Skip to main content

Cellular Computing

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 400 Accesses

Definition of the Subject

The field of cellular computing (abbreviated as CC) defines both a general computing framework and a discipline concerned with the analysis, modeling, and engineering of real cellular processes for the purpose of computation. The biological cell, discovered and coined by R. Hooke in 1665, is the smallest self-contained, self-maintaining, and self-reproducing unit of all living organisms. Its understanding and modeling is crucial both for the understanding of life and for the ability to use, control, and modify its complex biochemical processes to perform specific functions for the purpose of in vivo or in vitro computation. The cellular metaphor has inspired and influenced numerous both abstract computing models and in silico implementations, such as cellular automata (abbreviated as CA), membrane systems (or P systems), or Field Programmable Gate Arrays(abbreviated as FPGAs), with the main purpose to solve algorithmic problems in alternative ways. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Cell:

The biological cell is the smallest self-contained, self-maintaining, and self-reproducing unit of all living organisms. Various computing paradigms were inspired by the biological cell.

Computation:

Synonymous with information processing or also algorithm. Computations can, for example, be performed by abstract machines, real computer hardware, or biological systems. The abstract concept of the Turing machine separates the class of computable from the class of non-computable functions.

Computing:

The science that deals with the manipulation of symbols. Also refers to the processes carried out by real or abstract computers.

Molecular computing:

A subfield of cellular computing, where the molecules instead of the cell play a central functional role.

Parallel computing:

Parallel computing involves the execution of a task on multiple processors with the goal to speed up the execution process by dividing up the task into smaller sub-tasks that can be executed simultaneously.

Bibliography

Primary Literature

  • Abelson H, Allen D, Coore D, Hanson C, Rauch E, Sussman GJ, Weiss R (2000) Amorphous computing. Commun ACM 43(5):74–82

    Google Scholar 

  • Adelman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    ADS  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    ADS  MATH  MathSciNet  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (eds) (1994) Molecular biology of the cell, 3rd edn. Garland Publishing, New York

    Google Scholar 

  • Amos M (ed) (2004) Cellular computing. Oxford University Press, New York

    MATH  Google Scholar 

  • Arbib MA (ed) (1995) The handbook of brain theory and neural networks. MIT Press, Cambridge

    Google Scholar 

  • Astor JC, Adami C (2001) A developmental model for the evolution of artificial neural networks. Artif Life 6(3):189–218

    Google Scholar 

  • Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Banâtre JP, Coutant A, Le Metayer D (1988) A parallel machine for multiset transformation and its programming style. Future Gener Comput Syst 4:133–144

    Google Scholar 

  • Benenson Y, Paz-Elizur T, Adar R, Keinan E, Leivneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414(6862):430–434

    ADS  Google Scholar 

  • Bennett CH (1982) The thermodynamics of computation a review. Int J Theor Phys 21(12):905–940

    Google Scholar 

  • Berry G, Boudol G (1992) The chemical abstract machine. Theor Comput Sci 96:217–248

    MATH  MathSciNet  Google Scholar 

  • Butera WJ (2002) Programming a paintable computer. PhD thesis, MIT Media Lab, Cambridge

    Google Scholar 

  • Calude CS, Paun G (2000) Computing with cells and atoms: an introduction to quantum and membrane computing. Taylor & Francis, New York

    Google Scholar 

  • Capcarrere MS (2002) Cellular automata and other cellular Systems: design & evolution. PhD thesis, Swiss Federal Institute of Technology, Lausanne

    Google Scholar 

  • Cell Matrix Corporation. http://www.cellmatrix.com. Accessed 12 July 2008

  • Chua LO, Roska T (2002) Cellular neural networks & visual computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Conrad M (1989) The brain-machine disanalogy. BioSystems 22(3):197–213

    Google Scholar 

  • Conrad M, Liberman EA (1982) Molecular computing as a link between biological and physical theory. J Theor Biol 98(2):239–252

    Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40

    MATH  Google Scholar 

  • Coore D (1999) Botanical computing: a developmental approach to generating interconnect topologies on an amorphous computer. PhD thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge

    Google Scholar 

  • Cuniberti G, Fagas G, Richter K (eds) (2005) Introducing molecular electronics. Lecture notes in physics, vol 680. Springer, Berlin

    Google Scholar 

  • Das R, Crutchfield JP, Mitchell M, Hanson JE (1995) Evolving globally synchronized cellular automata. In: Eshelman LJ (ed) Proceedings of the sixth international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 336–343

    Google Scholar 

  • Davis M (1958) Computability and unsolvability. McGraw-Hill, New York

    MATH  Google Scholar 

  • Davis BD (1961) The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol 26:1–10

    Google Scholar 

  • Davis M (2004) The myth of hypercomputation. In: Teuscher C (ed) Alan Turing: life and legacy of a great thinker. Springer, Berlin, pp 195–212 (reprinted with color images in 2005)

    Google Scholar 

  • Dellaert F, Beer RD (1994) Toward an evolvable model of development for autonomous agent synthesis. In: Brooks RA, Maes P (eds) Artificial life IV. Proceedings of the fourth international workshop on the synthesis and simulation of living systems. A Bradford Book, MIT Press, Cambridge, pp 246–257

    Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church-Turing principle of the universal quantum computer. Proc R Soc Lond A400:97–117

    ADS  MathSciNet  Google Scholar 

  • Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries a review. Artif Life 7(3):225–275

    Google Scholar 

  • Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    MATH  Google Scholar 

  • Durbeck LJK, Macias NJ (2001) The cell matrix: an architecture for nanocomputing. Nanotechnology 12:217–230

    ADS  Google Scholar 

  • Eggenberger P (1997) Creation of neural networks based on developmental and evolutionary principles. In: Gerstner W, Germond A, Hasler M, Nicod JD (eds) Proceedings of the international conference on artificial neural networks. ICANN’97, Lausanne, Switzerland. Lecture notes in computer science, vol 1327. Springer, Berlin, pp 337–342

    Google Scholar 

  • Endy D, Brent R (2001) Modelling cellular behavior. Nature 409(6818):391–395

    ADS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Caltech’s Eng Sci 23:22–36

    Google Scholar 

  • Fleischer KW, Barr AH (1994) A simulation testbed for the study of multicellular development: the multiple mechanisms of morphogenesis. In: Langton CG (ed) Artificial life III. SFI studies in the science of complexity, vol XVII. Addison-Wesley, Redwood City, pp 389–416

    Google Scholar 

  • Flemming W (1880) Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinungen. Arch Mikrosk Anat 18:151–289

    Google Scholar 

  • Forbes N (2004) Imitation of life: how biology is inspiring computing. MIT Press, Cambridge

    Google Scholar 

  • Gibbs WW (2001) Cybernetic cells. Sci Am 285(2):43–47

    Google Scholar 

  • Gokhale M, Graham PS (2005) Reconfigurable computing: accelerating computation with field programmable gate arrays. Springer, Berlin

    Google Scholar 

  • Gruau F (1994) Neural network synthesis using cellular encoding and the genetic algorithm. PhD thesis, Ecole Normale Supérieure de Lyon

    Google Scholar 

  • Harel D (2003) Computers Ltd.: what they really can’t do. Oxford University Press, New York

    Google Scholar 

  • Hillis DW (1985) The connection machine. MIT Press, Cambridge

    Google Scholar 

  • Hooke R (1665) Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses. J. Martyn and J. Allestry, London

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Google Scholar 

  • Kish LB (2002) End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys Lett A 305:144–149

    ADS  Google Scholar 

  • Kitano H (ed) (2001) Foundations of systems biology. MIT Press, Cambridge

    Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, New York

    Google Scholar 

  • Landweber LF, Kari L (1999) The evolution of cellular computing: nature’s solution of a computational problem. BioSystems 52:3–13

    Google Scholar 

  • Langton CG (1984) Self-reproduction in cellular automata. Physica D 10(1–2):135–144

    ADS  Google Scholar 

  • Langton CG (ed) (1995) Artificial life: an overview. MIT Press, Cambridge

    Google Scholar 

  • Lederman H, Macdonald J, Stefanovic D, Stojanovic MN (2006) Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. Biochemistry 45(4):1194–1199

    Google Scholar 

  • Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts I and II. J Theor Biol 18:280–315

    Google Scholar 

  • Lloyd S (2000) Ultimate physical limits to computation. Nature 406:1047–1054

    ADS  Google Scholar 

  • Macias NJ (1999) The PIG paradigm: the design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture. In: Stoica A, Keymeulen D, Lohn J (eds) Proceedings of the First NASA/DOD Workshop on Evolvable Hardware. IEEE Computer Society, Los Alamitos, pp 175–180

    Google Scholar 

  • Mange D, Tomassini M (eds) (1998) Bio-inspired computing machines: towards novel computational architectures. Presses Polytechniques et Universitaires Romandes, Lausanne

    MATH  Google Scholar 

  • Mange D, Sipper M, Stauffer A, Tempesti G (2000) Toward robust integrated circuits: the embryonics approach. Proc IEEE 88(4):516–540

    Google Scholar 

  • Mange D, Stauffer A, Peparolo L, Tempesti G (2004) A macroscopic view of self-replication. Proc IEEE 92(12):1929–1945

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in neural nets. Bull Math Biophys 5:115–133

    MATH  MathSciNet  Google Scholar 

  • Minsky ML (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  • Nagpal R (2001) Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. MIT Department of Electrical Engineering and Computer Science, Cambridge, Ph D thesis

    Google Scholar 

  • Odell GM, Oster G, Albrech P, Burnside B (1981) The mechanical basis of morphogenesis. In: Epithelial folding and invagination. Dev Biol 85:446–462

    Google Scholar 

  • Ono N, Ikegami T (2000) Self-maintenance and self-reproduction in an abstract cell model. J Theor Biol 206(2):243–253

    Google Scholar 

  • Ormondi AR, Rajapakse JC (eds) (2006) FPGA implementations of neural networks. Springer, Dordrecht

    Google Scholar 

  • Papadimitrou CH (1994) Computational complexity. Addison-Wesley, Reading

    Google Scholar 

  • Paton RC (1993) Some computational models at the cellular level. Biosystems 29:63–75

    Google Scholar 

  • Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) (2004) Computation in cells and tissues. Springer, Berlin

    MATH  Google Scholar 

  • Pattee HH (1961) On the origin of macromolecular sequences. Biophys J 1(8):683–710

    Google Scholar 

  • Paun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143, first published in a TUCS Research Report, No 208, Nov 1998, http://www.tucs.fi

    MATH  Google Scholar 

  • Paun G (2002) Membrane computing. Springer, Berlin

    MATH  Google Scholar 

  • Paun G, Rozenberg G, Salomaa A (1998) DNA computing: new computing paradigms. Springer, Heidelberg

    MATH  Google Scholar 

  • Paweletz N (2001) Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–75

    Google Scholar 

  • Petraglio E (2004) Fault tolerant self-replicating systems. Swiss Federal Institute of Technology (EPFL), Lausanne, Ph D thesis

    Google Scholar 

  • Petreska B, Teuscher C (2004) A reconfigurable hardware membrane system. In: Martin-Vide C, Mauri G, Paun G, Rozenberg G, Salomaa A (eds) Membrane computing. Lecture notes in computer science, vol 2933. Springer, Berlin, pp 269–285

    Google Scholar 

  • Pohorille A, Deamer D (2002) Artificial cells: prospects for biotechnology. Trends Biotechnol 20(3):123–128

    Google Scholar 

  • Rasmussen S, Chen L, Nilsson M, Abe S (2003) Bridging nonliving and living matter. Artif Life 9(3):269–316

    Google Scholar 

  • Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF, Bedau MA (2004) Transitions from nonliving to living matter. Science 303:963–965

    Google Scholar 

  • Rendell P (2002) Turing universality of the game of life. In: Adamatzky A (ed) Collision-based computing. Springer, London, pp 513–539

    Google Scholar 

  • Rust AG (1998) Developmental self-organisation in artificial neural networks. PhD thesis, University of Hertfordshire

    Google Scholar 

  • Schmitt FO (1962) Macromolecular specificity and biological memory. MIT Press, Cambridge

    Google Scholar 

  • Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    ADS  Google Scholar 

  • Shapiro E, Gil B (2007) Logic goes in vitro. Nat Nanotechnol 2:84–85

    ADS  Google Scholar 

  • Sienko T, Adamatzky A, Rambidi NG, Conrad M (eds) (2003) Molecular computing. MIT Press, Cambridge

    MATH  Google Scholar 

  • Sipper M (1996) Co-evolving non-uniform cellular automata to perform computations. Physica D 92:193–208

    ADS  MATH  MathSciNet  Google Scholar 

  • Sipper M (1997) Evolution of parallel cellular machines: the cellular programming approach. Springer, Heidelberg

    Google Scholar 

  • Sipper M (1999) The emergence of cellular computing. IEEE Comput 32(7):18–26

    Google Scholar 

  • Sipper M (2002) Machine nature: the coming age of bio-inspired computing. McGraw-Hill, New York

    Google Scholar 

  • Sipper M, Ruppin E (1997) Co-evolving architectures for cellular machines. Physica D 99:428–441

    ADS  MATH  Google Scholar 

  • Sipper M, Sanchez E, Mange D, Tomassini M, Pérez-Uribe A, Stauffer A (1997a) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans Evol Comput 1(1):83–97

    Google Scholar 

  • Sipper M, Goeke M, Mange D, Stauffer A, Sanchez E, Tomassini M (1997) The firefly machine: online evolware. In: Proceedings of the 1997 I.E. international conference on evolutionary computation (ICEC’97), Piscataway. IEEE Press, Piscataway, pp 181–186

    Google Scholar 

  • Sipser M (2006) Introduction to the theory of computation, 2nd edn. Thomson, Boston

    MATH  Google Scholar 

  • Stahl WR, Goheen HE (1963) Molecular algorithms. J Theor Biol 5(2):266–287

    Google Scholar 

  • Stauffer A, Mange D, Tempesti G, Teuscher C (2001) Bio watch: a giant electronic bio-inspired watch. In: Keymeulen D, Stoica A, Lohn J, Zebulum RS (eds) Proceedings of the third NASA/DoD workshop on evolvable hardware, EH-2001. IEEE Computer Society, Los Alamitos, pp 185–192

    Google Scholar 

  • Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:1069–1074

    Google Scholar 

  • Sugita M (1961) Functional analysis of chemical systems in vivo using a logical circuit equivalent. J Theor Biol 1(2):415–430

    Google Scholar 

  • Sugita M (1963) Functional analysis of chemical systems in vivo using a logical circuit equivalent. In: the idea of a molecular automaton. J Theor Biol 4(2):179–192

    Google Scholar 

  • Sugita M, Fukuda N (1963) Functional analysis of chemical systems in vivo using a logical circuit equivalent. III: analysis using a digital circuit combined with an analogue computer. J Theor Biol 5(3):412–425

    Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    ADS  Google Scholar 

  • Tempesti G, Mange D, Stauffer A, Teuscher C (2002) The biowall: an electronic tissue for prototyping bio-inspired systems. In: Stoica A, Lohn J, Katz R, Keymeulen D, Zebulum RS (eds) Proceedings of the 2002 NASA/DoD conference on evolvable hardware. IEEE Computer Society, Los Alamitos, pp 221–230

    Google Scholar 

  • Teuscher C (2002) Turing’s connectionism. An investigation of neural network architectures. Springer, London

    Google Scholar 

  • Teuscher C, Sipper M (2002) Hypercomputation: hype or computation? Commun ACM 45(8):23–24

    Google Scholar 

  • The P systems web page. http://ppage.psystems.eu. Accessed 12 July 2008

  • Toffoli T, Margolus N (1987) Cellular automata machines. MIT Press, Cambridge

    Google Scholar 

  • Tomita M (2001) Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19(6):205–210

    Google Scholar 

  • Top500 supercomputing sites. http://www.top500.org. Accessed 12 July 2008

  • Turing AM (1937) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond Math Soc 42:230–265; Corrections. Proc Lond Math Soc 43:544–546

    MathSciNet  Google Scholar 

  • Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460

    MathSciNet  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    ADS  Google Scholar 

  • Turing AM (1969) Intelligent machinery. In: Meltzer B, Michie D (eds) Machine intelligence, vol 5. Edinburgh University Press, Edinburgh, pp 3–23

    Google Scholar 

  • Turing AM (1992) Intelligent machinery. In: Ince DC (ed) Collected works of A.M. Turing: mechanical intelligence. North-Holland, Amsterdam, pp 107–127

    Google Scholar 

  • Tyrrell A, Sanchez E, Floreano D, Tempesti G, Mange D, Moreno JM, Rosenberg J, Alessandro Villa EP (2003) Poetic tissue: an integrated architecture for bio-inspired hardware. In: Tyrrell AM, Haddow PC, Torresen J (eds) Evolvable systems: from biology to hardware. Proceedings of the 5th international conference (ICES2003). Lecture notes in computer science, vol 2606. Springer, Berlin, pp 129–140

    Google Scholar 

  • Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. BioSystems 5:187–196

    Google Scholar 

  • Villasenor J, Mangione-Smith WH (1997) Configurable computing. Sci Am 276(6):54–59

    Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • Warner JR, Rich A, Hall CE (1962) Electron microscope studies of ribosomal clusters synthesizing hemoglobin. Science 138(3548):1299–1403

    Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    ADS  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    ADS  Google Scholar 

  • Weiss R (2001) Cellular computation and communications using engineered genetic regulatory networks. PhD thesis, MIT Department of Electrical Engineering and Computer Science, Cambridge

    Google Scholar 

  • Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    ADS  Google Scholar 

Books and Reviews

  • Adamatzky A (ed) (2002) Collision-based computing. Springer, London

    MATH  Google Scholar 

  • Adami C (1998) Introduction to artificial life. Springer, New York

    MATH  Google Scholar 

  • Amos M (2005) Theoretical and experimental DNA computation. Springer, Berlin

    MATH  Google Scholar 

  • Bentley BJ (2001) Digital biology: now nature is transforming our technology. Headline Book Publishing, London

    Google Scholar 

  • Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2004) Computation in living cells: gene assembly in ciliates. Springer, Berlin

    Google Scholar 

  • Hey AJG (ed) (1998) Feynman and computation: exploring the limits of computers. Westview, Boulder

    Google Scholar 

  • Landweber LF, Winfree E (eds) (2002) Evolution as computation. Springer, Berlin

    Google Scholar 

  • Paun G, Rozenberg G (2002) A guide to membrane computing. J Theory Comput Sci 287(1):73–100

    MATH  MathSciNet  Google Scholar 

  • Petty MC, Bryce MR, Bloor D (eds) (1995) An introduction to molecular electronics. Oxford University Press, New York

    Google Scholar 

  • Pozrikidis C (ed) (2003) Modeling and simulation of capsules and biological cells. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Trimberger SM (1994) Field-programmable gate array technology. Kluwer, Boston

    MATH  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Zauner KP (2005) Molecular information technology. Crit Rev Solid State Mater Sci 30(1):33–69

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Teuscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Teuscher, C. (2013). Cellular Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_61-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_61-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics