Google Scholar 

  • Decker RW (1987) Dynamics of Hawaiian volcanoes: an overview, chapter 42. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, pp 997–1018. US Geological Survey Professional Paper 1350

    Google Scholar 

  • Del Negro C, Currenti G, Scandura D (2009) Temperature-dependent viscoelastic modeling of ground deformation; application to Etna volcano during the 1993–1997 inflation period. Phys Earth Planet Inter 172:299–309

    Article  ADS  Google Scholar 

  • Diefenbach AK, Crider JG, Schilling SP, Dzurisin D (2012) Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bull Volcanol 74(2):579–587. https://doi.org/10.1007/s00445-011-0548-y. http://link.springer.com/article/10.1007%2Fs00445-011-0548-y

    Article  ADS  Google Scholar 

  • Dieterich JH, Decker RW (1975) Finite element modeling of surface deformation associated with volcanism. J Geophys Res 80:4095–4102

    Article  Google Scholar 

  • Dzurisin D, Anderson LA, Eaton GP, Koyanagi RY, Okamura RT, Puniwai GS, Sako MK, Yamashita KM (1980) Geophysical observations of Kīlauea volcano, Hawai‘i; 2. Constraints on the magma supply during November 1975–September 1977. J Volcanol Geotherm Res 7:241–270

    Article  ADS  Google Scholar 

  • Dzurisin D, Lisowski M, Wicks CW, Poland MP, Endo ET (2006) Geodetic observations and modeling of magmatic inflation at the three sisters volcanic center, Central Oregon Cascade Range, USA. J Volcanol Geotherm Res 150(1–3):35–54. https://doi.org/10.1016/j.jvolgeores.2005.07.011. Special issue The changing shape of active volcanoes

    Article  ADS  Google Scholar 

  • Dzurisin D, Lisowski M, Wicks CW (2009) Continuing inflation at three sisters volcanic center, Central Oregon Cascade Range, USA, from GPS, leveling, and InSAR observations. Bull Volcanol 71:1091–1110. https://doi.org/10.1007/s00445-009-0296-4

    Article  ADS  Google Scholar 

  • Dzurisin D, Wicks CW, Poland MP (2012) History of surface displacements at the Yellowstone Caldera, Wyoming, from leveling surveys and InSAR observations, 1923–2008. U.S. Geological survey professional paper 1788, p 68 and data files. Available at http://pubs.usgs.gov/pp/1788/

  • Dzurisin D, Lisowski M, Wicks CW Jr (2017) Semipermanent GPS (SPGPS) as a volcano monitoring tool: rationale, method, and applications. J Volcanol Geotherm Res 344:40–51. https://doi.org/10.1016/j.jvolgeores.2017.03.007. https://doi.org/10.1016/j.jvolgeores.2017.03.007

    Article  ADS  Google Scholar 

  • Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res 188:260–276

    Article  ADS  Google Scholar 

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multi-temporal LIDAR acquisition. J Geophys Res 115. https://doi.org/10.1029/2010JB007463

  • Feigl KL, Thurber CH (2009) A method for modelling radar interferograms without phase unwrapping: application to the M 5 Fawnskin, California earthquake of 1992 December 4. Geophys J Int 176(2):491–504

    Article  ADS  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212

    Article  ADS  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Article  ADS  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470. https://doi.org/10.1109/TGRS.2011.2124465

    Article  ADS  Google Scholar 

  • Fialko Y, Khazan Y, Simons M (2001) Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys J Int 146:181–190

    Article  ADS  Google Scholar 

  • Foulger GR, Julian BR, Hill DP, Pitt AM, Malin PE, Shalev E (2004) Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. J Volcanol Geotherm Res 132:45–71

    Article  ADS  Google Scholar 

  • Fournier RO (2007) Hydrothermal systems and volcano geochemistry, chapter 10. In: Dzurisin D (ed) Volcano deformation – geodetic monitoring techniques, Springer-Praxis books in geophysical sciences. Springer, Berlin, p 441

    Google Scholar 

  • Furuya M, Okubo S, Sun W, Tanaka Y, Oikawa J, Watanabe H, Maekawa T (2003) Spatiotemporal gravity changes at Miyakejima volcano, Japan; Caldera collapse, explosive eruptions and magma movement. J Geophys Res 108(B4):2219. https://doi.org/10.1029/2002JB0011989

    Article  Google Scholar 

  • Gerlach TM, McGee KA, Elias T, Sutton AJ, Doukas MP (2002) Carbon dioxide emission rate of Kīlauea Volcano; Implications for primary magma and the summit reservoir. J Geophys Res 107:2189. https://doi.org/10.1029/2001JB000407

    Article  Google Scholar 

  • Hammond WC, Kreemer C, Blewitt G (2007) Exploring the relationship between geothermal resources and geodetically inferred faults slip rates in the Great Basin. Geotherm Resour Counc Trans 31:391–395

    Google Scholar 

  • Hetland EA, Musé P, Simons M, Lin YN, Agram PS, DiCaprio CJ (2012) Multiscale InSAR time series (MInTS) analysis of surface deformation. J Geophys Res 117:B02404. https://doi.org/10.1029/2011JB008731

    Article  ADS  Google Scholar 

  • Hickey J, Gottsmann JH (2014) Benchmarking and developing numerical finite element models of volcanic deformation. J Volcanol Geotherm Res 280:126–130. https://doi.org/10.1016/j.jvolgeores.2014.05.011

    Article  ADS  Google Scholar 

  • Hole JK, Hooper A, Wadge G, Stevens NF, Anonymous (2006) Measuring contemporary deformation in the Taupo volcanic zone, New Zealand, using SAR interferometry. In: ESA SP, vol 610, p 6. European Space Agency (ESA) Scientific & Technical Publications, Noordwijk

    Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35. https://doi.org/10.1029/2008GL034654

  • Hooper A, Zebker HA (2007) Phase unwrapping in three dimensions with application to InSAR time series. J Opt Soc Am A 24:2737–2747

    Article  ADS  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring volcanic deformation using InSAR persistent scatterers. Geophys Res Lett 31:L23611. https://doi.org/10.1029/2004GL021737

    Article  ADS  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo Galápagos. J Geophys Res 112:21. https://doi.org/10.1029/2006JB004763

    Article  Google Scholar 

  • Hunt T, Sugihara M, Sato T, Takemura T (2002) Measurement and use of the vertical gravity gradient in correcting repeat microgravity measurements for the effects of ground subsidence in geothermal systems. Geothermics 31:525–543

    Article  Google Scholar 

  • Hutnak M, Hurwitz S, Ingebritsen SE, Hsieh PA (2009) Numerical models of caldera deformation; effects of multiphase and multicomponent hydrothermal fluid flow. J Geophys Res 114:B04411. https://doi.org/10.1029/2008JB006151

    Article  ADS  Google Scholar 

  • Jachens RC, Eaton GP (1980) Geophysical observations of Kīlauea volcano, Hawai‘i; 1. Temporal gravity variations related to the 29 November, 1975, M = 7.2 earthquake and associated summit collapse. J Volcanol Geotherm Res 7:225–240

    Article  ADS  Google Scholar 

  • Johnson DJ (1995) Gravity changes on Mauna Loa volcano. In: Rhodes JM, Lockwood JP (eds) Mauna Loa revealed: structure, composition, history and hazards, Geophysical monograph, vol 92. American Geophysical Union, Washington DC, pp 127–193

    Chapter  Google Scholar 

  • Johnson DJ, Eggers AA, Bagnardi M, Battaglia M, Poland MP, Miklius A (2010) Shallow magma accumulation at Kilauea Volcano, Hawai'i, revealed by microgravity surveys. Geology 38(12):1139–1142. https://doi.org/10.1130/G31323.1

    Article  ADS  Google Scholar 

  • Jousset P, Dwipa S, Beauducel F, Duquesnoy T, Diament M (2000) Temporal gravity at Merapi during the 1993–1995 crisis; an insight into the dynamical behavior of volcanoes. J Volcanol Geotherm Res 100(1–4):289–320

    Article  ADS  Google Scholar 

  • Kauahikaua JP, Miklius A (2003) Long-term trends in microgravity at Kilauea’s summit during the Pu’u ‘O’o-Kupaianaha eruption. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu’u `O’o-Kupaianaha eruption of Kilauea Volcano, Hawai’i: The first 20 years: U.S. Geological survey professional paper, vol 1676, pp 165–171. http://pubs.usgs.gov/pp/pp1676/pp1676_10.pdf

    Google Scholar 

  • Kositsky AP, Avouac J-P (2010) Inverting geodetic time series with a principal component analysis-based inversion method. J Geophys Res 115:B03401. https://doi.org/10.1029/2009JB006535

    Article  ADS  Google Scholar 

  • Linde AT, Sacks IS (2000) Real time predictions of imminent volcanic activity using borehole deformation data. Eos Trans Am Geophys Union 81(48). Fall Meeting Supplement, Abstract F1253

    Google Scholar 

  • Linde AT, Agustsson K, Sacks IS, Stefansson R (1993) Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365:737–740

    Article  ADS  Google Scholar 

  • Lipman PW, Lockwood JP, Okamura RG, Swanson DA, Yamashita KM (1985) Ground deformation associated with the 1975 magnitude-7.2 earthquake and resulting changes in activity of Kīlauea Volcano, Hawai‘i. US Geol Surv Prof Pap 1276:1–45

    Google Scholar 

  • Lisowski M (2007) Analytical deformation source models, chapter 8. In: Dzurisin D (ed) Volcano deformation – geodetic monitoring techniques, Springer-Praxis books in geophysical sciences. Springer, Berlin, pp 279–304

    Chapter  Google Scholar 

  • Lisowski M, McCaffrey R, Wicks C, Dzurisin D (2014) Decaying rate of volcanic inflation near Three Sisters, Oregon, measured with GPS and InSAR [poster], 2014 Fall AGU Meeting, San Francisco, V41B-4795

    Google Scholar 

  • Massonnet D, Feigl KL (1995) Discriminating geophysical phenomena in satellite radar interferograms. Geophys Res Lett 22:1537–1540

    Article  ADS  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  ADS  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Article  ADS  Google Scholar 

  • Masterlark T (2007) Magma intrusion and deformation predictions: sensitivities to the Mogi assumptions. J Geophys Res 112:B06419. https://doi.org/10.1029/2006JB004860

    Article  ADS  Google Scholar 

  • Masterlark T, Haney M, Dickinson H, Fournier T, Searcy C (2010) Rheologic and structural controls on the deformation of Okmok volcano, Alaska; FEMs, InSAR, and ambient noise tomography, B02409. J Geophys Res 115. https://doi.org/10.1029/2009JB006324

  • Masterlark T, Feigl KL, Haney M, Stone J, Thurber C, Ronchin E (2011) Nonlinear estimation of geometric parameters in FEMs of volcano deformation; integrating tomography models and geodetic data for Okmok volcano, Alaska. J Geophys Res Atmos 117(B2):2407. https://doi.org/10.1029/2011JB008811

    Article  ADS  Google Scholar 

  • Masterlark T, Feigl KL, Haney M, Stone J, Thurber C, Ronchin E (2012) Nonlinear estimation of geometric parameters in FEMs of volcano deformation; integrating tomography models and geodetic data for Okmok volcano Alaska. J Geophys Res Solid Earth 11:B020407. https://doi.org/10.1029/2011JB008811

    Article  Google Scholar 

  • McCaffrey R (2009) Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia. Geophys Res Lett 36:L07304. https://doi.org/10.1029/2008GL036784

    Article  ADS  Google Scholar 

  • McCann GD, Wilts CH (1951) A mathematical analysis of the subsidence in the Long Beach – San Pedro area. California Institute of Technology, Pasadena, CA 117 p. (unpublished). https://authors.library.caltech.edu/50357/

  • McGuire JJ, Segall P (2003) Imaging of aseismic fault slip transients recorded by dense geodetic networks. Geophys J Int 155:778–788. https://doi.org/10.1111/j.1365-246X.2003.02022.x

    Article  ADS  Google Scholar 

  • McTigue DF (1987) Elastic stress and deformation near a finite spherical magma body; resolution of the point source paradox. J Geophys Res 92:12931–12940

    Article  ADS  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  ADS  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bull Earthq Res Inst U Tokyo 36:99–134

    Google Scholar 

  • Moran SC (1994) Seismicity at Mount St. Helens, 1987–1992; evidence for repressurization of an active magmatic system. J Geophys Res 99:4341–4354

    Article  ADS  Google Scholar 

  • Moran SC, Malone SD, Qamar AI, Thelen WA, Wright AK, Caplan-Auerbach J (2008) Seismicity associated with renewed dome building at Mount St. Helens, 2004–2005, chapter 2. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006. U.S. Geological Survey. U.S. Geological survey professional paper 1750, Reston, pp 27–60

    Google Scholar 

  • Mosbrucker AR (2014) High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009. US geological survey data series 904. https://doi.org/10.3133/ds904

  • Pavolonis MJ (2010) Advances in extracting cloud composition information from spaceborne infrared radiances: robust alternative to brightness temperatures. Part I: theory. J Appl Meteorol Climatol 49:1992–2012. http://journals.ametsoc.org/doi/abs/10.1175/2010JAMC2433.1

    Article  ADS  Google Scholar 

  • Pavolonis MJ, Heidinger AK, Sieglaff J (2013) Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J Geophys Res-Atmos 118:1436–1458. https://doi.org/10.1002/jgrd.50173

    Article  ADS  Google Scholar 

  • Pedersen R, Sigmundsson F, Masterlark T (2009) Rheologic controls on inter-rifting deformation of the Northern Volcanic Zone, Iceland. Earth Planet Sci Lett 281:14–26

    Article  ADS  Google Scholar 

  • Perissin D, Wang T (2012) Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans Geosci Remote Sens 50:271–280. http://ieeexplore.ieee.org/ielx5/36/6117787/05978217.pdf?tp=&arnumber=5978217&isnumber=6117787

    Article  ADS  Google Scholar 

  • Pinel V, Poland MP, Hooper A (2014) Volcanology; lessons learned from synthetic aperture radar imagery. J Volcanol Geotherm Res 289(1):81–113. https://doi.org/10.1016/j.jvolgeores.2014.10.010

    Article  ADS  Google Scholar 

  • Poland MP, Miklius A, Sutton AJ, Thornber CR (2012) A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007. Nat Geosci 5(4):295–300. (supplementary material, 16 p.). https://doi.org/10.1038/ngeo1426

    Article  ADS  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage, and transport at shield-stage Hawaiian volcanoes, chapter 5. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes. U.S. Department of the Interior, U.S. Geological Survey, Reston. U.S. Geological Survey Professional Paper 1801, p 429. https://pubs.usgs.gov/pp/1801/downloads/pp1801_Chap5_Poland.pdf

    Chapter  Google Scholar 

  • Puskas C, Smith RB, Meertens CM, Chang WL (2007) Crustal deformation of the Yellowstone–Snake River Plain volcano-tectonic system; campaign and continuous GPS observations, 1987–2004, B03401. J Geophys Res 112. https://doi.org/10.1029/2006JB004325

  • Riddick SN, Schmidt DA (2011) Time-dependent changes in volcanic inflation rate near Three Sisters, Oregon, revealed by InSAR. Geochem Geophys Geosyst 12:Q12005. https://doi.org/10.1029/2011GC003826

    Article  ADS  Google Scholar 

  • Ring J (1963) The laser in astronomy. New Sci 344:672–673

    Google Scholar 

  • Robinson JE (2014) Digital topographic data based on lidar survey of Mount Shasta Volcano, California, July–September 2010, U.S. Geological Survey data series, vol 852. https://doi.org/10.3133/ds852

    Book  Google Scholar 

  • Ronchin E, Masterlark T, Molist JM, Saunders S, Tao W (2013) Solid modeling techniques to build 3D finite element models of volcanic systems; an example from the Rabaul Caldera system, Papua New Guinea. Comput Geosci 52:325–333. http://www.sciencedirect.com/science/article/pii/S0098300412003354

    Article  ADS  Google Scholar 

  • Rymer H, Cassidy J, Locke CA, Murray JB (1995) Magma movements in Etna volcano associated with the major 1991–1993 lava eruption; evidence from gravity and deformation. Bull Volcanol 57:451–461

    Article  ADS  Google Scholar 

  • Salvi S, Atzori S, Tolomei C, Allievi J, Ferretti A, Rocca F, Prati C, Stramondo S, Feuillet N (2004) Inflation rate of the Colli Albani volcanic complex retrieved by the permanent scatterers SAR interferometry technique. Geophys Res Lett 31(12):12606. https://doi.org/10.1029/2004GL020253

    Article  ADS  Google Scholar 

  • Scott WE (1987) Holocene rhyodacite eruptions on the flanks of South Sister volcano, Oregon. In: Fink JH (ed) The emplacement of silicic domes and lava flows, Geological Society of America special paper, vol 212. Geological Society of America, Boulder, pp 35–53

    Chapter  Google Scholar 

  • Scott WE, Iverson RM, Schilling SP, Fischer BJ (2001) Volcano hazards in the Three Sisters region, Oregon. U.S. Geological survey open-file report 99–437, p 14

    Google Scholar 

  • Segall P, Matthews M (1997) Time dependent inversion of geodetic data. J Geophys Res 102:22,391–22,409. https://doi.org/10.1029/97JB01795

    Article  ADS  Google Scholar 

  • Sherrod DR, Taylor EM, Ferns ML, Scott WE, Conrey RM, Smith GA (2004) Geologic map of the bend 30- by 60-minute quadrangle, Central Oregon. U.S. Geological survey miscellaneous field investigations map , I-2683, scale 1:100,000 scale, 48-page pamphlet

    Google Scholar 

  • Simons M, Agram PS, Philibosian B, Lin YN, Hetland EA, Fielding EJ, Yun S (2011) Exploiting ALOS observations as a guide to what will be possible with DESDynI, AGU Fall Meeting Abstracts, vol 22, 02. http://adsabs.harvard.edu/abs/2011AGUFMIN22A..02S

  • Smith RB, Reilinger RE, Meertens CM, Hollis JR, Holdahl SR, Dzurisin D, Gross WK, Klingele EE (1989) What’s moving at Yellowstone! – the 1987 crustal deformation survey from GPS, leveling, precision gravity and trilateration. EOS Trans Am Geophys Union 70(8):113–125

    Article  ADS  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15. http://www.sciencedirect.com/science/article/pii/S0012821X03001249

    Article  ADS  Google Scholar 

  • Stovall W, Cervelli P, Shelly D (2014) Investigating rapid uplift and subsidence near Norris, Yellowstone, during 2013–2014 [poster]. 2014 fall AGU meeting, V41B-4796

    Google Scholar 

  • Sutton AJ, Elias T (2014) One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory. Chapter 7. In: Poland MP, Takahashi TJ, Landowski CM (eds) Characteristics of Hawaiian volcanoes, U.S. Geological Survey professional paper, vol 1801. U.S. Department of the Interior, U.S. Geological Survey, Reston, pp 295–320

    Google Scholar 

  • Swanson DA (2008) Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea. J Volcanol Geotherm Res 176:427–431

    Article  ADS  Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing; implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341

    Article  ADS  Google Scholar 

  • Thelan WA, Crosson RS, Creager KC (2008) Absolute and relative locations of earthquakes at Mount St. Helens, Washington, using continuous data; implications for magmatic processes, chapter 4. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, U.S. Geological Survey professional paper, vol 1750. U.S. Geological Survey, Reston, pp 71–95

    Google Scholar 

  • Thompson RA, Schilling SP (2007) Photogrammetry. In: Dzurisin D (ed) Volcano deformation–geodetic monitoring techniques, chapter 6, Springer-Praxis books in geophysical sciences. Springer, Berlin, pp 195–221

    Chapter  Google Scholar 

  • Thornber CR, Orr T, Heliker C, Hoblitt RP (2015) Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i, chapter 8. In: Carey RJ, Poland MP, Cayol V, Weis D (eds) Hawaiian volcanoes, from source to surface, AGU monograph. American Geophysical Union, Washington, DC, pp 147–188

    Google Scholar 

  • Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans D (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm Remote Sens 59(4):185–198

    Article  ADS  Google Scholar 

  • Trasatti E, Giunchi C, Bonafede M (2003) Effects of topography and rheological layering on ground deformation in volcanic regions. J Volcanol Geotherm Res 122:89–110

    Article  ADS  Google Scholar 

  • Trasatti E, Cianetti S, Giunchi C, Bonafede M, Piana N, Agostinetti F, Casu F, Manzo M (2009) Bayesian source inference of the 1993–1997 deformation at Mount Etna (Italy) by numerical solutions. Geophys J Int 177:806–814. https://doi.org/10.1111/j.1365-246X.2009.04093.x

    Article  ADS  Google Scholar 

  • Trasatti E, Bonafede M, Ferrari C, Giunchia C, Berrino G (2011) On deformation sources in volcanic areas; modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet Sci Lett 206(3–4):175–185. https://doi.org/10.1016/j.epsl.2011.03.033

    Article  ADS  Google Scholar 

  • Vasco DW, Smith RB, Taylor CL (1990) Inversion for sources of crustal deformation and gravity change at the Yellowstone Caldera. J Geophys Res 95:19,839–19,856

    Article  ADS  Google Scholar 

  • Vasco DW, Puskas CM, Smith RB, Meertens CM (2007) Crustal deformation and source models of the Yellowstone volcanic field from geodetic data. J Geophys Res 112:B03401. https://doi.org/10.1029/2006JB004325

    Article  ADS  Google Scholar 

  • Wallace PJ (2004) From mantle to atmosphere; magma degassing, explosive eruptions, and volcano volatile budgets. In: De Vivo B, Bodnar RJ (eds) Melt inclusions in volcanic systems: methods, applications and problems. Elsevier, Amsterdam, pp 105–127

    Google Scholar 

  • Werner C, Brantley S (2003) CO2 emissions from the Yellowstone volcanic system. Geochem Geophys Geosyst 4(7):1061. https://doi.org/10.1029/2002GC000473

    Article  ADS  Google Scholar 

  • Wicks C Jr, Thatcher W, Dzurisin D (1998) Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 282:458–462

    Article  ADS  Google Scholar 

  • Wicks CW Jr, Dzurisin D, Ingebritsen S, Thatcher W, Lu Z, Iverson J (2002) Magmatic activity beneath the quiescent Three Sisters volcanic center, Central Oregon Cascade Range, USA. Geophys Res Lett 29(7):26–1–26–4. https://doi.org/10.1029/2001GL014205

    Article  Google Scholar 

  • Wicks CW, Thatcher W, Dzurisin D, Svarc J (2006) Uplift, thermal unrest, and magma intrusion at Yellowstone Caldera, observed with InSAR. Nature 440(7080):72–75. https://doi.org/10.1038/nature04507

    Article  ADS  Google Scholar 

  • Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models; application to Mt. Etna and radar interferometry. Geophys Res Lett 25:1549–1552

    Article  ADS  Google Scholar 

  • Williams-Jones G, Rymer H (2002) Detecting volcanic eruption precursors; a new method using gravity and deformation measurements. J Volcanol Geotherm Res 113:379–389. http://www.sciencedirect.com/science/article/pii/S0377027301002724

    Article  ADS  Google Scholar 

  • Wright CW, Brock J (2002) EAARL – a lidar for mapping shallow coral reefs and other coastal environments. In: Seventh international conference on remote sensing for marine and coastal environments, Miami, Fla., 20–22 May 2002, Proceedings: Ann Arbor, Michigan, Veridian International Conferences, CD-ROM

    Google Scholar 

  • Yamakawa N (1955) On the strain produced on a semi-infinite elastic solid by an interior source of stress. J Seism Soc Japan 8:84–98

    Google Scholar 

  • Yang X, Davis PM (1986) Deformation due to a rectangular tension crack in an elastic half-space. Bull Seismol Soc Am 76(3):865–881

    Google Scholar 

Books and Reviews

Download references

Acknowledgments

The author was supported by the U.S. Geological Survey’s Volcano Hazards Program through its Volcano Science Center and David A. Johnston Cascades Volcano Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dzurisin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dzurisin, D. (2019). Volcano Deformation: Insights into Magmatic Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_635-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_635-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics