Skip to main content

Brain Pacemaker

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Coordinated reset stimulation:

Coordinated reset (CR) stimulation is an effectively desynchronizing control technique, where a population of synchronized oscillators is stimulated via several stimulation sites in such a way that spatially and timely coordinated phase reset is achieved in subpopulations assigned to each of the stimulation sites. This method is suggested for the counteraction of abnormal neuronal synchronization characteristic for several neurological diseases and amelioration of their symptoms. It has successively been verified in a number of experimental and clinical studies.

Deep brain stimulation:

Electrical deep brain stimulation (DBS) is the standard therapy for medically refractory movements disorders, e.g., Parkinson’s disease and essential tremor. It requires a surgical treatment, where depth electrodes are chronically implanted in target areas like the thalamic ventralis intermedius nucleus or the subthalamic nucleus. For standard DBS electrical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abbott L, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    Article  Google Scholar 

  • Adamchic I, Toth T, Hauptmann C, Tass PA (2013) Reversing pathologically increased electroencephalogram power by acoustic coordinated reset neuromodulation. Hum Brain Mapp 35(5):2099–2118

    Article  Google Scholar 

  • Alberts WW, Wright EJ, Feinstein B (1969) Cortical potentials and parkinsonian tremor. Nature 221:670–672

    Article  ADS  Google Scholar 

  • Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89(2):1150–1160

    Article  Google Scholar 

  • Andres F, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16(6):520–527

    Article  Google Scholar 

  • Benabid A, Pollak P, Louveau A, Henry S, de Rougemont JJ (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1-6):344–346

    Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemount J (1991) Long-term suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. Lancet 337:403–406

    Article  Google Scholar 

  • Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:73–74

    Article  Google Scholar 

  • Benabid A-L, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative gerneralized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157

    Google Scholar 

  • Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356

    Article  Google Scholar 

  • Beurrier C, Garcia L, Bioulac B, Hammond C (2002) Subthalamic nucleus: a clock inside basal ganglia? Thalamus Relat Syst 2:1–8

    Article  Google Scholar 

  • Blond S, Caparros-Lefebvre D, Parker F, Assaker R, Petit H, Guieu J-D, Christiaens J-L (1992) Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 77:62–68

    Article  Google Scholar 

  • Brice J, McLellan L (1980) Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1(8180):1221–1222

    Article  Google Scholar 

  • Daido H (1992) Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog Theor Phys 88:1213–1218

    Article  ADS  Google Scholar 

  • Danzl P, Hespanha J, Moehlis J (2009) Event-based minimum-time control of oscillatory neuron models. Biol Cybern 101(5–6):387–399

    Article  MATH  Google Scholar 

  • Debanne D, Gahweiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampus slice cultures. J Physiol 507:237–247

    Article  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloß M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn H, Moringlane J, Oertel W, Pinsker M, Reichmann H, Reuß A, Schneider G-H, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908

    Article  Google Scholar 

  • Dolan K, Majtanik M, Tass P (2005) Phase resetting and transient desynchronization in networks of globally coupled phase oscillators with inertia. Physica D 211:128–138

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dovzhenok A, Park C, Worth RM, Rubchinsky LL (2013) Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson’s disease. PLoS One 8(3):e58264

    Article  ADS  Google Scholar 

  • Elble RJ, Koller WC (1990) Tremor. John Hopkins University Press, Baltimore

    Google Scholar 

  • Ermentrout B, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural assemblies. J Math Biol 29:195–217

    Article  MathSciNet  MATH  Google Scholar 

  • Feldman D (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56

    Article  Google Scholar 

  • Feng X, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007a) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14–L21

    Article  Google Scholar 

  • Feng XJ, Shea-Brown E, Greenwald B, Kosut R, Rabitz H (2007b) Optimal deep brain stimulation of the subthalamic nucleus – a computational study. J Comput Neurosci 23(3):265–282

    Article  MathSciNet  Google Scholar 

  • Filali M, Hutchison W, Palter V, Lozano A, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156:274–281

    Article  Google Scholar 

  • Freund H-J (2005) Long-term effects of deep brain stimulation in Parkinson’s disease. Brain 128:2222–2223

    Article  Google Scholar 

  • Garcia L, D’Alessandro G, Fernagut P-O, Bioulac B, Hammond C (2005) Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons. J Neurophysiol 94:3662–3669

    Article  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78

    Article  ADS  Google Scholar 

  • Gildenberg P (2005) Evolution of neuromodulation. Stereotact Funct Neurosurg 83:71–79

    Article  Google Scholar 

  • Goddar G (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    Article  ADS  Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359

    Article  ADS  Google Scholar 

  • Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5:550–569

    Article  Google Scholar 

  • Grill WM, McIntyre CC (2001) Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus Relat Syst 1:269–277

    Article  Google Scholar 

  • Haken H (1970) Laser theory, vol XXV/2C. Encyclopedia of physics. Springer, Berlin

    Google Scholar 

  • Haken H (1977) Synergetics. An introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (1996) Principles of brain functioning. A synergetic approach to brain activity, behavior, cognition. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (2002) Brain dynamics. Synchronization and activity patterns in pulse-coupled neural nets with delays and noise. Springer, Berlin

    MATH  Google Scholar 

  • Haken H, Kelso J, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  MathSciNet  MATH  Google Scholar 

  • Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15):2111–2121

    Article  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993a) Phase dynamics of weakly coupled Hodgkin–Huxley neurons. Europhys Lett 23:367–372

    Article  ADS  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993b) Phase reduction and neural modeling. Concepts Neurosci 4(2):193–210

    Google Scholar 

  • Hashimoto T, Elder C, Okun M, Patrick S, Vitek J (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923

    Google Scholar 

  • Hauptmann C, Tass PA (2007) Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems 89:173–181

    Article  Google Scholar 

  • Hauptmann C, Tass PA (2009) Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J Neural Eng 6(1):016004

    Article  Google Scholar 

  • Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation. J Neural Eng 7:056008

    Article  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005a) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66:759–767

    Article  MATH  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005b) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol Cybern 93:463–470

    Article  MathSciNet  MATH  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005c) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stochastics Dyn 5(2):307–319

    Article  MathSciNet  MATH  Google Scholar 

  • Hauptmann C, Omelchenko O, Popovych OV, Maistrenko Y, Tass PA (2007a) Control of spatially patterned synchrony with multisite delayed feedback. Phys Rev E 76:066209

    Article  ADS  MathSciNet  Google Scholar 

  • Hauptmann C, Popovych O, Tass P (2007b) Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices 4(5):633–650

    Article  Google Scholar 

  • Hauptmann C, Roulet JC, Niederhauser JJ, Doll W, Kirlangic ME, Lysyansky B, Krachkovskyi V, Bhatti MA, Barnikol UB, Sasse L, Buhrle CP, Speckmann EJ, Gotz M, Sturm V, Freund HJ, Schnell U, Tass PA (2009) External trial deep brain stimulation device for the application of desynchronizing stimulation techniques. J Neural Eng 6(6):066003

    Article  Google Scholar 

  • Hebb D (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Kelso J (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MA

    Google Scholar 

  • Kilgard M, Merzenich M (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  ADS  Google Scholar 

  • Kiss IZ, Rusin CG, Kori H, Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316(5833):1886–1889

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kumar R, Lozano A, Sime E, Lang A (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61:1601–1604

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, turbulence. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Lenz F, Kwan H, Martin R, Tasker R, Dostrovsky J, Lenz Y (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543

    Article  Google Scholar 

  • Limousin P, Speelman J, Gielen F, Janssens M (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66(3):289–296

    Article  Google Scholar 

  • Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457

    Article  Google Scholar 

  • Luecken L, Yanchuk S, Popovych OV, Tass PA (2013) Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front Comput Neurosci 7:63

    Google Scholar 

  • Luo M, YJ W, Peng JH (2009) Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol Cybern 101(3):241–246

    Article  MathSciNet  MATH  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2011a) Desynchronizing anti-resonance effect of m: n on–off coordinated reset stimulation. J Neural Eng 8(3):036019

    Article  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2011b) Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus 1(1):75–85

    Article  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2013) Optimal number of stimulation contacts for coordinated reset neuromodulation. Front Neuroeng 6:5

    Article  Google Scholar 

  • Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass P (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75:066207

    Article  ADS  MathSciNet  Google Scholar 

  • Majtanik M, Dolan K, Tass P (2006) Desynchronization in networks of globally coupled neurons with dendritic dynamics. J Biol Phys 32:307–333

    Article  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    Article  Google Scholar 

  • McIntyre C, Grill W, Sherman D, Thakor N (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469

    Article  Google Scholar 

  • McIntyre CC, Savasta M, Goff KKL, Vitek J (2004b) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  Google Scholar 

  • Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382

    Article  Google Scholar 

  • Milton J, Jung P (eds) (2003) Epilepsy as a dynamics disease. Springer, Berlin

    MATH  Google Scholar 

  • Miocinovic S, Parent M, Butson C, Hahn P, Russo G, Vitek J, McIntyre C (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580

    Article  Google Scholar 

  • Morimoto K, Fahnestock M, Racine R (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60

    Article  Google Scholar 

  • Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59(5):706–713

    Article  Google Scholar 

  • Nabi A, Moehlis J (2011) Single input optimal control for globally coupled neuron networks. J Neural Eng 8(6):065008

    Article  Google Scholar 

  • Neiman A, Russell D, Yakusheva T, DiLullo A, Tass PA (2007) Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters. Phys Rev E 76:021908

    Article  ADS  MathSciNet  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergmann H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800–1805

    Article  Google Scholar 

  • Nowotny T, Zhigulin V, Selverston A, Abarbanel H, Rabinovich M (2003) Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci 23:9776–9785

    Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pliss V (1964) Principal reduction in the theory of stability of motion. Izv Akad Nauk SSSR Math Ser 28:1297–1324

    MATH  Google Scholar 

  • Popovych OV, Tass PA (2010) Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Phys Rev E 82(2):026204

    Article  ADS  MathSciNet  Google Scholar 

  • Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58

    Article  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102

    Article  ADS  MATH  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2006a) Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern 95:69–85

    Article  MathSciNet  MATH  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2006b) Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback. Int J Bif Chaos 16(7):1977–1987

    Article  MathSciNet  MATH  Google Scholar 

  • Pyragas K, Popovych OV, Tass PA (2007) Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys Lett 80:40002

    Article  ADS  Google Scholar 

  • Pyragas K, Novicenko V, Tass P (2013) Mechanism of suppression of sustained neuronal spiking under high-frequency stimulation. Biol Cybern 107(6):669–684

    Article  MathSciNet  MATH  Google Scholar 

  • Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71(2):215–219

    Article  Google Scholar 

  • Rodriguez-Oroz M, Obeso J, Lang A, Houeto J, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz M, Quinn N, Speelman J, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet A, Agid Y, Xie J, Benabid A, Lozano A, Saint-Cyr J, Romito L, Contarino M, Scerrati M, Fraix V, Blercom NV (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249

    Article  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004a) Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett 92:114102

    Article  ADS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004b) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904

    Article  ADS  MathSciNet  Google Scholar 

  • Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384

    Article  Google Scholar 

  • Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235

    Article  Google Scholar 

  • Schnitzler A, Timmermann L, Gross J (2006) Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris 99(1):3–7

    Article  Google Scholar 

  • Schöner G, Haken H, Kelso J (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  MATH  Google Scholar 

  • Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468

    Article  Google Scholar 

  • Seliger P, Young S, Tsimring L (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Shen K, Zhu Z, Munhall A, Johnson SW (2003) Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 50:314–319

    Article  Google Scholar 

  • Silchenko A, Tass P (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74

    Article  MATH  Google Scholar 

  • Silchenko AN, Adamchic I, Hauptmann C, Tass PA (2013) Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. NeuroImage 77:133–147

    Article  Google Scholar 

  • Singer W (1989) Search for coherence: a basic principle of cortical self-organization. Concepts Neurosci 1:1–26

    Google Scholar 

  • Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buhrle C, Maarouf M, Sturm V, Freund H-J, Tass PA (2008) The generation of parkinsonian tremor as revealed by directional coupling analysis. Europhys Lett 83(2):20003

    Article  ADS  Google Scholar 

  • Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926

    Article  Google Scholar 

  • Speckmann E, Elger C (1991) The neurophysiological basis of epileptic activity: a condensed overview. Epilepsy Res Suppl 2:1–7

    Google Scholar 

  • Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signaling. Wiley, New York

    Google Scholar 

  • Strogatz SH (2003) Sync: the emerging science of spontaneous order. Hyperion Books, New York

    Google Scholar 

  • Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–154

    Article  Google Scholar 

  • Tass PA (1996a) Phase resetting associated with changes of burst shape. J Biol Phys 22:125–155

    Article  Google Scholar 

  • Tass PA (1996b) Resetting biological oscillators – a stochastic approach. J Biol Phys 22:27–64

    Article  Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Tass PA (2000) Stochastic phase resetting: a theory for deep brain stimulation. Prog Theor Phys Suppl 139:301–313

    Article  ADS  Google Scholar 

  • Tass PA (2001a) Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol Cybern 85:343–354

    Article  MATH  Google Scholar 

  • Tass PA (2001b) Effective desynchronization by means of double-pulse phase resetting. Europhys Lett 53:15–21

    Article  ADS  Google Scholar 

  • Tass PA (2001c) Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys Lett 55:171–177

    Article  ADS  Google Scholar 

  • Tass PA (2002a) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87:102–115

    Article  MATH  Google Scholar 

  • Tass PA (2002b) Effective desynchronization with a stimulation technique based on soft phase resetting. Europhys Lett 57:164–170

    Article  ADS  Google Scholar 

  • Tass PA (2002c) Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E 66:036226

    Article  ADS  Google Scholar 

  • Tass PA (2003a) Desynchronization by means of a coordinated reset of neural sub-populations – a novel technique for demand-controlled deep brain stimulation. Prog Theor Phys Suppl 150:281–296

    Article  ADS  Google Scholar 

  • Tass PA (2003b) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88

    Article  MATH  Google Scholar 

  • Tass PA, Hauptmann C (2006) Therapeutic rewiring by means of desynchronizing brain stimulation. Nonlinear Phenom Complex Syst 9(3):298–312

    MathSciNet  Google Scholar 

  • Tass P, Hauptmann C (2007) Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol 64:53–61

    Article  Google Scholar 

  • Tass PA, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94:58–66

    Article  MathSciNet  MATH  Google Scholar 

  • Tass PA, Popovych OV (2012) Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol Cybern 106:27–36

    Article  Google Scholar 

  • Tass PA, Hauptmann C, Popovych OV (2006) Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int J Bif Chaos 16(7):1889–1911

    Article  MathSciNet  MATH  Google Scholar 

  • Tass PA, Silchenko AN, Hauptmann C, Barnikol UB, Speckmann EJ (2009) Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E 80(1):011902

    Article  ADS  Google Scholar 

  • Tass P, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C (2012a) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:367–374

    Google Scholar 

  • Tass PA, Qin L, Hauptmann C, Doveros S, Bezard E, Boraud T, Meissner WG (2012b) Coordinated reset has sustained aftereffects in parkinsonian monkeys. Ann Neurol 72:816–820

    Article  Google Scholar 

  • Timmermann L, Florin E, Reck C (2007) Pathological cerebral oscillatory activity in Parkinson’s disease: a critical review on methods, data and hypotheses. Expert Rev Med Devices 4(5):651–661

    Article  Google Scholar 

  • Tukhlina N, Rosenblum M, Pikovsky A, Kurths J (2007) Feedback suppression of neural synchrony by vanishing stimulation. Phys Rev E 75:011918

    Article  ADS  MathSciNet  Google Scholar 

  • van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biological physics, vol 4. Elsevier, Amsterdam, pp 771–823

    Google Scholar 

  • Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17

    Article  Google Scholar 

  • Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61(1):89–96

    Article  Google Scholar 

  • Winfree A (1980) The geometry of biological time. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wunderlin A, Haken H (1975) Scaling theory for non-equilibrium systems. Z Phys B 21:393–401

    Article  ADS  Google Scholar 

  • Zhai Y, Kiss IZ, Tass PA, Hudson JL (2005) Desynchronization of coupled electrochemical oscillators with pulse stimulations. Phys Rev E 71:065202

    Article  ADS  MathSciNet  Google Scholar 

  • Zhai Y, Kiss IZ, Hudson JL (2008) Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: desynchronization and clustering. Ind Eng Chem Res 47(10):3502–3514

    Article  Google Scholar 

  • Zhou Q, Tao H, Poo M (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300:1953–1957

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Tass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Tass, P.A., Hauptmann, C., Popovych, O.V. (2018). Brain Pacemaker. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_42-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_42-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics