Skip to main content

Source Quantification of Volcanic-Seismic Signals

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 33 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Aki K, Fehler M, Das S (1977) Source mechanism of volcanic tremor: fluid-driven crack models and their application to the 1963 Kilauea eruption. J Volcanol Geotherm Res 2:259–287

    Article  ADS  Google Scholar 

  • Almendros J, Chouet BA, Dawson PB (2001a) Spatial extent of a hydrothermal system at Kilauea volcano, Hawaii, determined from array analyses of shallow long-period seismicity 1. Method. J Geophys Res 106:13565–13580

    Article  ADS  Google Scholar 

  • Almendros J, Chouet BA, Dawson PB (2001b) Spatial extent of a hydrothermal system at Kilauea volcano, Hawaii, determined from array analyses of shallow long-period seismicity 2. Results. J Geophys Res 106:13581–13597

    Article  ADS  Google Scholar 

  • Almendros J, Chouet BA, Dawson PB, Huber C (2002a) Mapping the sources of the seismic wave field at Kilauea volcano, Hawaii, using data recorded on multiple seismic antennas. Bull Seism Soc Am 92:2333–2351

    Article  Google Scholar 

  • Almendros J, Chouet BA, Dawson PB, Bond T (2002b) Identifying elements of the plumbing system beneath Kilauea volcano, Hawaii, from the source locations of very-long-period signals. Geophys J Int 148:303–312

    ADS  Google Scholar 

  • Aoyama H, Takeo M (2001) Wave properties and focal mechanisms of N-type earthquakes at Asama volcano. J Volcanol Geotherm Res 105:163–182

    Article  ADS  Google Scholar 

  • Arciniega-Ceballos A, Chouet BA, Dawson PB (1999) Very long-period signals associated with vulcanian explosions at Popocatepetl volcano, Mexico. Geophys Res Lett 26:3013–3016

    Article  ADS  Google Scholar 

  • Arciniega-Ceballos A, Chouet BA, Dawson PB (2003) Long-period events and tremor at Popocatepetl volcano (1994–2000) and their broadband characteristics. Bull Volcanol 65:124–135

    Article  ADS  Google Scholar 

  • Aster R, Mah S, Kyle P, McIntosh W, Dunbar N, Johnson J, Ruiz M, McNamara S (2003) Very long period oscillations of mount Erebus Volcano. J Geophys Res 108:2522. https://doi.org/10.1029/2002JB002101

    Article  Google Scholar 

  • Auger E, D’Auria L, Martini M, Chouet BA, Dawson PB (2006) Real-time monitoring and massive inversion of source parameters of very-long-period (VLP) seismic signals: an application to Stromboli Volcano, Italy. Geophys Res Lett 33:L04301. https://doi.org/10.1029/2005GL024703

    Article  ADS  Google Scholar 

  • Backus G, Mulcahy M (1976) Moment tensors and other phenomenological descriptions of seismic sources-I. Continuous displacements. Geophys J R Astr Soc 46:341–361

    Article  ADS  MATH  Google Scholar 

  • Battaglia J, Aki K (2003) Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J Geophys Res 108:2364. https://doi.org/10.1029/2002JB002193

    Article  Google Scholar 

  • Biot MA (1952a) Propagation of elastic waves in a cylindrical bore containing a fluid. J Appl Phys 23:997–1005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Biot MA (1952b) The interaction of Rayleigh and Stoneley waves in the ocean bottom. Bull Seism Soc Am 42:82–92

    MathSciNet  Google Scholar 

  • Bouchon M (1979) Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res 84:3609–3614

    Article  ADS  Google Scholar 

  • Bouchon M (1981) A simple method to calculate Green’s functions for elastic layered media. Bull Seism Soc Am 71:959–971

    Google Scholar 

  • Bouchon M, Schultz CA, Toksöz MN (1996) Effect of 3D topography on seismic motion. J Geophys Res 101:5835–5846

    Article  ADS  Google Scholar 

  • Brandsdottir B, Einarsson P (1979) Seismic activity associated with the September 1977 deflation of the Krafla central volcano in Northeastern Iceland. J Volcanol Geotherm Res 6:197–212

    Article  ADS  Google Scholar 

  • Chouet BA (1982) Free surface displacements in the near field of a tensile crack expanding in three dimensions. J Geophys Res 87:3868–3872

    Article  ADS  Google Scholar 

  • Chouet BA (1985) Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J Geophys Res 90:1881–1893

    Article  ADS  Google Scholar 

  • Chouet BA (1986) Dynamics of a fluid-driven crack in three dimensions by the finite difference method. J Geophys Res 91:13967–13992

    Article  ADS  Google Scholar 

  • Chouet BA (1988) Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J Geophys Res 93:4375–4400

    Article  ADS  Google Scholar 

  • Chouet BA (1992) A seismic model for the source of long-period events and harmonic tremor. In: Gasparini P, Scarpa R, Aki K (eds) Volcanic seismology. Springer, Berlin, pp 133–156

    Chapter  Google Scholar 

  • Chouet BA (1996a) New methods and future trends in seismological volcano monitoring. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, New York, pp 23–97

    Chapter  Google Scholar 

  • Chouet BA (1996b) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316

    Article  ADS  Google Scholar 

  • Chouet BA (2003) Volcano Seismology. Pure Appl Geophys 160:739–788

    Article  ADS  Google Scholar 

  • Chouet BA, Julian B (1985) Dynamics of an expanding fluid-filled crack. J Geophys Res 90:11187–11198

    Article  ADS  Google Scholar 

  • Chouet BA, Page RA, Stephens CD, Lahr JC, Power JA (1994) Precursory swarms of long-period events at redoubt volcano (1989–1990), Alaska: their origin and use as a forecasting tool. J Volcanol Geotherm Res 62:95–135

    Article  ADS  Google Scholar 

  • Chouet BA, Saccorotti G, Martini M, Dawson PB, De Luca G, Milana G, Scarpa R (1997) Source and path effects in the wavefields of tremor and explosions at Stromboli volcano, Italy. J Geophys Res 102:15129–15150

    Article  ADS  Google Scholar 

  • Chouet BA, Saccorotti G, Dawson PB, Martini M, Scarpa R, De Luca G, Milana G, Cattaneo M (1999) Broadband measurements of the sources of explosions at Stromboli Volcano, Italy. Geophys Res Lett 26:1937–1940

    Article  ADS  Google Scholar 

  • Chouet BA, Dawson PB, Ohminato T, Martini M, Saccorotti G, Guidicepierto F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108:2331. https://doi.org/10.1029/2003JB002535

    Article  Google Scholar 

  • Chouet BA, Dawson PB, Arciniega-Ceballos A (2005) Source mechanism of Vulcanian degassing at Popocatepetl volcano, Mexico, determined from waveform inversions of very long period signals. J Geophys Res 110:B07301. https://doi.org/10.1029/2004JB003524

    Article  ADS  Google Scholar 

  • Chouet BA, Dawson PB, Nakano M (2006) Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid. J Geophys Res 111:B07310. https://doi.org/10.1029/2005JB004174

    Article  ADS  Google Scholar 

  • Crosson RS, Bame DA (1985) A spherical source model for low frequency volcanic earthquakes. J Geophys Res 90:10237–10247

    Article  ADS  Google Scholar 

  • Dawson PB, Dietel C, Chouet BA, Honma K, Ohminato T, Okubo P (1998) A digitally telemetered broadband seismic network at Kilauea volcano, Hawaii. US Geol Surv Open File Rep 98(108):1–121

    Google Scholar 

  • Dawson PB, Whilldin D, Chouet BA (2004) Application of near real-time semblance to locate the shallow magmatic conduit at Kilauea volcano, Hawaii. Geophys Res Lett 31:L21606. https://doi.org/10.1029/2004GL021163

    Article  ADS  Google Scholar 

  • De Angelis S, McNutt SR (2005) Degassing and hydrothermal activity at Mt. Spurr, Alaska during the summer of 2004 inferred from the complex frequencies of long-period events. Geophys Res Lett 32:L12312. https://doi.org/10.1029/2005GL022618

    Article  ADS  Google Scholar 

  • Ferrazzini V, Aki K (1987) Slow waves trapped in a fluid-filled infinite crack: implication for volcanic tremor. J Geophys Res 92:9215–9223

    Article  ADS  Google Scholar 

  • Fujita E, Ida Y (2003) Geometrical effects and low-attenuation resonance of volcanic fluid inclusions for the source mechanism of long-period earthquakes. J Geophys Res 108:2118. https://doi.org/10.1029/2002JB001806

    Article  Google Scholar 

  • Fujita E, Ida Y, Oikawa J (1995) Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor. J Volcanol Geotherm Res 69:365–378

    Article  ADS  Google Scholar 

  • Fujita E, Ukawa M, Yamamoto E (2004) Subsurface cyclic magma sill expansions in the 2000 Miyakejima volcano eruption: possibility of two-phase flow oscillation. J Geophys Res 109:B04205. https://doi.org/10.1029/2003JB002556

    Article  ADS  Google Scholar 

  • Fukuyama E, Kubo A, Kawai H, Nonomura K (2001) Seismic remote monitoring of stress field. Earth Planets Space 53:1021–1026

    Article  ADS  Google Scholar 

  • Gil Cruz F, Chouet BA (1997) Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras volcano, Colombia, in 1991. J Volcanol Geotherm Res 77:121–158

    Article  ADS  Google Scholar 

  • Goldstein P, Chouet BA (1994) Array measurements and modeling of sources of shallow volcanic tremor at Kilauea volcano, Hawaii. J Geophys Res 99:2637–2652

    Article  ADS  Google Scholar 

  • Hayashi Y, Morita Y (2003) An image of a magma intrusion process inferred from precise hypocenter migrations of the earthquake swarm eat of the Izu Peninsula. Geophys J Int 153:159–174

    Article  ADS  Google Scholar 

  • Hidayat D, Voight B, Langston C, Ratdomopurbo A, Ebeling C (2000) Broadband seismic experiment at Merapi volcano, Java, Indonesia: very-long-period pulses embedded in multiphase earthquakes. J Volcanol Geotherm Res 100:215–231

    Article  ADS  Google Scholar 

  • Hidayat D, Chouet BA, Voght B, Dawson P, Ratdomopurbo A (2002) Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia. Geophys Res Lett 23:2118. https://doi.org/10.1029/2002GL015013

    Article  ADS  Google Scholar 

  • Hill DP, Dawson PB, Johnston MJS, Pitt AM (2002) Very-long-period volcanic earthquakes beneath Mammoth Mountain, California. Geophys Res Lett 29:1370. https://doi.org/10.1029/2002GL014833

    Article  ADS  Google Scholar 

  • Hori S, Fukao Y, Kumazawa M, Furumoto M, Yamamoto A (1989) A new method of spectral analysis and its application to the earth’s free oscillations: the “Sompi” method. J Geophys Res 94:7535–7553

    Article  ADS  Google Scholar 

  • Iguchi M (1994) A vertical expansion source model for the mechanisms of earthquakes originated in the magma conduit of an andesitic volcano: Sakurajima, Japan. Bull Volcanol Soc Jpn 39:49–67

    Google Scholar 

  • Jousset P, Neuberg JW, Sturton S (2003) Modelling the time-dependent frequency content of low-frequency volcanic earthquakes. J Volcanol Geotherm Res 128:201–223

    Article  ADS  Google Scholar 

  • Julian BR (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877

    Article  ADS  Google Scholar 

  • Julian BR, Miller AD, Foulger GR (1998) Non-double-couple earthquakes 1. Theory. Rev Geophys 36:525–549

    Article  ADS  Google Scholar 

  • Kanamori H, Given J (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens – a terrestrial monopole. J Geophys Res 87:5422–5432

    Article  ADS  Google Scholar 

  • Kanamori H, Given J, Lay T (1984) Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980. J Geophys Res 89:1856–1866

    Article  ADS  Google Scholar 

  • Kaneshima S et al (1996) Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband observations. Science 273:642–645

    Article  ADS  Google Scholar 

  • Kawakatsu H, Ohminato T, Ito H, Kuwahara Y, Kato T, Tsuruga K, Honda S, Yomogida K (1992) Broadband seismic observation at Sakurajima volcano, Japan. Geophys Res Lett 19:1959–1962

    Article  ADS  Google Scholar 

  • Kawakatsu H, Ohminato T, Ito H (1994) 10s-period volcanic tremors observed over a wide area in southwestern Japan. Geophys Res Lett 21:1963–1966

    Article  ADS  Google Scholar 

  • Kawakatsu H et al (2000) Aso-94: Aso seismic observation with broadband instruments. J Volcanol Geotherm Res 101:129–154

    Article  ADS  Google Scholar 

  • Kawakatsu H, Yamamoto M (2007) Volcano Seismology. In: Kamanori H (ed) Treatise on geophysics. Earthquake seismology, vol 4. Elsevier, Amsterdam, pp 389–420

    Chapter  Google Scholar 

  • Kawase H (1988) Time domain response of a semi-circular canyon for incident SV, P and Rayleigh waves calculated by the discrete wavenumber boundary element method. Bull Seism Soc Am 78:1415–1437

    Google Scholar 

  • Kennet LN, Kerry NJ (1979) Seismic waves in a stratified half-space. Geophys J R Astr Soc 57:557–583

    Article  ADS  MATH  Google Scholar 

  • Kobayashi T, Ohminato T, Ida Y (2003) Earthquakes series preceding very long period seismic signals observed during the 2000 Miyakejima volcanic activity. Geophys Res Lett 30:1423. https://doi.org/10.1029/2002GL016631

    Article  ADS  Google Scholar 

  • Kumagai H (2006) Temporal evolution of a magmatic dike system inferred from the complex frequencies of very long period seismic events. J Geophys Res 111:B06201. https://doi.org/10.1029/2005JB003881

    Article  ADS  Google Scholar 

  • Kumagai H, Chouet BA (1999) The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes. Geophys J Int 138:F7–F12

    Article  ADS  Google Scholar 

  • Kumagai H, Chouet BA (2000) Acoustic properties of a crack containing magmatic or hydrothermal fluids. J Geophys Res 105:25493–25512

    Article  ADS  Google Scholar 

  • Kumagai H, Chouet BA (2001) The dependence of acoustic properties of a crack on the mode and geometry. Geophys Res Lett 28:3325–3328

    Article  ADS  Google Scholar 

  • Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J (2001) Very-long-period seismic signals and caldera formation at Miyake Island. Jpn Sci 293:687–690

    ADS  Google Scholar 

  • Kumagai H, Chouet BA, Nakano M (2002a) Temporal evolution of a hydrothermal system in Kusatsu-Shirane volcano, Japan, inferred from the complex frequencies of long-period events. J Geophys Res 107:2236. https://doi.org/10.1029/2001JB000653

    Article  Google Scholar 

  • Kumagai H, Chouet BA, Nakano M (2002b) Waveform inversion of oscillatory signatures in long-period events beneath volcanoes. J Geophys Res 107:2301. https://doi.org/10.1029/2001JB001704

    Article  Google Scholar 

  • Kumagai H, Miyakawa K, Negishi H, Inoue H, Obara K, Suetsugu D (2003) Magmatic dike resonances inferred from very-long-period seismic signals. Science 299:2058–2061. https://doi.org/10.1126/science.1081195

    Article  ADS  Google Scholar 

  • Kumagai H, Chouet BA, Dawson PB (2005) Source process of a long-period event at Kilauea volcano, Hawaii. Geophys J Int 161:243–254

    Article  ADS  Google Scholar 

  • Kumagai H et al (2007) Enhancing volcano-monitoring capabilities in Ecuador. Eos Trans AGU 88:245–246

    Article  ADS  Google Scholar 

  • Kumazawa M, Imanishi Y, Fukao Y, Furumoto M, Yamamoto A (1990) A theory of spectral analysis based on the characteristic property of a linear dynamic system. Geophys J Int 101:613–630

    Article  ADS  MATH  Google Scholar 

  • Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of near field broadband waveforms observed at Aso volcano, Japan. J Volcanol Geotherm Res 101:155–169

    Article  ADS  Google Scholar 

  • Lesage P, Glangeaud F, Mars J (2002) Applications of autoregressive models and time-frequency analysis to the study of volcanic tremor and long-period events. J Volcanol Geotherm Res 114:391–417

    Article  ADS  Google Scholar 

  • Lin CH, Konstantinou KI, Liang WT, Pu HC, Lin YM, You SH, Huang YP (2005) Preliminary analysis of volcanoseismic signals recorded at the Tatun volcano group, Northern Taiwan. Geophys Res Lett 32:L10313. https://doi.org/10.1029/2005GL022861

    Article  ADS  Google Scholar 

  • Matsuura T, Imanishi Y, Imanari M, Kumazawa M (1990) Application of a new method of high-resolution spectral analysis, “Sompi”, for free induction decay of nuclear magnetic resonance. Appl Spectrosc 44:618–626

    Article  ADS  Google Scholar 

  • McNutt SR (1996) Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the art and cased histories. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, New York, pp 99–146

    Chapter  Google Scholar 

  • McNutt SR (2005) Volcanic seismology. Annu Rev Earth Planet Sci 33:461–491

    Article  ADS  Google Scholar 

  • Métaxian JP, Lesage P, Dorel J (1997) Permanent tremor of Masaya volcano, Nicaragua: wavefield analysis and source location. J Geophys Res 102:22529–22545

    Article  ADS  Google Scholar 

  • Menke W (1989) Geophysical data analysis: discrete inverse theory, Revised edn. Academic, San Diego

    Google Scholar 

  • Minakami T (1974) Seismology of volcanoes in Japan. In: Civetta L, Gasparini P, Luongo G, Rapolla A (eds) Physical volcanology. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Molina I, Kumagai H, Yepes H (2004) Resonances of a volcanic conduit triggered by repetitive injections of an ash-laden gas. Geophys Res Lett 31:L03603. https://doi.org/10.1029/2003GL018934

    Article  ADS  Google Scholar 

  • Morita Y, Nakao S, Hayashi Y (2006) A quantitative approach to the dike intrusion process inferred from a joint analysis of geodetic and seismological data for the 1998 earthquake swarm off the east coast of Izu Peninsula, Central Japan. J Geophys Res 111:B06208. https://doi.org/10.1029/2005JB003860

    Article  ADS  Google Scholar 

  • Morrissey M, Chouet BA (1997) A numerical investigation of choked flow dynamics and its application to the triggering mechanism of long-period events at redoubt volcano, Alaska. J Geophys Res 102:7965–7983

    Article  ADS  Google Scholar 

  • Morrissey M, Chouet BA (2001) Trends in long-period seismicity related to magmatic fluid compositions. J Volcanol Geotherm Res 108:265–281

    Article  ADS  Google Scholar 

  • Müller G (2001) Volume change of seismic sources from moment tensors. Bull Seism Soc Am 91:880–884

    Article  Google Scholar 

  • Nakamichi H, Hamaguchi H, Tanaka S, Ueki S, Nishimura T, Hasegawa A (2003) Source mechanisms of deep and intermediate-depth low-frequency earthquakes beneath Iwate volcano, Northeastern Japan. Geophys J Int 154:811–828

    Article  ADS  Google Scholar 

  • Nakano M, Kumagai H (2005a) Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 147:233–244

    Article  ADS  Google Scholar 

  • Nakano M, Kumagai H (2005b) Waveform inversion of volcano-seismic signals assuming possible source geometries. Geophys Res Lett 32:L12302. https://doi.org/10.1029/2005GL022666

    Article  ADS  Google Scholar 

  • Nakano M, Kumagai H, Kumazawa M, Yamaoka K, Chouet BA (1998) The excitation and characteristic frequency of the long-period volcanic event: an approach based on an inhomogeneous autoregressive model of a linear dynamic system. J Geophys Res 103:10031–10046

    Article  ADS  Google Scholar 

  • Nakano M, Kumagai H, Chouet BA (2003) Source mechanism of long-period events at Kusatsu-Shirane volcano, Japan, inferred from waveform inversion of the effective excitation functions. J Volcanol Geotherm Res 122:149–164

    Article  ADS  Google Scholar 

  • Nakano M, Kumagai H, Chouet BA, Dawson PB (2007) Waveform inversion of volcano-seismic signals for an extended source. J Geophys Res 112:B02306. https://doi.org/10.1029/2006JB004490

    Article  ADS  Google Scholar 

  • Neuberg JW (2000) Characteristics and causes of shallow seismicity in andesite volcanoes. Philos Trans R Soc Lond A 358:1533–1546

    Article  ADS  Google Scholar 

  • Neuberg JW, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli Volcano. Geophys Res Lett 21:749–752

    Article  ADS  Google Scholar 

  • Neuberg JW, Luckett R, Baptie B, Olsen K (2000) Models of tremor and low-frequency earthquake swarms on Montserrat. J Volcanol Geotherm Res 101:83–104

    Article  ADS  Google Scholar 

  • Neuberg JW, Tuffen H, Collier L, Green D, Powell T, Dingwell D (2006) The trigger mechanism of low frequency earthquakes on Montserrat. J Volcanol Geotherm Res 153:37–50

    Article  ADS  Google Scholar 

  • Nishimura T (2004) Pressure recovery in magma due to bubble growth. Geophys Res Lett 31:L12613. https://doi.org/10.1029/2004GL019810

    Article  ADS  Google Scholar 

  • Nishimura T, Nakamichi H, Tanaka S, Sato M, Kobayashi T, Ueki S, Hamaguchi H, Ohtake M, Sato H (2000) Source process of very long period seismic events associated with the 1998 activity of Iwate volcano, Northeastern Japan. J Geophys Res 105:19135–19417

    Article  ADS  Google Scholar 

  • Nishimura T, Ueki S, Yamawaki T, Tanaka S, Hashino H, Sato M, Nakamichi H, Hamaguchi H (2002) Broadband seismic signals associated with the 2000 volcanic unrest of mount Bandai, northeastern Japan. J Volcanol Geotherm Res 119:51–59

    Article  ADS  Google Scholar 

  • O’Brien GS, Bean CJ (2004) A 3D discrete numerical elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys Res Lett 31:L14608. https://doi.org/10.1029/2004GL020069

    Article  ADS  Google Scholar 

  • Ohminato T (2006) Characteristics and source modeling of broadband seismic signals associated with the hydrothermal system at Satsuma-Iwojima volcano, Japan. J Volcanol Geotherm Res 158:467–490

    Article  ADS  Google Scholar 

  • Ohminato T, Chouet BA (1997) A free-surface boundary condition for including 3D topography in the finite difference method. Bull Seism Soc Am 87:494–515

    Google Scholar 

  • Ohminato T, Chouet BA, Dawson PB, Kedar S (1998) Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano, Hawaii. J Geophys Res 103:23839–23862

    Article  ADS  Google Scholar 

  • Ohminato T, Takeo M, Kumagai H, Yamashina T, Oikawa J, Koyama E, Tsuji H, Urabe T (2006) Vulcanian eruptions with dominant single force components observed during the Asama 2004 volcanic activity in Japan. Earth Planets Space 58:583–593

    Article  ADS  Google Scholar 

  • Ripperger J, Igel H, Wasserman J (2003) Seismic wave simulation in the presence of real volcano topography. J Volcanol Geotherm Res 128:31–44

    Article  ADS  Google Scholar 

  • Rowe CA, Aster RC, Kyle PR, Schlue JW, Dibble RR (1998) Broadband recording of Strombolian explosions and associated very-long-period seismic signals on mount Erebus volcano, Ross Island, Antarctica. Geophys Res Lett 25:2297–2300

    Article  ADS  Google Scholar 

  • Rubin AM, Gillard D (1998) Dike-induced seismicity: theoretical considerations. J Geophys Res 103:10017–10030

    Article  ADS  Google Scholar 

  • Rubin AM, Gillard D, Got JL (1998) A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea volcano, Hawaii. J Geophys Res 103:10003–10015

    Article  ADS  Google Scholar 

  • Saccorotti G, Del Pezzo E (2000) A probabilistic approach to the inversion of data from a seismic array and its application to volcanic signals. Geophys J Int 143:249–261

    Article  ADS  Google Scholar 

  • Saccorotti G, Chouet BA, Dawson PB (2001) Wavefield properties of a shallow long-period event and tremor at Kilauea volcano, Hawaii. J Volcanol Geotherm Res 109:163–189

    Article  ADS  Google Scholar 

  • Sakuraba A, Oikawa J, Imanishi Y (2002) Free oscillations of a fluid sphere in an infinite elastic medium and long-period volcanic earthquakes. Earth Planets Space 54:91–106

    Article  ADS  Google Scholar 

  • Stump BW, Johnson LR (1977) The determination of source properties by the linear inversion of seismograms. Bull Seism Soc Am 67:1489–1502

    Google Scholar 

  • Sturton S, Neuberg JW (2006) The effects of conduit length and acoustic velocity on conduit resonance: implications for low-frequency events. J Volcanol Geotherm Res 151:319–339

    Article  ADS  Google Scholar 

  • Takei Y, Kumazawa M (1994) Why have the single force and torque been excluded from seismic source models? Geophys J Int 118:20–30

    Article  ADS  Google Scholar 

  • Takei Y, Kumazawa M (1995) Phenomenological representation and kinematics of general seismic sources including the seismic vector modes. Geophys J Int 121:641–662

    Article  ADS  Google Scholar 

  • Takeo M, Yamasato H, Furuya I, Seino M (1990) Analysis of long-period seismic waves excited by the November 1987 eruption of Izu-Oshima volcano. J Geophys Res 95:19377–19393

    Article  ADS  Google Scholar 

  • Takeuchi H, Saito M (1972) Seismic surface waves. In: Bolt BA (ed) Methods in computational physics, vol 11. Academic, New York, pp 217–295

    Google Scholar 

  • Tameguri T, Iguchi M, Ishihara K (2002) Mechanism of explosive eruptions from moment tensor analyses of explosion earthquakes at Sakurajima volcano, Japan. Bull Volcanol Soc Jpn 47:197–216

    Google Scholar 

  • Toda S, Stein R, Sagiya T (2002) Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419:58–61

    Article  ADS  Google Scholar 

  • Tolstoy I (1954) Dispersive properties of a fluid layer overlying a semi-infinite elastic solid. Bull Seism Soc Am 44:493–512

    Google Scholar 

  • Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Article  ADS  Google Scholar 

  • Uhira K, Takeo M (1994) The source of explosive eruptions of Sakurajima volcano, Japan. J Geophys Res 99:17775–17789

    Article  ADS  Google Scholar 

  • Ulrych TJ, Clayton RW (1976) Time series modeling and maximum entropy. Phys Earth Planet Inter 12:188–200

    Article  ADS  Google Scholar 

  • Ulrych TJ, Sacchi MD (1995) Sompi, Pisarenko and the extended information criterion. Geophys J Int 122:719–724

    Article  ADS  Google Scholar 

  • Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51:889–901

    Article  ADS  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. Eos Trans AGU 122:149–164

    Google Scholar 

  • Yamamoto M (2005) Volcanic fluid system inferred from broadband seismic signals. Ph D thesis. In: University of Tokyo

    Google Scholar 

  • Yamamoto M, Kawakatsu H, Kaneshima S, Mori T, Tsutsui T, Sudo Y, Morita Y (1999) Detection of a crack-like conduit beneath active crater at Aso volcano, Japan. Geophys Res Lett 26:3677–3680

    Article  ADS  Google Scholar 

  • Yamamoto M, Kawakatsu H, Yomogida K, Koyama J (2002) Long-period (12 sec) volcanic tremor observed at Usu 2000 eruption: seismological detection of a deep magma plumbing system. Geophys Res Lett 29:1329. https://doi.org/10.1029/2001GL013996

    Article  ADS  Google Scholar 

  • Yamamura K, Kawakatsu H (1998) Normal-mode solutions for radiation boundary conditions with an impedance contrast. Geophys J Int 134:849–855

    Article  Google Scholar 

Books and Reviews

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Kay SM, Marple SL (1981) Spectrum analysis – a modern perspective. Proc IEEE 69:1380–1419

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am deeply grateful to Masaru Nakano for numerous discussions on all the subjects presented in this manuscript. I thank Yasuko Takei for constructive comments on the phenomenological source representation. Comments from Pablo Palacios, Luca D’Auria, Takeshi Nishimura, Yuta Maeda, and an anonymous reviewer helped improve the manuscript. I used the Generic Mapping Tools (GMT) (Wessel and Smith 1998) in the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kumagai .

Editor information

Editors and Affiliations

Appendices

Green’s Functions

Here, I briefly explain the relationship between the displacement and Green’s functions. To simplify the explanation, I use two-dimensional equations in an infinite medium. The extension of the equations into three-dimension is straightforward. Green’s functions defined by Eq. (5) are explicitly written as

$$ {\displaystyle \begin{array}{l}\rho \frac{\partial^2{G}_{11}}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{G}_{11}}{\partial {x}_1^2}+\left(\lambda +\mu \right)\frac{\partial^2{G}_{21}}{\partial {x}_2\partial {x}_1}\\ {}+\mu \frac{\partial^2{G}_{11}}{\partial {x}_2^2}+\delta \left(\mathbf{x}-\boldsymbol{\eta} \right)\delta \left(t-\tau \right),\end{array}} $$
(225)
$$ \rho \frac{\partial^2{G}_{21}}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{G}_{21}}{\partial {x}_2^2}+\left(\lambda +\mu \right)\frac{\partial^2{G}_{11}}{\partial {x}_2\partial {x}_1}+\mu \frac{\partial^2{G}_{21}}{\partial {x}_1^2}, $$
(226)
$$ \rho \frac{\partial^2{G}_{12}}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{G}_{12}}{\partial {x}_1^2}+\left(\lambda +\mu \right)\frac{\partial^2{G}_{22}}{\partial {x}_2\partial {x}_1}+\mu \frac{\partial^2{G}_{12}}{\partial {x}_2^2}, $$
(227)
$$ {\displaystyle \begin{array}{l}\rho \frac{\partial^2{G}_{22}}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{G}_{22}}{\partial {x}_2^2}+\left(\lambda +\mu \right)\frac{\partial^2{G}_{12}}{\partial {x}_2\partial {x}_1}\\ {}+\mu \frac{\partial^2{G}_{22}}{\partial {x}_1^2}+\delta \left(\mathbf{x}-\boldsymbol{\eta} \right)\delta \left(t-\tau \right)\end{array}} $$
(228)

Note that (G11, G21) represents the x1 and x2 components of the wavefield at (x, t), which is excited by the impulse in the x1 direction applied at x = η and t = τ. Similarly, (G12, G22)represents the x1 and x2 components of the wavefield excited by the impulse in the x2 direction at x = η and at t = τ. Therefore, i and j in Gij represent the component and direction of the impulse, respectively. To specify the relationship between the receiver and source, we use the notation Gij(x, t; η, τ). We obtain Gij(x, t; η, τ) = Gij(x, tτ; η, 0), since Green’s functions are independent of the time of origin.

The displacement ui(x, t) satisfies Eq. (3), which is explicitly written as

$$ {\displaystyle \begin{array}{l}\rho \frac{\partial^2{u}_1}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{u}_1}{\partial {x}_1^2}+\left(\lambda +\mu \right)\frac{\partial^2{u}_2}{\partial {x}_1\partial {x}_2}\\ {}+\mu \frac{\partial^2{u}_1}{\partial {x}_2^2}+{f}_1^S\left(\mathbf{x},t\right),\end{array}} $$
(229)
$$ {\displaystyle \begin{array}{l}\rho \frac{\partial^2{u}_2}{\partial {t}^2}=\left(\lambda +2\mu \right)\frac{\partial^2{u}_2}{\partial {x}_2^2}+\left(\lambda +\mu \right)\frac{\partial^2{u}_1}{\partial {x}_1\partial {x}_2}\\ {}+\mu \frac{\partial^2{u}_2}{\partial {x}_1^2}+{f}_2^S\left(\mathbf{x},t\right)\end{array}} $$
(230)

Equation (6) indicates that ui is described by the following relationships:

$$ {\displaystyle \begin{array}{l}{u}_1\left(\mathbf{x},t\right)={\int}_{-\infty}^{\infty }{\iint}_{-\infty}^{\infty}\Big[{f}_1^S\left(\boldsymbol{\eta}, \tau \right){G}_{11}\left(\mathbf{x},t-\tau; \boldsymbol{\eta}, 0\right)\\ {}+{f}_2^S\left(\boldsymbol{\eta}, \tau \right){G}_{12}\left(\mathbf{x},t-\tau; \boldsymbol{\eta}, 0\right)\Big]\;\mathrm{d}{\boldsymbol{\eta}}_1\ \mathrm{d}{\boldsymbol{\eta}}_2\mathrm{d}\tau, \end{array}} $$
(231)
$$ {u}_2\left(\mathbf{x},t\right)={\int}_{-\infty}^{\infty }{\iint}_{-\infty}^{\infty}\left[{f}_1^S\left(\boldsymbol{\eta}, \tau \right){G}_{21}\left(\mathbf{x},t-\tau; \boldsymbol{\eta}, 0\right)+{f}_2^S\left(\boldsymbol{\eta}, \tau \right){G}_{22}\left(\mathbf{x},t-\tau; \boldsymbol{\eta}, 0\right)\right]\mathrm{d}{\boldsymbol{\eta}}_1\mathrm{d}{\boldsymbol{\eta}}_2\mathrm{d}\tau . $$
(232)

We can verify that the displacement given by Eqs. (231) and (232) satisfies Eqs. (229) and (230) in the following way. We can rewrite Eqs. (229) and (230) as

$$ {\displaystyle \begin{array}{l}{f}_1^S\left(\mathbf{x},t\right)=\rho \frac{\partial^2{u}_1}{\partial {t}^2}-\left(\lambda +2\mu \right)\frac{\partial^2{u}_1}{\partial {x}_1^2}\\ {}-\left(\lambda +\mu \right)\frac{\partial^2{u}_2}{\partial {x}_1\partial {x}_2}-\mu \frac{\partial^2{u}_1}{\partial {x}_2^2},\end{array}} $$
(233)

We denote the right-hand side of Eq. (233) as L1, which is derived from Eqs. (231) and (232) as

$$ {\displaystyle \begin{array}{l}{L}_1={\int}_{-\infty}^{\infty }{\iint}_{-\infty}^{\infty}\Big[\rho \left({f}_1^S\frac{\partial^2{G}_{11}}{\partial {t}^2}+{f}_2^S\frac{\partial^2{G}_{12}}{\partial {t}^2}\right)-\left(\lambda +2\mu \right)\left({f}_1^S\frac{\partial^2{G}_{11}}{\partial {x}_1^2}+{f}_2^S\frac{\partial^2{G}_{12}}{\partial {x}_1^2}\right)\\ {}-\left(\lambda +\mu \right)\left({f}_1^S\frac{\partial^2{G}_{21}}{\partial {x}_1\partial {x}_2}+{f}_2^S\frac{\partial^2{G}_{22}}{\partial {x}_1\partial {x}_2}\right)-\mu \left({f}_1^S\frac{\partial^2{G}_{11}}{\partial {x}_2^2}+{f}_2^S\frac{\partial^2{G}_{12}}{\partial {x}_2^2}\right)\Big]\mathrm{d}{\eta}_1\;\mathrm{d}{\eta}_2\mathrm{d}\tau .\end{array}} $$
(234)

This equation can be modified as follows:

$$ {\displaystyle \begin{array}{l}{L}_1={\int}_{-\infty}^{\infty }{\iint}_{-\infty}^{\infty}\Big[{f}_1^S\left\{\rho \frac{\partial^2{G}_{11}}{\partial {t}^2}-\left(\lambda +2\mu \right)\frac{\partial^2{G}_{11}}{\partial {x}_1^2}-\left(\lambda +\mu \right)\frac{\partial^2{G}_{21}}{\partial {x}_1\partial {x}_2}-\mu \frac{\partial^2{G}_{11}}{\partial {x}_2^2}\right\}\, \\ {}+{f}_2^S\left\{\rho \frac{\partial^2{G}_{12}}{\partial {t}^2}-\left(\lambda +2\mu \right)\frac{\partial^2{G}_{12}}{\partial {x}_1^2}-\left(\lambda +\mu \right)\frac{\partial^2{G}_{22}}{\partial {x}_1\partial {x}_2}-\mu \frac{\partial^2{G}_{12}}{\partial {x}_2^2}\right\}\Big]\mathrm{d}{\eta}_1\mathrm{d}{\eta}_2\;\mathrm{d}\tau .\end{array}} $$
(235)

From Eq. (227), we find that the second integral of Eq. (235) is zero. Therefore, Eq. (235) from Eq. (225) becomes

$$ {\displaystyle \begin{array}{ll}{L}_1& ={\int}_{-\infty}^{\infty }{\iint}_{-\infty}^{\infty }{f}_1^S\left(\boldsymbol{\eta}, \tau \right)\delta \left(\mathbf{x}-\boldsymbol{\eta} \right)\delta \left(t-\tau \right)\ \mathrm{d}{\boldsymbol{\eta}}_1\ \mathrm{d}{\boldsymbol{\eta}}_2\ \mathrm{d}\tau \\ {}={f}_1^S\left(\mathbf{x},t\right).\end{array}} $$
(236)

Similarly, we can show that the right-hand side of Eq. (233) is equivalent to \( {f}_2^S\left(\mathbf{x},t\right) \), and thus the displacement in the forms of Eqs. (231) and (232) satisfies the equation of motion (229) and (230).

Moment Tensor for a Spherical Source

Let us consider the moment density tensors for three tensile cracks in the planes ξ1 = 0, ξ2 = 0, and ξ3 = 0. If we sum and average these three tensors and assume that [u1] = [u2] = [u3] = Ds, we obtain the following moment density tensor:

$$ \mathbf{m}={D}_s\left(\begin{array}{ccc}\lambda +2\mu /3& 0& 0\\ {}0& \lambda +2\mu /3& 0\\ {}0& 0& \lambda +2\mu /3\end{array}\right). $$
(237)

This represents the moment density tensor for the isotropic expansion of a cubic element. Following Müller (2001), we consider a spherical crack surface of radius R where a constant radial expansion Ds = (ds + Δs) occurs (Fig. 20). Here, the inner wall of the crack moves inward by ds and the outer wall moves outward by Δs. The moment tensor of the spherical expansion may be obtained by integration of the moment density tensor (237) over the surface R:

Fig. 20
figure 20

A spherical crack surface of radius R where a constant radial expansion Ds = (ds + Δs) occurs. Here, the inner wall of the crack moves inward by ds and the outer wall moves outward by Δs (Müller 2001)

$$ \mathbf{M}=\Delta V\left(\begin{array}{ccc}\lambda +2\mu /3& 0& 0\\ {}0& \lambda +2\mu /3& 0\\ {}0& 0& \lambda +2\mu /3\end{array}\right), $$
(238)

where ΔV is the volume given as

$$ \Delta V=4\pi {R}^2{D}_s=4\pi {R}^2\left({d}_s+{\Delta}_s\right) $$
(239)

The volume 4πR2ds is caused by the inward motion, which compresses the sphere. The volume ΔVs = 4πR2Δs, on the other hand, is caused by the outward motion, which excites seismic waves in the region outside the sphere. ΔVs can be determined by solving an elastostatic boundary-value problem in the following way. We assume an isotropic medium and denote the regions inside and outside the sphere as regions 1 and 2, respectively. Since the motion is radial only, the equation of motion is given as (e.g., Takeuchi and Saito 1972)

$$ \rho \frac{\partial^2u}{\partial {t}^2}=\frac{1}{r^2}\frac{\partial }{\partial r}\left({r}^2{\sigma}_{rr}\right)-\frac{1}{r}\left({\sigma}_{\theta \theta}+{\sigma}_{\phi \phi}\right) $$
(240)

and

$$ {\sigma}_{rr}=\left(\lambda +2\mu \right)\frac{\partial u}{\partial r}+\lambda \frac{2}{r}u, $$
(241)
$$ {\sigma}_{\theta \theta}={\sigma}_{\phi \phi}=\lambda \frac{\partial u}{\partial r}+\left(\lambda +\mu \right)\frac{2}{r}u, $$
(242)

where u is the radial displacement and σrr, σθθ, and σϕϕ are the stress components in the spherical coordinate. Equations (240) and (241) apply to both regions 1 and 2. Substituting Eq. (241) into Eq. (240) and setting ρ(2ur/∂t2) = 0, we obtain the following static equilibrium equation:

$$ \frac{\partial^2u}{\partial {r}^2}+\frac{2}{r}\frac{\partial u}{\partial r}-\frac{2}{r^2}u=0. $$
(243)

This equation has two solutions: u = ar and u = b/r2, where a and b are constants. The former is the interior solution for region 1 (rR), and the latter is the exterior solution for region 2 (rR). I denote the interior and exterior solutions as ui and ue, respectively. The constants a and b are determined by the boundary conditions for the radial displacement and the continuity of the radial stress at r = R:

$$ {u}_e(R)-{u}_i(R)=\frac{b}{R^2}- aR={D}_s, $$
(244)
$$ {\sigma}_{rr}^e(R)-{\sigma}_{rr}^i(R)=-\frac{4\mu }{R^3}b-\left(3\lambda +2\mu \right)a=0, $$
(245)

where \( {\sigma}_{rr}^i \) and \( {\sigma}_{rr}^e \) are the radial stresses in regions 1 and 2, respectively. Accordingly, we obtain

$$ {u}_i(r)=-\frac{4\mu {D}_s}{3\left(\lambda +2\mu \right)}\frac{r}{R}\quad \left(r\le R\right), $$
(246)
$$ {u}_e(r)=\frac{\left(\lambda +2\mu /3\right){D}_s}{\lambda +2\mu}\frac{R^2}{r^2}\quad \left(r\ge R\right) $$
(247)

Then, we obtain

$$ {d}_s=-{u}_i(R)=\frac{4\mu {D}_s}{3\left(\lambda +2\mu \right)}, $$
(248)
$$ {\Delta}_s={u}_e(R)=\frac{\left(\lambda +2\mu /3\right){D}_s}{\lambda +2\mu }. $$
(249)

Equation (239) can be modified as

$$ \Delta V=4\pi {R}^2{\Delta}_s\left({D}_s/{\Delta}_s\right)=\frac{\lambda +2\mu }{\lambda +2\mu /3}\Delta {V}_s. $$
(250)

Finally, we obtain the moment tensor for the spherical expansion as

$$ \mathbf{M}=\left(\lambda +2\mu \right)\Delta {V}_s\left(\begin{array}{ccc}1& 0& 0\\ {}0& 1& 0\\ {}0& 0& 1\end{array}\right). $$
(251)

Moment Tensor for a Cylindrical Source

We consider the moment density tensors for two tensile cracks in the planes ξ1 = 0 and ξ2 = 0, where ξ1 and ξ2 are two horizontal axes. If we sum and average these two tensors and assume that [u1] = [u2] = Dc, we obtain

$$ \mathbf{m}={D}_c\left(\begin{array}{ccc}\lambda +\mu & 0& 0\\ {}0& \lambda +\mu & 0\\ {}0& 0& \lambda \end{array}\right). $$
(252)

This represents the moment density tensor for the expansion of a cubic element in the two horizontal directions. Let us consider a vertical cylinder of length L and radius R. The cylinder surface at radius R can be regarded as a cylindrical crack, where the radial expansion Dc = (dc + Δc) occurs (Fig. 21). The moment tensor for the radial expansion of the cylinder may be obtained by integration of the moment density tensor (252) over the surface R:

$$ \mathbf{M}=\Delta V\left(\begin{array}{ccc}\lambda +\mu & 0& 0\\ {}0& \lambda +\mu & 0\\ {}0& 0& \lambda \end{array}\right), $$
(253)

where ΔV is the volume given as

$$ \Delta V=2\pi {RLD}_c=2\pi RL\left({d}_c+{\Delta}_c\right) $$
(254)
Fig. 21
figure 21

A vertical cylinder of length L and radius R. The cylinder surface can be regarded as a cylindrical crack, where the radial expansion Dc = (dc + Δc) occurs. Here, the inner wall of the crack moves inward by dc and the outer wall moves outward by Δc (Müller 2001)

We obtain the static equilibrium equation for the radial expansion of the cylinder u as

$$ \frac{\partial^2u}{\partial {r}^2}+\frac{1}{r}\frac{\partial u}{\partial r}-\frac{1}{r^2}u=0. $$
(255)

This equation has internal and external solutions, which are given as u = ar and u = b/r, respectively. The constants a and b are determined by the boundary conditions

$$ {u}_e(R)-{u}_i(R)=\frac{b}{R}- aR={D}_c, $$
(256)
$$ {\sigma}_{rr}^e(R)-{\sigma}_{rr}^i(R)=-\frac{2\mu }{R^2}b-2\left(\lambda +\mu \right)a=0, $$
(257)

where superscripts i and e denote the interior and exterior solutions. We then obtain

$$ {d}_c=-{u}_i(R)=\frac{\mu {D}_s}{\left(\lambda +2\mu \right)}, $$
(258)
$$ {\Delta}_c={u}_e(R)=\frac{\left(\lambda +\mu \right){D}_c}{\lambda +2\mu }, $$
(259)

and

$$ \Delta V=\frac{\lambda +2\mu }{\lambda +\mu}\Delta {V}_c. $$
(260)

The moment tensor for the vertical cylinder is therefore given as

$$ \mathbf{M}=\frac{\lambda +2\mu }{\lambda +\mu}\Delta {V}_c\left(\begin{array}{ccc}\lambda +\mu & 0& 0\\ {}0& \lambda +\mu & 0\\ {}0& 0& \lambda \end{array}\right). $$
(261)

Let us rotate the vertical cylinder with axis orientation angles ϕ and θ (Fig. 8b). This can be done in the following steps: (1) fix the cylinder, (2) rotate the ξ1 and ξ2 axes around the ξ3 axis through an angle −ϕ, and (3) further rotate the ξ1 and ξ3 axes around the ξ2 axis through an angle −θ. The rotation matrix R is given as

$$ \mathbf{R}=\left(\begin{array}{ccc}\cos \theta & 0& -\sin \theta \\ {}0& 1& 0\\ {}\sin \theta & 0& \cos \theta \end{array}\right)\left(\begin{array}{ccc}\cos \phi & -\sin \phi & 0\\ {}\sin \phi & \cos \phi & 0\\ {}0& 0& 1\end{array}\right) $$
(262)
$$ \mathbf{R}=\left(\begin{array}{ccc}\cos \theta \cos \phi & -\cos \theta \sin \phi & -\sin \theta \\ {}\sin \phi & \cos \phi & 0\\ {}\sin \theta & -\sin \theta \sin \phi & \cos \theta \end{array}\right). $$
(263)

Using the matrix R, we obtain the moment tensor for a cylinder with the axis orientation angles (ϕ, θ) as

$$ {\mathbf{M}}^{\prime }={\mathbf{R}}^{\mathrm{T}}\mathbf{MR}, $$
(264)

which leads to Eq. (34).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumagai, H. (2019). Source Quantification of Volcanic-Seismic Signals. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_583-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_583-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics