Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Reversible Cellular Automata

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27737-5_455-7

Glossary

Cellular automaton

A cellular automaton (CA) is a system consisting of a large (theoretically, infinite) number of finite automata, called cells, which are connected uniformly in a space. Each cell changes its state depending on the states of itself and the cells in its neighborhood. Thus, the state transition of a cell is specified by a local function. Applying the local function to all the cells in the space synchronously, the transition of a configuration (i.e., a whole state of the cellular space) is induced. Such a transition function is called a global function. A CA is regarded as a kind of dynamical system that can deal with various kinds of spatiotemporal phenomena.

Cellular automaton with block rules

A CA with block rules was proposed by Margolus (1984), and it is often called a CA with Margolus neighborhood. The cellular space is divided into infinitely many blocks of the same size (in the two-dimensional case, e.g., 2 × 2). A local transition function consisting...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. Amoroso S, Cooper G (1970) The Garden of Eden theorem for finite configurations. Proc Am Math Soc 26:158–164MathSciNetCrossRefMATHGoogle Scholar
  2. Amoroso S, Patt Y-N (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464MathSciNetCrossRefMATHGoogle Scholar
  3. Bennett C-H (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532MathSciNetCrossRefMATHGoogle Scholar
  4. Bennett C-H (1982) The thermodynamics of computation – a review. Int J Theor Phys 21:905–940CrossRefGoogle Scholar
  5. Bennett C-H, Landauer R (1985) The fundamental physical limits of computation. Sci Am 253:38–46ADSCrossRefGoogle Scholar
  6. Boykett T (2004) Efficient exhaustive listings of reversible one dimensional cellular automata. Theor Comput Sci 325:215–247MathSciNetCrossRefMATHGoogle Scholar
  7. Cocke J, Minsky M (1964) Universality of tag systems with P = 2. J ACM 11:15–20MathSciNetCrossRefMATHGoogle Scholar
  8. Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1–40MathSciNetMATHGoogle Scholar
  9. Fredkin E, Toffoli T (1982) Conservative logic. Int J Theor Phys 21:219–253MathSciNetCrossRefMATHGoogle Scholar
  10. Gruska J (1999) Quantum computing. McGraw-Hill, LondonMATHGoogle Scholar
  11. Hedlund G-A (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375MathSciNetCrossRefMATHGoogle Scholar
  12. Imai K, Morita K (1996) Firing squad synchronization problem in reversible cellular automata. Theor Comput Sci 165:475–482MathSciNetCrossRefMATHGoogle Scholar
  13. Imai K, Morita K (2000) A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor Comput Sci 231:181–191MathSciNetCrossRefMATHGoogle Scholar
  14. Imai K, Hori T, Morita K (2002) Self-reproduction in three-dimensional reversible cellular space. Artif Life 8:155–174CrossRefGoogle Scholar
  15. Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48:149–182MathSciNetCrossRefMATHGoogle Scholar
  16. Kari J (1996) Representation of reversible cellular automata with block permutations. Math Syst Theory 29:47–61MathSciNetCrossRefMATHGoogle Scholar
  17. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191MathSciNetCrossRefMATHGoogle Scholar
  18. Langton C-G (1984) Self-reproduction in cellular automata. Phys D 10:135–144CrossRefMATHGoogle Scholar
  19. Margolus N (1984) Physics-like model of computation. Phys D 10:81–95MathSciNetCrossRefMATHGoogle Scholar
  20. Maruoka A, Kimura M (1976) Condition for injectivity of global maps for tessellation automata. Inf Control 32:158–162MathSciNetCrossRefMATHGoogle Scholar
  21. Maruoka A, Kimura M (1979) Injectivity and surjectivity of parallel maps for cellular automata. J Comput Syst Sci 18:47–64MathSciNetCrossRefMATHGoogle Scholar
  22. Minsky M-L (1967) Computation: finite and infinite machines. Prentice-Hall, Englewood CliffsMATHGoogle Scholar
  23. Moore E-F (1962) Machine models of self-reproduction. Proc Symp Appl Math Am Math Soc 14:17–33CrossRefMATHGoogle Scholar
  24. Mora JCST, Vergara SVC, Martinez GJ, McIntosh HV (2005) Procedures for calculating reversible one-dimensional cellular automata. Phys D 202:134–141MathSciNetCrossRefMATHGoogle Scholar
  25. Morita K (1990) A simple construction method of a reversible finite automaton out of Fredkin gates, and its related problem. Trans IEICE Jpn E73:978–984Google Scholar
  26. Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theor Comput Sci 148:157–163MathSciNetCrossRefMATHGoogle Scholar
  27. Morita K (1996) Universality of a reversible two-counter machine. Theor Comput Sci 168:303–320MathSciNetCrossRefMATHGoogle Scholar
  28. Morita K (2001) A simple reversible logic element and cellular automata for reversible computing. In: Margenstern M, Rogozhin Y (eds) Proceedings of the MCU 2001. LNCS 2055, Springer, Berlin, Heidelberg, pp 102–113Google Scholar
  29. Morita K (2007) Simple universal one-dimensional reversible cellular automata. J Cell Autom 2:159–166MathSciNetMATHGoogle Scholar
  30. Morita K (2008) Reversible computing and cellular automata – a survey. Theor Comput Sci 395:101–131MathSciNetCrossRefMATHGoogle Scholar
  31. Morita K (2011) Simulating reversible Turing machines and cyclic tag systems by one-dimensional reversible cellular automata. Theor Comput Sci 412:3856–3865MathSciNetCrossRefMATHGoogle Scholar
  32. Morita K (2016a) An 8-state simple reversible triangular cellular automaton that exhibits complex behavior. In: Cook M, Neary T (eds) AUTOMATA 2016. LNCS 9664, Springer, Cham, pp 170–184. Slides with movies of computer simulation: Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00039321
  33. Morita K (2016b) Universality of 8-state reversible and conservative triangular partitioned cellular automaton. In: El Yacoubi S et al (eds) ACRI 2016. LNCS 9863, Springer, Cham, pp 45–54. Slides with movies of computer simulation: Hiroshima University Institutional Repository. http://ir.lib.hiroshima-u.ac.jp/00039997
  34. Morita K (2017a) Two small universal reversible Turing machines. In: Adamatzky A (ed) Advances in unconventional computing. Vol. 1: Theory. Springer, Cham, pp 221–237Google Scholar
  35. Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. Trans IEICE Jpn E72:758–762Google Scholar
  36. Morita K, Imai K (1996) Self-reproduction in a reversible cellular space. Theor Comput Sci 168:337–366MathSciNetCrossRefMATHGoogle Scholar
  37. Morita K, Ueno S (1992) Computation-universal models of two-dimensional 16-state reversible cellular automata. IEICE Trans Inf Syst E75-D:141–147Google Scholar
  38. Morita K, Shirasaki A, Gono Y (1989) A 1-tape 2-symbol reversible Turing machine. Trans IEICE Jpn E72:223–228Google Scholar
  39. Morita K, Tojima Y, Imai K, Ogiro T (2002) Universal computing in reversible and number-conserving two-dimensional cellular spaces. In: Adamatzky A (ed) Collision-based computing. Springer, London, pp 161–199Google Scholar
  40. Myhill J (1963) The converse of Moore’s Garden-of-Eden theorem. Proc Am Math Soc 14:658–686MathSciNetCrossRefMATHGoogle Scholar
  41. von Neumann J (1966) In: Burks AW (ed) Theory of self-reproducing automata. Urbana, The University of Illinois PressGoogle Scholar
  42. Richardson D (1972) Tessellations with local transformations. J Comput Syst Sci 6:373–388MathSciNetCrossRefMATHGoogle Scholar
  43. Sutner K (2004) The complexity of reversible cellular automata. Theor Comput Sci 325:317–328MathSciNetCrossRefMATHGoogle Scholar
  44. Toffoli T (1977) Computation and construction universality of reversible cellular automata. J Comput Syst Sci 15:213–231MathSciNetCrossRefMATHGoogle Scholar
  45. Toffoli T (1980) Reversible computing. In: de Bakker JW, van Leeuwen J (eds) Automata, languages and programming. LNCS 85, Springer, Berlin, Heiderberg, pp 632–644Google Scholar
  46. Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Phys D 45:229–253MathSciNetCrossRefMATHGoogle Scholar
  47. Toffoli T, Capobianco S, Mentrasti P (2004) How to turn a second-order cellular automaton into a lattice gas: a new inversion scheme. Theor Comput Sci 325:329–344MathSciNetCrossRefMATHGoogle Scholar
  48. Watrous J (1995) On one-dimensional quantum cellular automata. In: Proceedings of the FOCS, IEEE Computer Society Press, pp 528–537Google Scholar

Books and Reviews

  1. Adamatzky A (ed) (2002) Collision-based computing. Springer, LondonMATHGoogle Scholar
  2. Bennett CH (1988) Notes on the history of reversible computation. IBM J Res Dev 32:16–23MathSciNetCrossRefGoogle Scholar
  3. Burks A (ed) (1970) Essays on cellular automata. University of Illinois Press, UrbanaMATHGoogle Scholar
  4. Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33MathSciNetCrossRefMATHGoogle Scholar
  5. Morita K (2017b) Theory of reversible computing. Springer, TokyoGoogle Scholar
  6. Wolfram S (2001) A new kind of science. Wolfram Media, ChampaignMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan