Skip to main content

Solitons: Historical and Physical Introduction

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 134 Accesses

Definition of the Subject

The interest in nonlinear physics has grown significantly over the last 50 years. Although numerous nonlinear processes had been previously identified, the mathematic tools of nonlinear physics had not yet been developed. The available tools were linear, and nonlinearities were avoided or treated as perturbations of linear theories. The solitary water wave, experimentally discovered in 1834 by John Scott Russell, led to numerous discussions. This hump-shape localized wave that propagates along one space direction with undeformed shape has spectacular stability properties. John Scott Russell carried out many experiments to obtain the properties of this wave. The theories which were based on linear approaches concluded that this kind of wave could not exist. The controversy was resolved by J. Boussinesq (1871) and by Lord Rayleigh (1876) who showed that if dissipation is neglected, the increase in local wave velocity associated with finite amplitude is balanced...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Ablowitz MJ, Clarkson PA (1991) Solitons, nonlinear evolutions equations and inverse scattering. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Airy GB (1845) Tides and waves. Encycl Metropolitana 5:291–396

    Google Scholar 

  • Bazin H (1865) Recherches expérimentales relatives aux remous et à la propagation des ondes. In: Darcy H, Bazin H (eds) Recherches hydrauliques. Imprimerie impériale, Paris

    Google Scholar 

  • Benjamin TB, Feir JE (1967) The disintegration of wavetrains on deep water. Part 1 Theory. J Fluid Mech 27:417–430

    Article  ADS  MATH  Google Scholar 

  • Boussinesq J (1871) Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. CR Acad Sci 72:755–759

    MATH  Google Scholar 

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. MSE 23:1–680

    MATH  Google Scholar 

  • Brandt P, Rubino A, Alpers W, Backhaus JO (1997) Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS 1/2 satellites. J Phys Oceanogr 27:648–663

    Article  ADS  Google Scholar 

  • Bullough RK (1988) The wave par excellence, the solitary progressive great wave of equilibrium of the fluid: an early history of the solitary wave. In: Lakshmanan M (ed) Solitons: introduction and applications, Springer series nonlinear dynamics. Springer, New York, pp 150–281

    Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Su CH, Gardner CS (1969) Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. J Math Phys 10:536–539

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chanson H (2005) Le tsunami du 26 décembre 2004: un phénomène hydraulique d'ampleur internationale. Premiers constats. Houille Blanche 2:25–32

    Article  Google Scholar 

  • Darrigol O (2003) The spirited horse, the engineer, and the mathematician: water waves in nineteenth- century hydrodynamics. Arch Hist Exact Sci 58:21–95

    Article  MathSciNet  MATH  Google Scholar 

  • Dias F, Dutykh D (2007) Dynamics of tsunami waves. Extreme man-made and natural hazards in dynamics of structures. In: Ibrahimbegovic A, Kozar I (eds) Proceedings of NATO advanced research workshop on extreme man-made and natural hazards in dynamics of structures. Springer, Opatija

    Google Scholar 

  • Donnelly C, Chanson H (2002) Environmental impact of a tidal bore on tropical rivers. In: Proceedings of 5th international river management symposium, Brisbane

    Google Scholar 

  • Edler J, Hamm P (2002) Self-trapping of the amide I band in a peptide model crystal. J Chem Phys 117:2415–2424

    Article  ADS  Google Scholar 

  • Emerson GS (1977) John Scott Russell: a great victorian engineer and naval architect. John Murray, London

    Google Scholar 

  • Ezersky AB, Polukhina OE, Brossard J, Marin F, Mutabazi I (2006) Spatiotemporal properties of solitons excited on the surface of shallow water in a hydrodynamic resonator. Phys Fluids 18:067104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos report, LA-1940. published later. In: Segré E (ed) Collected papers of enrico fermi. University of Chicago Press. 1965

    Google Scholar 

  • Fochesato C, Grilli S, Dias F (2007) Numerical modelling of extreme rogue waves generated by directional energy focusing. Wave Motion 44:395–416

    Article  MathSciNet  MATH  Google Scholar 

  • Ford JJ (1961) Equipartition of energy for nonlinear systems. J Math Phys 2:387–393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Whitham GB (1978) A numerical and theoretical study of certain nonlinear wave phenomena. Philos Trans R Soc Lond 289:373–404

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Frenkel J, Kontorova T (1939) On the theory of plastic deformation and twinning. J Phys 1:137–149

    MathSciNet  MATH  Google Scholar 

  • Gardner CS, Morikawa GK (1960) Similarity in the asymptotic behaviour of collision-free hydromagnetic waves and water waves. Technical Report NYO-9082, Courant Institute of Mathematical Sciences. New York University, New York

    Google Scholar 

  • Gardner CS, Green JM, Kruskal MD, Miura RM (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19:1095–1097

    Article  ADS  MATH  Google Scholar 

  • Gerkema T, Zimmerman JTF (1994) Generation of nonlinear internal tides and solitary waves. J Phys Oceanogr 25:1081–1094

    Article  ADS  Google Scholar 

  • Goring DG (1978) Tsunamis – the propagation of long waves onto a shelf. PhD thesis, California Inst Techn, Pasadena

    Google Scholar 

  • Greig IS, Morris JL (1976) A hopscotch method for the KdV equation. J Comput Phys 20:64–80

    Article  ADS  MATH  Google Scholar 

  • Guizien K, Barthélemy E (2002) Accuracy of solitary wave generation by a piston wave maker. J Hydraul Res 40(3):321–331

    Article  Google Scholar 

  • Hammack JL, Segur H (1974) The Korteweg-de Vries equation and water waves. Part 2. Comparisons with experiments. J Fluid Mech 65:289–314

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hao R, Li L, Li ZH, Xue W, Zhou GS (2004) A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients. Opt Commun 236:79–86

    Article  ADS  Google Scholar 

  • Hasegawa A, Tappert F (1973) Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber: II. Normal dispersion. Appl Phys Lett 23:171–172

    Article  ADS  Google Scholar 

  • Hashizume Y (1985) Nonlinear pressure waves in a fluid-filled elastic tube. J Phys Soc Japan 54:3305–3312

    Article  ADS  Google Scholar 

  • Hashizume Y (1988) Nonlinear pressure wave propagation in arteries. J Phys Soc Japan 57:4160–4168

    Article  ADS  MathSciNet  Google Scholar 

  • Heeger AJ, Kivelson S, Schrieffer JR, WP S (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850

    Article  ADS  Google Scholar 

  • Helal MA (2001) Chebyshev spectral method for solving KdV equation with hydrodynamical application. Chaos Solit Fractals 12:943–950

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Helal MA (2002) Review: soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solit Fractals 13:1917–1929

    Article  ADS  MATH  Google Scholar 

  • Helal MA, El-Eissa HN (1996) Shallow water waves and KdV equation (oceanographic application). PUMA 7(3–4):263–282

    MATH  Google Scholar 

  • Hirota R (1971) Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett 27:1192–1194

    Article  ADS  MATH  Google Scholar 

  • Jackson EA (1963) Nonlinear coupled oscillators. I. Perturbation theory: ergodic problems. J Math Phys 4:551–558

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jaworski M, Zagrodzinski J (1995) Position and position-like solution of KdV and Sine-Gordon equations. Chaos Solit Fractals 5(12):2229–2233

    Article  ADS  MATH  Google Scholar 

  • Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech B/Fluids 22:603–634

    Article  MathSciNet  MATH  Google Scholar 

  • Korteweg DJ, De Vries G (1895) On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Philos Mag 39(5):442–443

    MATH  Google Scholar 

  • Kruglov VI, Peacok AC, Harvey JD (2003) Exact self-similar solutions of the generalized nonlinear schrödinger equation with distributed coefficients. Phys Rev Lett 90(11):113902. http://prola.aps.org/abstract/PRL/v90/i11/e113902

    Article  ADS  Google Scholar 

  • Lakshmanan M (1997) Nonlinear physics: integrability, chaos and beyond. J Frankl Inst 334B(5/6):909–969

    Article  MathSciNet  MATH  Google Scholar 

  • Lakshmanan M, Sahadevan R (1993) Painlevé analysis, Lie symmetries and integrability of coupled nonlinear oscillators of polynomial type. Phys Rep 224:1–93

    Article  ADS  Google Scholar 

  • Lamb H (1879) Treatise on the motion of fluids. In: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge. 1952

    Google Scholar 

  • Lamb H (1971) Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev Mod Phys 43:99–124

    Article  ADS  MathSciNet  Google Scholar 

  • Liu PL-F, Synolakis CE, Yeh HH (1991) Report on the international workshop on long-wave run-up. J Fluid Mech 229:675–688

    Article  ADS  MATH  Google Scholar 

  • Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanisms by an incompressible SPH method. Appl Ocean Res 24:275–286

    Article  Google Scholar 

  • Lynch DK (1982) Tidal bores. Sci Am 247:134–143

    Article  Google Scholar 

  • Malfliet W (1992) Solitary wave solutions of nonlinear wave equations. Am J Phys 60(7):650–654

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marin F, Abcha N, Brossard J, Ezersky AB (2005) Laboratory study of sand bedforms induced by solitary waves in shallow water. J Geophys Res:110(F4):F04S17

    Google Scholar 

  • Martnez Alonso L, Olmedilla Morino E (1995) Algebraic geometry and soliton dynamics. Chaos Solit Fractals 5(12):2213–2227

    Article  MathSciNet  MATH  Google Scholar 

  • Maxworthy T (1976) Experiments on collision between solitary waves. J Fluid Mech 76:177–185

    Article  ADS  Google Scholar 

  • Mei CC, Li Y (2004) Evolution of solitons over a randomly rough seabed. Phys Rev E 70:016302

    Article  ADS  MathSciNet  Google Scholar 

  • Michallet H, Barthélemy E (1998) Experimental study of interfacial solitary waves. J Fluid Mech 366:159–177

    Article  ADS  MATH  Google Scholar 

  • Mireska HJ, Steiner M (1991) Solitary excitations in one-dimensional magnets. Adv Phys 40:196–356

    ADS  Google Scholar 

  • Mollenauer LF, Stolen RH, Gordon JP (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45:1095–1098

    Article  ADS  Google Scholar 

  • Newell AC (1985) Solitons in mathematics and physics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Olver PJ (1986) Applications of lie groups to differential equations, Graduate texts in mathematics, vol 107. Springer, Berlin

    MATH  Google Scholar 

  • Ostrovsky LA, Stepanyants YA (1989) Do internal solitons exist in the ocean? Rev Geophys 27:293–310

    Article  ADS  Google Scholar 

  • Paquerot JF, Remoissenet M (1994) Dynamics of nonlinear blood pressure waves in large arteries. Phys Lett A 194:77–82

    Article  ADS  Google Scholar 

  • Peyrard M, Dauxois T (2004) Physique des solitons. EDP Sciences/CNRS Editions, Les Ulis/Paris

    MATH  Google Scholar 

  • Rayleigh L (1876) On waves. Philos Mag 5(1):257–279

    MATH  Google Scholar 

  • Remoissenet M (1999) Waves called solitons – concepts and experiments. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rodwell MJ, Allen ST, RY Y, Case MG, Bhattacharya U, Reddy M, Carman E, Kamegawa M, Konishi Y, Pusl J, Pullela R (1994) Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics. Proc IEEE 82:1037–1058

    Article  Google Scholar 

  • Rogers C, Shadwick WF (1982) Bäcklund transformations and applications. Academic, New York

    MATH  Google Scholar 

  • Rottman JW, Grimshaw R (2001) Atmospheric internal solitary waves. In: Environmental stratified flows. Kluwer, Boston, pp 61–88

    Google Scholar 

  • Russell JS (1837) Report on the committee on waves. In: Murray J (ed) Bristol, Brit Ass Rep, London, pp 417–496

    Google Scholar 

  • Russell JS (1839) Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies, and have not previously been reduced into conformity with the known laws of the resistance of fluids. Trans Royal Soc Edinb 14:47–109

    Article  Google Scholar 

  • Russell JS (1844) Report on waves. In: Murray J (ed) Brit Ass Rep Adv Sci 14, London, pp 311–390

    Google Scholar 

  • Sanz-Serna JM, Christie I (1981) Petrov-Galerkin method for nonlinear dispersive waves. J Comput Phys 39:94–102

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Stokes GS (1847) On the theory of oscillatory waves. Trans Cambridge Phil Soc 8:441–473

    Google Scholar 

  • Taha TR, Ablowitz MJ (1984) Analytical and numerical aspects of certain nonlinear evolution equations, (III) numerical, KdV equation. J Comput Phys 55:231–253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taniuti T, Wei CC (1968) J Phys Soc Jpn 24:941–946

    Article  ADS  Google Scholar 

  • Tappert F (1974) Numerical solution of the KdV equation and its generalisation by split-step Fourier method. Lec Appl Math Am Math Soc 15:215–216

    MathSciNet  Google Scholar 

  • Ustinov AV (1998) Solitons in josephson junctions. Phys D 123:315–329

    Article  Google Scholar 

  • Weidman PD, Maxworthy T (1978) Experiments on strong interaction between solitary waves. J Fluid Mech 85:417–431

    Article  ADS  Google Scholar 

  • Yomosa S (1987) Solitary waves in large blood vessels. J Phys Soc Japan 56:506–520

    Article  ADS  MathSciNet  Google Scholar 

  • Yuen HC, Lake BM (1975) Nonlinear deep water waves: theory and experiments. Phys Fluids 18:956–960

    Article  ADS  MATH  Google Scholar 

  • Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    Article  ADS  MATH  Google Scholar 

  • Zakharov VE, Shabat AB (1972) Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69

    ADS  MathSciNet  Google Scholar 

Books and Reviews

  • Agrawal GP (2001) Nonlinear fiber optics. Academic Press, Elsevier

    MATH  Google Scholar 

  • Akmediev NN, Ankiewicz A (1997) Solitons, nonlinear pulses and beams. Chapman and Hall, London

    Google Scholar 

  • Braun OM, Kivshar YS (2004) The frenkel-kontorova model. concepts, methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bullough RK, Caudrey P (1980) Solitons. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Cooker MJ, Weidman PD, Bale DS (1997) Reflection of high amplitude wave at a vertical wall. J Fluid Mech 342:141–158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Davydov AS (1985) Solitons in molecular systems. Reidel, Dordrecht

    Book  MATH  Google Scholar 

  • Dodd RK, Eilbeck JC, Gibbon JD, Morris HC (1982) Solitons and nonlinear wave equations. Academic Press, London

    MATH  Google Scholar 

  • Drazin PG, Johnson RS (1993) Solitons: an introduction. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Eilenberger G (1981) Solitons: mathematical methods for physicists. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hasegawa A (1989) Optical solitons in fibers. Springer, Heidelberg

    Book  Google Scholar 

  • Infeld E, Rowlands G (2000) Nonlinear waves, solitons and chaos. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lamb GL (1980) Elements of soliton theory. Wiley, New York

    MATH  Google Scholar 

  • Toda M (1978) Theory of nonlinear lattices. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Marin, F. (2017). Solitons: Historical and Physical Introduction. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_506-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_506-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics