Skip to main content

Seismology, Rotational, Complexity

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Definition of Subject and Its Importance: Rotational Seismology

… note the utility of measuring rotation …, but as of this writing seismology still awaits a suitable instrument for making such measurements (Aki and Richards 2002)

Most seismological studies are built on the observation of ground translational motions (up–down, N–S, E–W, using seismometers as velocity sensors, accelerometers, or GPS). This concerns the study of the Earth’s interior by seismic tomography; the understanding of earthquake processes, crustal deformation, and the seismic cycle; the quantification of shaking hazard; the analysis of the structural health of buildings; and the seismic exploration for resources. Despite the fact that theoreticians have pointed out for decades that – to fully understand seismic sources and ground motion – the associated rotationalmotions (around three orthogonal axes) should also be observed, this has until recently been impossible due to the limited sensitivity of rotation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Cross-axis sensitivity:

Translation sensors such as standard seismometers are not only sensitive to translations but also to rotational motions (in particular tilt). In some situations (strong ground motions, long-period seismology, ocean-bottom observations), this substantially deteriorates the quality of observations. It is generally not possible to separate the motion components (e.g., translations and rotations). Another example is the sensitivity of tiltmeters to transverse accelerations or the sensitivity of the vertical component of ring laser measurements to local tilts (tilt-ring laser coupling).

Ground motion:

The measurement of ground motions is at the heart of seismology and all its associated applications. These include the understanding of the damaging part of earthquake-induced strong ground motions, the recovery of structural information of Earth’s interior by tomographic means, the understanding of the earthquake source process, and the generation of seismic waves from sources such as the oceans, atmosphere, volcanoes, landslides, and anthropogenic sources. The theory of (linear) elasticity tells us that to completely characterize ground motions, we need to measure three components of translations, six components of strain, and three components of rotations.

Ring laser:

Ring lasers are active optical interferometers based on the Sagnac effect. They measure the interferogram of two internally generated counter-propagating monomode laser beams. Local ground rotations or the Earth’s rotation around the normal vector of the plane of the laser beams causes a change of the beat note. Ring lasers can have square or triangular-shaped cavities in which the light beams propagate. Ring lasers provide currently the most accurate and most sensitive measurements of ground rotations.

Rotation:

Rotational motions are related to the curl of the deformation field containing linear combinations of the space derivatives of translations. Rotation is a vectorial quantity with three orthogonal components, two horizontal components (also called tilt at the Earth’s surface), and a vertical component (sometimes referred to as twist or spin). Rotation sensors may measure angles, angular velocity, or angular acceleration.

Strain:

Strain is a tensorial quantity describing the change in length and direction of a vector inside an elastic body before and after (linear) deformation. The elements of strain are linear combinations of the space derivatives of translations.

Translation:

Standard seismometers or GPS instruments measure translations (displacements, velocities, or accelerations) in two orthogonal horizontal directions (usually N–S, E–W) and the local vertical direction. Almost everything we know about Earth’s interior, tectonics, earthquakes from ground motion observations is based on translational measurements.

Bibliography

Primary Literature

  • Aki K, Richards P (2002) Quantitative seismology, 2nd edn. University Science, Sausalito

    Google Scholar 

  • Beghein C, Trampert J (2003) Robust normal mode constraints on inner core anisotropy from model space search. Science 299:552–555. doi:10.1126/science.1078159

    Article  ADS  Google Scholar 

  • Belfi J, Beverini N, Bosi F, Carelli G, Di Virgilio A, Kolker D, Maccioni E, Ortolan A, Passaquieti R, Stefani F (2012a) Performance of the “G-Pisa” ring laser gyro at the Virgo site. J Seismol 16(4):757–766. doi:10.1007/s10950-012-9277-8, special issue 2IWGoRS

    Article  Google Scholar 

  • Belfi J, Beverini N, Bosi F, Carelli G, Di Virgilio A, Maccioni E, Saccorotti G, Stefani F, Velikoseltsev A (2012b) Horizontal rotation signals detected by “G-Pisa” ring laser for the MW = 9.0, March 2011, Japan earthquake. J Seismol 16(4):767–776. doi:10.1007/s10950-012-9276-9, special issue 2IWGoRS

    Article  Google Scholar 

  • Bernauer M, Fichtner A, Igel H (2009) Inferring Earth structure from combined measurements of rotational and translational ground motions. Geophysics 74(6):WCD41–WCD47

    Article  Google Scholar 

  • Bernauer F, Wassermann J, Igel H (2012a) Rotational sensors – a comparison of different sensor types. J Seismol 16(4):595–602. doi:10.1007/s10950-012-9286-7, special issue 2IWGoRS

    Article  Google Scholar 

  • Bernauer M, Fichtner A, Igel H (2012b) Measurements of translation, rotation and strain: new approaches to seismic processing and inversion. J Seismol 16(4):669–681. doi:10.1007/s10950-012-9298-3, special issue 2IWGoRS

    Article  Google Scholar 

  • Bernauer M, Fichtner A, Igel H (2014a) Reducing non-uniqueness in finite source inversion using rotational ground motions. J Geophys Res Solid Earth 119(6):4860

    Article  ADS  Google Scholar 

  • Bernauer M, Fichtner A, Igel H (2014b) Optimal observables for multi-parameter seismic tomography. Geophys J Int 198(2):1241

    Article  ADS  Google Scholar 

  • Blum J, Igel H, Zumberge M (2010) Observations of Rayleigh-wave phase velocity and coseismic deformation using an optical fiber, interferometric vertical strainmeter at the SAFOD borehole, California. Bull Seismol Soc Am 100:1879–1891

    Article  Google Scholar 

  • Bodin P, Gomberg J, Singh SK, Santoyo M (1997) Dynamic deformations of shallow sediments in the Valley of Mexico, Part I: three-dimensional strains and rotations recorded on a seismic array. Bull Seismol Soc Am 87:528–539

    Google Scholar 

  • Bouchon M, Aki K (1982) Strain, tilt, and rotation associated with strong ground motion in the vicinity of earthquake faults. Bull Seismol Soc Am 72(5):1717–1738

    Google Scholar 

  • Brokešová J, Málek J, Kolinsky P (2012) Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in-situ calibration. J Seismol 16(4):603–621. doi:10.1007/s10950-012-9274-y, special issue 2IWGoRS

    Article  Google Scholar 

  • Cochard A, Igel H, Flaws A, Schuberth B, Wassermann J, Suryanto W (2006) Rotational motions in seismology. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–412

    Chapter  Google Scholar 

  • Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. Hermann, Paris (available from the Cornell University Library Digital Collections)

    Google Scholar 

  • Dubetsky B, Kasevich MA (2006) Atom interferometer as a selective sensor of rotation or gravity. Phys Rev A 74(2):023615

    Article  ADS  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356

    Article  ADS  Google Scholar 

  • Eentec, Electrochemical Sensor Transducers (2006) http://www.eentec.com/pdf/ELECTROCHEMICA-1.pdf

  • Eringen A (1999) Microcontinuum field theories. I. Foundation and solids. Springer, New York

    Book  Google Scholar 

  • Evans JR, Followill F, Hutt CR, Kromer RP, Nigbor RL, Ringler AT, Steim JM, Wielandt E (2010) Method for calculating self-noise spectra and operating ranges for seismographic inertial sensors and recorders. Seismol Res Lett 81(4):640–646. doi:10.1785/gssrl.81.4.640

    Article  Google Scholar 

  • Ferreira A, Igel A (2009) Rotational motions of seismic surface waves in a laterally heterogeneous Earth. Bull Seismol Soc Am 99(2B):1429

    Article  Google Scholar 

  • Fichtner A, Igel H (2009) Sensitivity densities for rotational ground-motion measurements. Bull Seismol Soc Am 99:1302–1314

    Article  Google Scholar 

  • Fichtner A, Bunge HP, Igel H (2006) The adjoint method in seismology: I-theory. Phys Earth Planet Int 157:86–104

    Article  ADS  MATH  Google Scholar 

  • Franco-Anaya R, Carr AJ, Schreiber KU (2008) Qualification of fibre-optic gyroscopes for civil engineering applications. In: 2008 NZSEE conference, Wairakei, New Zealand, p 8

    Google Scholar 

  • Friedrich A, Krüger F, Klinge K (1998) Ocean-generated microseismic noise located with the Gräfenberg array. J Seismol 2(1):47–64

    Article  Google Scholar 

  • Gaebler P, Sens-Schönfelder C, Korn M (2013) The radiative transfer approach to rotational motions – estimation of crustal scattering parameters, EGU General Assembly 2013, Geophysical Research abstracts, vol 15, EGU2013-748

    Google Scholar 

  • Gilbert F, Dziewonski AM (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos Trans R Soc Lond A 278:187–269. doi:10.1098/rsta.1975.0025

    Article  ADS  Google Scholar 

  • Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon flat observatory, California. Bull Seismol Soc Am 86:212–220

    Google Scholar 

  • Graizer V (2009) The response to complex ground motions of seismometers with Galperin sensor configuration. Bull Seismol Soc Am 99(2B):1366–1377

    Article  Google Scholar 

  • Grekova EF (2012) Nonlinear isotropic elastic reduced Cosserat continuum as a possible model for geomedium and geomaterials; spherical prestressed state in a semilinear material. J Seismol 16(4):695–707. doi:10.1007/s10950-012-9299-2, special issue 2IWGoRS

    Article  Google Scholar 

  • Grekova EF, Kulesh MA, Herman GC (2009) Waves in linear elastic media with microrotations, part 2: isotropic reduced cosserat model. Bull Seismol Soc Am 99(2B):1423–1428

    Article  Google Scholar 

  • Hadziioannou C, Gaebler P, Schreiber U, Wassermann J, Igel H (2012) Examining ambient noise using colocated measurements of rotational and translational motion. J Seismol 16(4):787–796

    Article  Google Scholar 

  • Harrison JC (1976) Cavity and topographic effects in tilt and strain measurement. J Geophys Res 81(2):319–328

    Article  ADS  Google Scholar 

  • Hinzen K-G (2012) Rotation of vertically oriented objects during earthquakes. J Seismol 16(4):797–814. doi:10.1007/s10950-012-9255-6, special issue 2IWGoRS

    Article  Google Scholar 

  • Huang BS (2003) Ground rotational motions of the 1991 Chi-Chi, Taiwan, earthquake as inferred from dense array observations. Geophys Res Lett 30(6):1307–1310

    Article  ADS  Google Scholar 

  • Igel H, Schreiber KU, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2003) Rotational motions induced by the M8.1 Tokachi-Oki earthquake, September 25, 2003. Geophys Res Lett 32, L08309

    ADS  Google Scholar 

  • Igel H, Cochard A, Wassermann J, Flaws A, Schreiber KU, Velikoseltsev A, Pham DN (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168(1):182–196

    Article  ADS  Google Scholar 

  • Igel H, Nader MF, Kurrle D, Ferreira AM, Wassermann J, Schreiber KU (2011) Observations of Earth’s toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake. Geophys Res Lett 38, L213032011

    Article  Google Scholar 

  • Igel H, Brokešová J, Evans JR, Zembaty Z (2012a) Preface to the special issue on “Advances in rotational seismology: instrumentation, theory, observations, and engineering”. J Seismol 16(4):571–572. doi:10.1007/s10950-012-9307-6, special issue 2IWGoRS

    Article  Google Scholar 

  • Ishii M, Tromp J (1999) Normal mode and free air gravity constraints on lateral variations in velocity and density of the Earth’s mantle. Science 285:1231–1236. doi:10.1126/science.285.5431.1231

    Article  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Teisseyre R (2012) Usefulness of AFORS – autonomous fibre-optic rotational seismograph for investigation of rotational phenomena. J Seismol 16(4):573–586. doi:10.1007/s10950-012-9258-3, special issue 2IWGoRS

    Article  Google Scholar 

  • Jedlička P, Kozák J, Evans JR, Hutt CR (2012) Designs and test results for three new rotational sensors. J Seismol 16(4):639–647. doi:10.1007/s10950-012-9293-8, special issue 2IWGoRS

    Article  Google Scholar 

  • Kao GC (1998) Design and shaking table tests of a four-storey miniature structure built with replaceable plastic hinges. ME thesis, University of Canterbury, Christchurch

    Google Scholar 

  • Kendall LM, Langston CA, Lee WHK, Lin CJ, Liu CC (2012) Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008. J Seismol 16(4):733–743. doi:10.1007/s10950-012-9297-4, special issue 2IWGoRS

    Article  Google Scholar 

  • Kulesh M (2009) Waves in linear elastic media with microrotations, part 1: isotropic full cosserat model. Bull Seismol Soc Am 99(2B):1416–1422

    Article  Google Scholar 

  • Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber KU (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37(4):1–5

    Article  Google Scholar 

  • Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22

    Google Scholar 

  • Lefevre HC, Arditty HJ (1992) Fiber-optic gyroscope. In: AGARD, advances in Fibre-optic technology in communications and for guidance and control 6 p (SEE N92-28084 18–32), vol 1

    Google Scholar 

  • Leugoud R, Kharlamov A (2012) Second generation of a rotational electrochemical seismometer using magnetohydrodynamic technology. J Seismol 16(4):587–593. doi:10.1007/s10950-012-9290-y, special issue 2IWGoRS

    Article  Google Scholar 

  • Lin C-J, Huang W-G, Huang H-P, Huang B-S, Ku C-S, Liu C-C (2012) Investigation of array-derived rotation in TAIPEI 101. J Seismol 16(4):721–731. doi:10.1007/s10950-012-9306-7, special issue 2IWGoRS

    Article  Google Scholar 

  • McLeod DP, Stedman GE, Webb TH, Schreiber KU (1998) Comparison of standard and ring laser rotational seismograms. Bull Seismol Soc Am 88:1495–1503

    Google Scholar 

  • Mikumo T, Aki K (1964) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments. J Geophys Res 69:721–731

    Article  ADS  Google Scholar 

  • Moriya T, Marumo T (1998) Design for rotation seismometers and their calibration. Geophys Bull Hokkaido Univ 61:99–106

    Google Scholar 

  • Nader MF, Igel H, Ferreira AMG, Kurrle D, Wassermann J, Schreiber KU (2012) Toroidal free oscillations of the Earth observed by a ring laser system: a comparative study. J Seismol 16(4):745–755. doi:10.1007/s10950-012-9304-9, special issue 2IWGoRS

    Article  Google Scholar 

  • Nader MF, Igel H, Ferreira AMG, Al-Attar D, Wassermann J, Schreiber KU (2015) Normal mode coupling observations with a rotation sensor. Geophys J Int 201(3):1482–1490. doi:10.1093/gji/ggv082

    Google Scholar 

  • Nigbor RL (1994) Six-degree-of-freedom ground-motion measurement. Bull Seismol Soc Am 84(5):1665–1669

    Google Scholar 

  • Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27(21):3553

    Article  ADS  Google Scholar 

  • Park J (2005) Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science 308(5725):1139–1144

    Article  ADS  Google Scholar 

  • Pham ND, Igel H, Wassermann J, Kaeser M, de la Puente J, Schreiber KU (2009a) Observations and modeling of rotational signals in the P Coda: constraints on crustal scattering. Bull Seismol Soc Am 99(2B):1315–1332

    Article  Google Scholar 

  • Pham ND, Igel H, Wassermann J, Cochard A, Schreiber KU (2009b) The effects of tilt on interferometric rotation sensors. Bull Seismol Soc Am 99(2B):1352–1365

    Article  Google Scholar 

  • Pham ND, Huang B-S, Lin C-J, Vu T-M, Tran N-A (2012) Investigation of ground rotational motions caused by direct and scattered P-waves from the 4 March 2008 TAIGER explosion experiment. J Seismol 16(4):709–720

    Article  Google Scholar 

  • Pujol J (2009) Tutorial on rotations in the theories of nite deformation and micropolar (cosserat) elasticity. Bull Seismol Soc Am 99(2B):1011–1027

    Article  Google Scholar 

  • Rautenberg V, Plag H-P, Burns M, Stedman GE, Jüttner H-U (1997) Tidally induced Sagnac signal in a ring laser. Geophys Res Lett 24:893–896

    Article  ADS  Google Scholar 

  • Sacks IS, Snoke JA, Evans R, Beavan J (1976) Single-site phase velocity measurement. Geophys J Roy Astron Soc 46:253–258

    Article  ADS  Google Scholar 

  • Schreiber KU, Wells J-PR (2013) Invited review article: large ring lasers for rotation sensing. Rev Sci Instrum 84(4):041101–26

    Article  ADS  Google Scholar 

  • Schreiber KU, Klügel T, Stedman GE (2003) Earth tide and tilt detection by a ring laser gyroscope. J Geophys Res 108(B2). doi:10.1029/2001JB000569

    Google Scholar 

  • Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire DL (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. J Geophys Res 109. doi:10.1029/ 2003JB002803

    Google Scholar 

  • Schreiber KU, Stedman G, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 377–390

    Chapter  Google Scholar 

  • Schreiber KU, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J-PR (2009a) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99(2B):1190–1198

    Article  Google Scholar 

  • Schreiber KU, Velikoseltsev A, Carr AJ, Franco-Anaya R (2009b) The application of fiber optic gyroscopes for the measurement of rotations in structural engineering. Bull Seismol Soc Am 99(2B):1207–1214

    Article  Google Scholar 

  • Spudich P, Fletcher JB (2008) Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw 6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations. Bull Seismol Soc Am 98(4):1898–1914

    Article  Google Scholar 

  • Spudich P, Fletcher JB (2009) Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions. Bull Seismol Soc Am 99(2B):1480–1482

    Article  Google Scholar 

  • Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stresses at Parkfield, California, produced by the M7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100(B1):675–690

    Article  ADS  Google Scholar 

  • Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Rep Prog Phys 60:615–688

    Article  ADS  Google Scholar 

  • Stedman GE, Li Z, Bilger HR (1995) Sideband analysis and seismic detection in large ring lasers. Appl Opt 34:7390–7396

    Article  Google Scholar 

  • Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96:2059–2071. doi:10.1785/0120060004

    Article  Google Scholar 

  • Takeo M (1998) Ground rotational motions recorded in near-source region of earthquakes. Geophys Res Lett 25(6):789–792

    Article  ADS  Google Scholar 

  • Takeo M, Ito HM (1997) What can be learned from rotational motions excited by earthquakes? Geophys J Int 129:319–329

    Article  ADS  Google Scholar 

  • Teisseyre R (2012) Rotation and strain seismology. J Seismol 16(4):683–694. doi:10.1007/s10950-012-9287-6, special issue 2IWGoRS

    Article  Google Scholar 

  • Teisseyre R, Suchcicki J, Teisseyre KP, Wiszniowski J, Palangio P et al (2003) Seismic rotation waves: basic elements of theory and recording. Annali di Geofisica 46:671–685

    Google Scholar 

  • Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal, and banana-donut kernels. Geophys J Int 160:195–216

    Article  ADS  Google Scholar 

  • van Driel M, Wassermann J, Nader MF, Schuberth BSA, Igel H (2012) Strain rotation coupling and its implications on the measurement of rotational ground motions. J Seismol 16(4):657–668. doi:10.1007/s10950-012-9296-5, special issue 2IWGoRS

    Article  Google Scholar 

  • van Driel M, Wassermann J, Pelties C, Schiemenz A, Igel H (2014) Tilt effects on moment tensor inversion in the nearfield of active volcanoes. Geophys J Int (in press)

    Google Scholar 

  • Velikoseltsev A, Schreiber KU, Yankovsky A, Wells J-PR, Boronachin A, Tkachenko A (2012) On the application of fiber optic gyroscopes for detection of seismic rotations. J Seismol 16(4):623–637. doi:10.1007/s10950-012-9282-y

    Article  Google Scholar 

  • Wang H, Igel H, Gallovic F, Cochard A (2009) Source and basin effects on rotational ground motions: comparison with translations. Bull Seismol Soc Am 99(2B):1162–1173

    Article  Google Scholar 

  • Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Am 99(2B):1449–1456

    Article  Google Scholar 

  • Widmer-Schnidrig R, Zürn W (2009) Perspectives for ring laser gyroscopes in low frequency seismology. Bull Seismol Soc Am 99(2B):1199–1206

    Article  Google Scholar 

  • Wielandt E, Forbriger T (1999) Near-field seismic displacement and tilt associated with the explosive activity of Stromboli. Ann Geofisc 42(3):407–416

    Google Scholar 

  • Wu CF, Lee WHK, Huang HC (2009) Array deployment to observe rotational and translational ground motions along the Meishan fault, Taiwan: a progress report. Bull Seismol Soc Am 99(2B):1468–1474

    Article  Google Scholar 

Books and Reviews

  • Igel H, Brokešová J, Evans JR, Zembaty Z (eds) (2012) Special issue on “Advances in rotational seismology: instrumentation, theory, observations, and engineering”. J Seis 16(4):571–838

    Google Scholar 

  • Lee WHK, Çelebi M, Todorovska MI, Igel H (eds) (2009) Special issue on Rotational seismology and engineering applications. Bull Seismol Soc Am 99(2B):945–1485

    Google Scholar 

  • Lee WHK, Evans JR, Huang B-S, Hutt CR, Lin C-J, Liu C-C, Nigbor RL (2012) Measuring rotational ground motions in seismological practice. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–27. doi:10.2312/GFZ.NMSOP-2_IS_5.3

    Google Scholar 

  • Teisseyre R, Takeo M, Majewski E (eds) (2006) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–412

    Google Scholar 

Web Links

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Igel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Igel, H., Bernauer, M., Wassermann, J., Schreiber, K.U. (2015). Seismology, Rotational, Complexity. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_608-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_608-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics