Skip to main content

Stability Theory of Ordinary Differential Equations

  • Living reference work entry
  • First Online:
  • 351 Accesses

Definition of the Subject

An orbit or set of orbits of a dynamical system is stable if all solutions starting nearby remain nearby for all future times. This concept is of fundamental importance in applied mathematics: the stable solutions of mathematical models of physical processes correspond to motions that are observed in nature.

Introduction

Stability theory began with a basic question about the natural world: Is the solar system stable? Will the present configuration of the planets and the sun remain forever; or, might some planets collide, radically change their orbits, or escape from the solar system?

With the advent of Isaac Newton’s second law of motion and the law of universal gravitation, the motions of the planets in the solar system were understood to correspond to the solutions of the Newtonian system of ordinary differential equations that modeled the positions and velocities of the planets and the sun according to their mutual gravitational attractions. Short-term...

This is a preview of subscription content, log in via an institution.

Abbreviations

Dynamical system:

A set and a law of evolution for its elements. The first-order differential equation \( \dot{u}=f\left(u,t\right) \), where f:U × J n, is the law of evolution for the set U n; it defines a continuous (time) dynamical system: Given (v,s) ∈ U × J, the solution tψ(t,s,v) such that ψ(s,s,v) = v determines the evolution of the state v: the state v at time s evolves to the state ψ(t,s,v) at time t. Similarly, a continuous function f:XX on a metric space X defines a discrete dynamical system. The state xX evolves to f k(x) (which denotes the value of f composed with itself k times and evaluated at x) after k time-steps. The images of t → ψ(t,s,v) and kf k(x) are called the orbits of the corresponding states v and x.

Ordinary differential equation:

An equation for an unknown vector of functions of a single variable that involves derivatives of the unknown functions. The order of a differential equation is the highest order of the derivatives that appear. The most important class of differential equations are first-order systems of ordinary differential equations that can be written in the form \( \dot{u}=f\left(u,t\right) \), where f is a given smooth function f:U × J n, U is an open subset of ℝn, and J is an open subset of ℝ. The unknown functions are the components of u, and the vector of their first-order derivatives with respect to the independent variable t is denoted by \( \dot{u} \). A solution of this differential equation is a function u:K n, where K is an open subset of J such that \( \frac{ du}{ dt}(t)=f\left(u(t),t\right) \) for all tK.

Stability theory:

The mathematical analysis of the behavior of the distances between an orbit (or set of orbits) of a dynamical system and all other nearby orbits.

References

Primary Literature

  • Alligood KT, Sauer TD, Yorke JA (1997) Chaos: an introduction to dynamical systems. Springer, New York

    Book  Google Scholar 

  • Andronov AA, Vitt EA, Khaiken SE (1966) Theory of oscillations. Pergamon Press, Oxford

    Google Scholar 

  • Andronov AA, Leontovich EA, Gordon II, Maier AG (1973) Qualitative theory of second-order dynamic systems. Wiley, New York

    MATH  Google Scholar 

  • Anosov DV (1967) Geodesic flows on closed Riemannian manifolds with negative curvature. Proc Steklov Inst Math 90:1–209

    Google Scholar 

  • Arnold VI (1963) Proof of an Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Usp Mat Nauk SSSR 113(5):13–40

    Google Scholar 

  • Arnold VI (1964) Instability of dynamical systems with many degrees of freedom. Sov Math 5(3):581–585

    Google Scholar 

  • Arnold VI (1973) Ordinary differential equations. MIT Press, Cambridge

    MATH  Google Scholar 

  • Arnold VI (1978) Mathematical methods of celestial mechanics. Springer, New York

    Google Scholar 

  • Arnold VI (1982) Geometric methods in: the theory of ordinary differential equations. Springer, New York

    Google Scholar 

  • Arscott FM (1964) Periodic differential equations. Macmillan, New York

    MATH  Google Scholar 

  • Babin AV, Vishik MI (1992) Attractors of evolution equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Bautin NN (1954) On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Am Math Soc Transl 100:1–19

    MathSciNet  Google Scholar 

  • Bendixson I (1901) Sur les coubes définiés par des équations différentielles. Acta Math 24:1–88

    Article  MathSciNet  Google Scholar 

  • Brjuno AD (1971) Analytic form of differential equations. Trudy MMO 25:119–262

    MathSciNet  Google Scholar 

  • Chetayev NG (1961) The stability of motion. Pergamon Press, New York

    Google Scholar 

  • Chicone C (2006) Ordinary differential equations with applications, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Chicone C, Latushkin Y (1999) Evolution semigroups. In: Dynamical systems and differential equations. Am Math Soc, Providence

    Google Scholar 

  • Chicone C, Liu W (2004) Asymptotic phase revisited. J Differ Equ 204(1):227–246

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Chicone C, Swanson R (2000) Linearization via the Lie derivative. Electron J Differ Equ Monogr 02:64

    MathSciNet  Google Scholar 

  • Dirichlet GL (1846) Über die Stabilität des Gleichgewichts. J Reine Angew Math 32:85–88

    Article  MATH  Google Scholar 

  • Dirichlet GL (1847) Note sur la stabilité de l’équilibre. J Math Pures Appl 12:474–478

    Google Scholar 

  • Dulac H (1908) Déterminiation et intégratin d’une certaine classe d’equatins différentielles ayant pour point singulier un centre. Bull Soc Math Fr 32(2):230–252

    MATH  Google Scholar 

  • Dumortier F (2006) Asymptotic phase and invariant foliations near periodic orbits. Proc Am Math Soc 134(10):2989–2996

    Article  MATH  MathSciNet  Google Scholar 

  • Floquet G (1883) Sur les équations différentielles linéaires à coefficients péiodiques. Ann Sci Éc Norm Sup 12(2):47–88

    MATH  MathSciNet  Google Scholar 

  • Frommer M (1934) Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen. Math Ann 109:395–424

    Article  MathSciNet  Google Scholar 

  • Guckenheimer J, Holmes P (1986) Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, 2nd edn. Springer, New York

    Google Scholar 

  • Grobman D (1959) Homeomorphisms of systems of differential equations. Dokl Akad Nauk 128:880–881

    MATH  MathSciNet  Google Scholar 

  • Grobman D (1962) Topological classification of the neighborhood of a singular point in n-dimensional space. Mat Sb 98:77–94

    MathSciNet  Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. Am Math Soc, Providence

    Google Scholar 

  • Hale JK, Magalhães LT, Oliva WM (2002) Dynamics in infinite dimensions, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Hartman P (1960a) A lemma in the theory of structural stability of differential equations. Proc Am Math Soc 11:610–620

    Article  MATH  Google Scholar 

  • Hartman P (1960b) On local homeomorphisms of euclidean space. Bol Soc Math Mex 5(2):220–241

    MATH  Google Scholar 

  • Henry D (1981) Geometric theory of semilinear paabolic equations. Lecture notes in mathematics, vol 840. Springer, New York

    Google Scholar 

  • Hirsch M, Pugh C (1970) Stable manifolds and hyperbolic sets In: Global analysis XIV. Am Math Soc, Providence pp 133–164

    Google Scholar 

  • Hirsch MC, Pugh C, Shub M (1977) Invariant manifolds. Lecture notes in mathematics, vol 583. Springer, New York

    Google Scholar 

  • Hofer H, Zehnder E (1994) Symplectic invariants and Hamiltonian dynamics. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Hurwitz A (1895) Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt. [On the conditions under which an equation has only roots with negative real parts] Math Ann 46:273–284; (1964) In: Ballman RT et al (ed) Selected papers on math trends in control theory. Dover (reprinted)

    Google Scholar 

  • Ilyashenko JS (1972) Algebraic unsolvability and almost algebraic solvability of the problem for the center-focus. Funkcional Anal I Priložen 6(3):30–37

    Google Scholar 

  • Jost R (1968) Winkel- und Wirkungsvariable für allgemeine mechanische Systeme. Helv Phys Acta 41:965–968

    Google Scholar 

  • Kapteyn W (1911) On the centra of the integral curves which satisfy differential equations of the first order and the first degree. Proc Kon Akak Wet Amst 13:1241–1252

    Google Scholar 

  • Kapteyn W (1912a) New researches upon the centra of the integrals which satisfy differential equations of the first order and the first degree. Proc Kon Akak Wet Amst 14:1185

    Google Scholar 

  • Kapteyn W (1912b) New researches upon the centra of the integrals which satisfy differential equations of the first order and the first degree. Proc Kon Akak Wet Amst 15:46–52

    Google Scholar 

  • Kolmogorov AN (1954) La théorie générale des systèmes dynamiques et la méchanique. Amst Congr I, pp 315–333

    Google Scholar 

  • Kolmogorov AN (1954b) On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl Akad Nauk SSSR 98:527–530

    MATH  MathSciNet  Google Scholar 

  • Lagrange JL (1776) Nouv Mem Acad Roy Sci. Belles-Lettres de Berlin p 199

    Google Scholar 

  • Lagrange JL (1788) Mechanique Analitique. Desaint, Paris, pp 66–73, 389–427; (1997) Boston studies in the philosophy of science 191. Kluwer, Dordrecht (reprinted)

    Google Scholar 

  • Lagrange JL (1869) Oeuvres de Lagrange. Gauthier, Paris 4:255

    Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Laplace PS (1784) Mem Acad Roy Sci. Paris, p 1

    Google Scholar 

  • Laplace PS (1895) Oeuvres Complètes de Laplace. Gauthier, Paris 11:47

    Google Scholar 

  • Leontovich AM (1962) On the stability of the Lagrange periodic solutions for the reduced problem of three bodies. Sov Math Dokl 3(2):425–430

    MATH  Google Scholar 

  • Liapounoff AM (1947) Problème général de la stabilité du movement. Princeton University Press, Princeton

    Google Scholar 

  • Liouville J (1842a) Extrait d’une lettre à M Arago sur le Mémoire de M Maurice relatif à l’invariabilité des grands axes des orbites planétaires. C R Séances Acad Sci 15:425–426

    Google Scholar 

  • Liouville J (1842b) Extrait d’un Mémoire sur un cas particulier du problème des trois corps. J Math Sér I 7:110–113

    Google Scholar 

  • Liouville J (1843) Sur la loi de la pesanteur à la surface ellipsoïdale d’équilibre d’une masse liquide homogène douée d’un mouvement de rotation. J Math Sér I 8:360

    Google Scholar 

  • Liouville J (1855) Formules générales relatives à la question de la stabilité de l’équilibre d’une masse liquide homogène douée d’un mouvement de rotation autour d’un axe. Sér I J Math Pur Appl 20:164–184

    Google Scholar 

  • Lochak P (1999) Arnold diffusion; a compendium of remarks and questions. Hamiltonian systems with three or more degrees of freedom (S’Agaró 1995). In: NATO Adv Sci Inst Ser C Math Phys Sci, 533. Kluwer, Dordrecht, pp 168–183

    Google Scholar 

  • Lochak P, Meunier C (1988) Multiphase averaging for classical systems (trans: Dumas HS). Springer, New York

    Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  ADS  Google Scholar 

  • Lyapunov AM (1892) The general problem of the stability of motion. Russ Math Soc, Kharkov (Russian); (1907) Ann Facult Sci l’Univ Toulouse 9:203–474 (french trans: Davaux É); (1949) Princeton University Press, Princeton (reprinted); (1992) Taylor & Francis, London (english trans: Fuller AT)

    Google Scholar 

  • Magnus W, Winkler S (1979) Hill’s equation. Dover, New York

    Google Scholar 

  • Mañé R (1988) A proof of the C1 stability conjecture. Inst Hautes Études Sci Publ Math 66:161–210

    Article  MATH  Google Scholar 

  • Marcus L, Yamabe H (1960) Global stability criteria for differential equations. Osaka Math J 12:305–317

    MathSciNet  Google Scholar 

  • Moser J (1962) On invariant curves of area-preserving mappings of an annulus. Nachr Akad Wiss Göttingen Math Phys K1:1–10

    Google Scholar 

  • Moser J (1978/79) Is the solar system stable? Math Intell 1:65–71

    Google Scholar 

  • Peixoto MM (1962) Structural stability on two-dimensional manifolds. Topology 1:101–120

    Article  MATH  MathSciNet  Google Scholar 

  • Poincaré H (1881) Mémoire sur les courbes définies par une équation différentielle. J Math Pures Appl 7(3):375–422; (1882) 8:251–296; (1885) 1(4):167–244; (1886) 2:151–217; all reprinted (1928) Tome I. Gauthier-Villar, Oeuvre, Paris

    Google Scholar 

  • Poincaré H (1890) Sur le problème des trois corps et les équations del la dynamique. Acta Math 13:83–97

    Google Scholar 

  • Poincaré H (1892) Les méthodes nouvelles de la mécanique céleste. Tome III. Invariants intégraux Solutions périodiques du deuxième genre, Solutions doublement asymptotiques. Dover, New York (1957)

    Google Scholar 

  • Poincaré H (1951) Oeuvres, vol 1. Gauthier-Villans, Paris

    Google Scholar 

  • Poincaré H (1957a) Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions périodiques. Non-existence des intègrales uniformes, Solutions asymptotiques. Dover, New York

    Google Scholar 

  • Poincaré H (1957b) Les méthodes nouvelles de la mécanique céleste. Tome II. Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin. Dover, New York

    MATH  Google Scholar 

  • Robbin JW (1971) A structural stability theorem. Ann Math 94(2):447–493

    Article  MATH  MathSciNet  Google Scholar 

  • Robbin JW (1995) Matrix algebra. A.K. Peters, Wellesley

    MATH  Google Scholar 

  • Robinson C (1974) Structural stability of vector fields. Ann Math 99(2):154–175

    Article  MATH  Google Scholar 

  • Robinson C (1975) Errata to: structural stability of vector fields. (1974) Ann Math 99(2):154–175, Ann Math 101(2):368

    Google Scholar 

  • Robinson C (1976) Structural Stability for C 1 diffeomorphisms. J Differ Equ 22(1):28–73

    Article  ADS  MATH  Google Scholar 

  • Robinson C (1989) Homoclinic bifurcation to a transitive attractor of Lorenz type. Nonlinearity 2(4):495–518

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Robinson J (2001) Infinite dimensional dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Routh EJ (1877) A treatise on the Stability of a given state of motion. Macmillan, London; Fuller AT (ed) (1975) Stability of motion. Taylor, London (reprinted)

    Google Scholar 

  • Rychlik MR (1990) Lorenz attractors through Šil’nikov-type bifurcation I. Ergod Theory Dynam Syst 10(4):793–821

    Article  MATH  MathSciNet  Google Scholar 

  • Sanders JA, Verhulst F, Murdock J (2007) Averaging methods. In: Nonlinear dynamical systems, 2nd edn. Appl Math Sci 59. Springer, New York

    Google Scholar 

  • Siegel CL (1942) Iterations of anayltic functions. Ann Math 43:607–612

    Article  MATH  Google Scholar 

  • Siegel CL (1952) Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Nachr Akak Wiss Gottingen Math Phys K1:21–30

    Google Scholar 

  • Siegel CL, Moser J (1971) Lectures on celestial mechanics. Springer, New York

    Book  MATH  Google Scholar 

  • Sternberg S (1958) On the structure of loacal homeomorphisms of euclidean n-space. Am J Math 80(3):623–631

    Article  MATH  MathSciNet  Google Scholar 

  • Sternberg S (1959) On the structure of loacal homeomorphisms of euclidean n-space. Am J Math 81(3):578–604

    Article  MATH  MathSciNet  Google Scholar 

  • Sternberg S (1969) Celestial mechanics. Benjamin, New York

    Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus Books, Cambridge

    Google Scholar 

  • Temam R (1997) Infinite-dimensional dynamical systems. In: Mechanics and physics. Springer, New York

    Google Scholar 

  • Viana M (2000) What’s new on Lorenz strange attractors? Math Intell 22(3):6–19

    Article  MATH  MathSciNet  Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Willems JL (1970) Stability theory of dynamical systems. Wiley, New York

    MATH  Google Scholar 

  • Yakubovich VA, Starzhinskii VM, Louvish D (eds) (1975) Linear differential equations with periodic coefficients. Wiley, New York

    MATH  Google Scholar 

  • Żołądek H (1994) Quadratic systems with center and their perturbations. J Differ Equ 109(2):223–273

    Article  MATH  Google Scholar 

  • Żołądek H (1997) The problem of the center for resonant singular points of polynomial vector fields. J Differ Equ 135:94–118

    Google Scholar 

Books and Reviews

  • Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill, New York

    MATH  Google Scholar 

  • Farkas M (1994) Periodic motions. Springer, New York

    Book  MATH  Google Scholar 

  • Glendinning PA (1994) Stability, instability and chaos. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Grimshaw R (1990) Nonlinear ordinary differential equations. Blackwell, Oxford

    MATH  Google Scholar 

  • Hale JK (1980) Ordinary differential equations, 2nd edn. RE Krieger, Malabar

    MATH  Google Scholar 

  • Hartman P (1964) Ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  • Hirsch M, Smale S (1974) Differential equations, dynamical systems, and linear algebra. Academic, New York

    MATH  Google Scholar 

  • Krasovskiĭ NN (1963) Stability of motion. Stanford University Press, Stanford

    MATH  Google Scholar 

  • LaSalle J, Lefschetz S (1961) Stability by Lyapunov’s direct method with applications. Academic, New York

    Google Scholar 

  • Lefschetz S (1977) Differential equations: geometric theory, 2nd edn. Dover, New York

    Google Scholar 

  • Moser J (1973) Stable and random motions. In: Dynamical systems. Ann Math Studies 77. Princeton University Press, Princeton

    Google Scholar 

  • Nemytskiĭ VV, Stepanov VV (1960) Qualitative theory of differential equations. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Perko L (1996) Differential equations and dynamical systems, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Robbin JW (1970) On structural stability. Bull Am Math Soc 76:723–726

    Article  MATH  MathSciNet  Google Scholar 

  • Robbin JW (1972) Topological conjugacy and structural stability for discrete dynamical systems. Bull Am Math Soc 78(6):923–952

    Article  MATH  MathSciNet  Google Scholar 

  • Robinson C (1995) Dynamical systems: stability, symbolic dynamics, and chaos. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Verhulst F (1989) Nonlinear differential equations and dynamical systems. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Chicone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Chicone, C. (2013). Stability Theory of Ordinary Differential Equations. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_516-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_516-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics