Skip to main content

Fluctuations, Importance of: Complexity in the View of Stochastic Processes

  • Living reference work entry
  • First Online:
  • 250 Accesses

Definition of the Subject

Measurements of time signals of complex systems of the inanimate and the animate world like turbulent fluid motions, traffic flow, or human brain activity yield fluctuating time series. In recent years, methods have been devised which allow for a detailed analysis of such data. In particular, methods for parameter free estimations of the underlying stochastic equations have been proposed. The present entry gives an overview on the achievements obtained so far for analyzing stochastic data and describes results obtained for a variety of complex systems ranging from electrical nonlinear circuits, fluid turbulence, to traffic flow and financial market data. The systems will be divided into two classes, namely systems with complexity in time and systems with complexity in scale.

Introduction

The central theme of the present entry is exhibited in Fig. 1. Given a fluctuating, sequentially measured set of experimental data one can pose the question whether it is...

This is a preview of subscription content, log in via an institution.

Abbreviations

Complexity in Time:

Complex structures may be characterized by nonregular time behavior of a describing variable \( q\in {\mathbf{R}}^d \). Thus the challenge is to understand or to model the time dependence of q(t), which may be achieved by a differential equation \( \frac{\mathrm{d}}{\mathrm{d}t}q(t)=\dots \) or by the discrete dynamics \( q\left(t+\tau \right)=f\left(q(t),\dots \right) \) fixing the evolution in the future. Of special interest are not only nonlinear equations leading to chaotic dynamics but also those which include general noise terms, too.

Complexity in Space:

Complex structures may be characterized by their spatial disorder. The disorder on a selected scale l may be measured at the location x by some scale dependent quantities, q(l, x), like wavelets, increments, and so on. The challenge is to understand or to model the features of the disorder variable q(l, x) on different scales l. If the moments of q show power behavior \( \left\langle q{\left(l,\;x\right)}^n\right\rangle \propto {l}^{\zeta (n)} \) , the complex structures are called fractals. Well-known examples of spatial complex structures are turbulence or financial market data. In the first case, the complexity of velocity fluctuations over different distances l is investigated; in the second case the complexity of price changes over different time steps (time scale) is of interest.

Fokker-Planck Equation:

The evolution of a variable x(t) from x′ at t′ to X at t, with \( {t}^{\prime }>t \), is described in a statistical manner by the conditional probability distribution \( p\left(\mathbf{x},t\Big|{\mathbf{x}}^{\mathbf{\prime}},\;{t}^{\prime}\right) \). The conditional probability is subject to a Fokker-Planck equation, also known as second Kolmogorov equation, if

$$ \begin{array}{l}\frac{\partial }{\partial t}p\left(\mathbf{x},t\Big|{\mathbf{x}}^{\mathbf{\prime}},\;{t}^{\prime}\right)=\\ {} -{\displaystyle \sum_{i=1}^d\frac{\partial }{\partial {x}_i}{D}_i^{(1)}\left(\mathbf{x},t\right)p\left(\mathbf{x},t\Big|{\mathbf{x}}^{\mathbf{\prime}},{t}^{\prime}\right)}\\ {} +\frac{1}{2}{\displaystyle \sum_{i,j=1}^d\frac{\partial^2}{\partial {x}_i\partial {x}_j}{D}_{ij}^{(2)}\left(\mathbf{x},t\right)p\left(\mathbf{x},t\Big|{\mathbf{x}}^{\mathbf{\prime}},{t}^{\prime}\right).}\end{array} $$

holds. Here D(1) and D(2) are the drift vector and the diffusion matrix, respectively.

Kramers–Moyal coefficients:

Knowing for a stochastic process the conditional probability distribution \( p\left(\mathbf{x}\left(\mathbf{t}\right), t\Big|{\mathbf{x}}^{\mathbf{\prime}},\ {t}^{\prime}\right), \) for all t and t′ the Kramers-Moyal coefficients can be estimated as nth order moments of the conditional probability distribution. In this way also the drift and diffusion coefficient of the Fokker-Planck equation can be obtained from the empirically measured conditional probability distributions.

Langevin Equation:

The time evolution of a variable x(t) is described by Langevin equation if for x(t) it holds:

$$ \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\left(\mathbf{t}\right)={\mathrm{D}}^{(1)}\left(\mathbf{x}, \mathbf{t}\right) \cdot \tau +\sqrt{{\mathrm{D}}^{(2)}\left(\mathbf{x}, \mathbf{t}\right)}\cdot \boldsymbol{\varGamma} \left({\mathbf{t}}_i\right). $$

Using Itô’s interpretation, the deterministic part of the differential equation is equal to the drift term; the noise amplitude is equal to the square root of the diffusion term of a corresponding Fokker-Planck equation. Note, for vanishing noise a purely deterministic dynamics is included in this description.

Stochastic Process in Scale:

For the description of complex system with spatial or scale disorder usually a measure of disorder on different scales q(l, x) is used. A stochastic process in scale is now a description of the l evolution of q(l, x) by means of stochastic equations. As a special case, the single event q(l, x) follows a Langevin equation, whereas the probability p(q(l)) follows a Fokker-Planck equation.

Bibliography

  • Anahua E, Lange M, Böttcher F, Barth S, Peinke J (2004) Stochastic analysis of the power output for a wind turbine. DEWEK 2004, Wilhelmshaven, 20–21 Oct 2004

    Google Scholar 

  • Anahua E, Barth S, Peinke J (2006) Characterization of the wind turbine power performance curve by stochastic modeling. EWEC 2006, BL3.307, Athens, 27 Feb–2 Mar

    Google Scholar 

  • Anahua E, Barth S, Peinke J (2007) Characterisation of the power curve for wind turbines by stochastic modeling. In: Peinke J, Schaumann P, Barth S (eds) Wind energy – proceedings of the euromech colloquium. Springer, Berlin, pp 173–177

    Google Scholar 

  • Anahua E, Barth S, Peinke J (2008) Markovian power curves for wind turbines. Wind Energy 11:219

    Article  ADS  Google Scholar 

  • Bödeker HU, Röttger M, Liehr AW, Frank TD, Friedrich R, Purwins HG (2003) Noise-covered drift bifurcation of dissipative solitons in planar gas-discharge systems. Phys Rev E 67:056220

    Article  ADS  Google Scholar 

  • Bödeker HU, Liehr AW, Frank TD, Friedrich R, Purwins HG (2004) Measuring the interaction law of dissipative solitions. New J Phys 6:62

    Article  Google Scholar 

  • Böttcher F, Peinke J, Kleinhans D, Friedrich R, Lind PG, Haase M (2006) On the proper reconstruction of complex dynamical systems spoilt by strong measurement noise. Phys Rev Lett 97:090603

    Article  Google Scholar 

  • Bouchaud JP (2001) Power laws in economics and finance: some ideas from physics. Quant Finan 1:105–112

    Article  Google Scholar 

  • Bouchaud JP, Potters M, Meyer M (2000) Apparent multifractality in financial time series. Eur Phys J B 13:595–599

    ADS  Google Scholar 

  • Davoudi J, Reza Rahimi Tabar M (1999) Theoretical model for Kramers-Moyal’s description of turbulence cascade. Phys Rev Lett 82:1680

    Article  ADS  Google Scholar 

  • Egger J, Jonsson T (2002) Dynamic models for islandic meteorological data sets. Tellus A 51(1):1

    Article  ADS  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 17:549

    Article  MATH  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (2003) Modelling extremal events. Springer, Berlin

    MATH  Google Scholar 

  • Farahpour F, Eskandari Z, Bahraminasab A, Jafari GR, Ghasemi F, Reza Rahimi Tabar M, Sahimi M (2007) An effective Langevin equation for the stock market indices in approach of Markovlength scale. Physica A 385:601

    Article  ADS  Google Scholar 

  • Frank TD, Beek PJ, Friedrich R (2004) Identifying noise sources of time-delayed feedback systems. Phys Lett A 328:219

    Article  ADS  MATH  Google Scholar 

  • Friedrich R, Peinke J (1997a) Statistical properties of a turbulent cascade. Physica D 102:147

    Article  ADS  MATH  Google Scholar 

  • Friedrich R, Peinke J (1997b) Description of a turbulent cascade by a Fokker-Planck equation. Phys Rev Lett 78:863

    Article  ADS  Google Scholar 

  • Friedrich R, Zeller J, Peinke J (1998a) A note in three point statistics of velocity increments in turbulence. Europhys Lett 41:153

    Article  ADS  Google Scholar 

  • Friedrich R, Galla T, Naert A, Peinke J, Schimmel T (1998b) Disordered structures analyzed by the theory of Markov processes. In: Parisi J, Müller S, Zimmermann W (eds) A perspective look at nonlinear media. Lecture notes in physics, vol 503. Springer, Berlin

    Google Scholar 

  • Friedrich R, Siegert S, Peinke J, Lück S, Siefert M, Lindemann M, Raethjen J, Deuschl G, Pfister G (2000a) Extracting model equations from experimental data. Phys Lett A 271:217

    Article  ADS  Google Scholar 

  • Friedrich R, Peinke J, Renner C (2000b) How to quantify deterministic and random influences on the statistics of the foreign exchange market. Phys Rev Lett 84:5224

    Article  ADS  Google Scholar 

  • Friedrich R, Renner C, Siefert M, Peinke J (2002) Comment on: indispensable finite time correlations for Fokker-Planck equations from time series data. Phys Rev Lett 89:149401

    Article  ADS  Google Scholar 

  • Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ghasemi F, Peinke J, Sahimi M, Reza Rahimi Tabar M (2005) Regeneration of stochastic processes: an inverse method. Eur Phys J B 47:411

    Article  ADS  Google Scholar 

  • Ghasemi F, Peinke J, Reza Rahimi Tabar M, Muhammed S (2006a) Statistical properties of the interbeat interval cascade in human subjects. Int J Mod Phys C 17:571

    Article  ADS  MATH  Google Scholar 

  • Ghasemi F, Sahimi M, Peinke J, Reza Rahimi Tabar M (2006b) Analysis of non-stationary data for heart-rate fluctuations in terms of drift and diffusion coefficients. J Biol Phys 32:117

    Article  Google Scholar 

  • Ghasemi F, Bahraminasab A, Sadegh Movahed M, Rahvar S, Sreenivasan KR, Reza Rahimi Tabar M (2006c) Characteristic angular scales of cosmic microwave background radiation. J Stat Mech 2006:P11008

    Article  Google Scholar 

  • Ghasemi F, Sahimi M, Peinke J, Friedrich R, Reza Jafari G, Reza Rahimi Tabar M (2007) Analysis of nonstationary stochastic processes with application to the fluctuations in the oil price. Phys Rev E (Rapid Commun) 75:060102

    Article  ADS  Google Scholar 

  • Ghashghaie S, Breymann W, Peinke J, Talkner P, Dodge Y (1996) Turbulent cascades in foreign exchange markets. Nature 381:767–770

    Article  ADS  Google Scholar 

  • Gnedenko BV, Kolmogorov AN (1954) Limit distributions of sums of independent random variables. Addison-Wesley, Cambridge

    MATH  Google Scholar 

  • Gradisek J, Siegert S, Friedrich R, Grabec I (2000) Analysis of time series from stochastic processes. Phys Rev E 62:3146

    Article  ADS  Google Scholar 

  • Gradisek J, Grabec I, Siegert S, Friedrich R (2002a) Stochastic dynamics of metal cutting: bifurcation phenomena in turning. Mech Syst Signal Process 16(5):831

    Article  ADS  MATH  Google Scholar 

  • Gradisek J, Siegert S, Friedrich R, Grabec I (2002b) Qualitative and quantitative analysis of stochastic processes based on measured data-I. Theory and applications to synthetic data. J Sound Vib 252(3):545

    Article  ADS  Google Scholar 

  • Gradisek J, Friedrich R, Govekar E, Grabec I (2002c) Analysis of data from periodically forced stochastic processes. Phys Lett A 294:234

    Article  ADS  MATH  Google Scholar 

  • Haken H (1983) Synergetics, An introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Haken H (1987) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (2000) Information and self-organization: a macroscopic approach to complex systems. Springer, Berlin

    MATH  Google Scholar 

  • Hänggi P, Thomas H (1982) Stochastic processes: time evolution, symmetries and linear response. Phys Rep 88:207

    Article  ADS  MathSciNet  Google Scholar 

  • Jafari GR, Fazeli SM, Ghasemi F, Vaez Allaei SM, Reza Rahimi Tabar M, Iraji zad A, Kavei G (2003) Stochastic analysis and regeneration of rough surfaces. Phys Rev Lett 91:226101

    Article  ADS  Google Scholar 

  • Jafari GR, Reza Rahimi Tabar M, Iraji zad A, Kavei G (2007) Etched glass surfaces, atomic force microscopy and stochastic analysis. J Phys A 375:239

    Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Karth M, Peinke J (2002) Stochastic modelling of fat-tailed probabilities of foreign exchange rates. Complexity 8:34

    Article  MathSciNet  Google Scholar 

  • Kern M, Buser O, Peinke J, Siefert M, Vulliet L (2005) Stochastic analysis of single particle segregational dynamics. Phys Lett A 336:428

    Article  ADS  MATH  Google Scholar 

  • Kleinhans D, Friedrich R (2007) Note on maximum likelihood estimation of drift and diffusion functions. Phys Lett A 368:194

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kleinhans D, Friedrich R, Nawroth AP, Peinke J (2005) An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes. Phys Lett A 346:42

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kleinhans D, Friedrich R, Wächter M, Peinke J (2007) Markov properties under the influence of measurement noise. Phys Rev E 76:041109

    Article  ADS  Google Scholar 

  • Kolmogorov AN (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math Ann 140:415

    Article  MATH  MathSciNet  Google Scholar 

  • Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19

    ADS  MATH  MathSciNet  Google Scholar 

  • Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kriso S, Friedrich R, Peinke J, Wagner P (2002) Reconstruction of dynamical equations for traffic flow. Phys Lett A 299:287

    Article  ADS  MATH  Google Scholar 

  • Kuusela T (2004) Stochastic heart-rate model can reveal pathologic cardiac dynamics. Phys Rev E 69:031916

    Article  ADS  Google Scholar 

  • Langner M, Peinke J, Flemisch F, Baumann M, Beckmann D (2010) Drift and diffusion based models of driver behavior. European Physical Journal B, DOI: 10.1140/epjb/e2010-00148-8

    Google Scholar 

  • Liehr AW, Bödeker HU, Röttger M, Frank TD, Friedrich R, Purwins HG (2003) Drift bifurcation detection for dissipative solitons. New J Phys 5:89

    Article  Google Scholar 

  • Lück S, Renner C, Peinke J, Friedrich R (2006) The Markov Einstein coherence length a new meaning for the Taylor length in turbulence. Phys Lett A 359:335

    Article  ADS  MATH  Google Scholar 

  • Mandelbrot BB (2001) Scaling in financial prices: I. Tails and dependence. II. Multifractals and the star equation. Quant Finan 1:113–130

    Article  Google Scholar 

  • Mantegna RN, Stanley HE (1995) Scaling behaviour in the dynamics of an economic index. Nature 376:46–49

    Article  ADS  Google Scholar 

  • Marcq P, Naert A (2001) A Langevin equation for turbulent velocity increments. Phys Fluids 13:2590

    Article  ADS  MATH  Google Scholar 

  • McCauley J (2000) The futility of utility: how market dynamics marginalize Adam Smith. Physica A 285:506–538

    Article  ADS  MATH  Google Scholar 

  • Muzy JF, Sornette D, Delour J, Areneodo A (2001) Multifractal returns and hierarchical portfolio theory. Quant Finan 1:131–148

    Article  MathSciNet  Google Scholar 

  • Nawroth AP, Peinke J (2006a) Multiscale reconstruction of time series. Phys Lett A 360:234

    Article  ADS  Google Scholar 

  • Nawroth AP, Peinke J (2006b) Small scale behavior of financial data. Eur Phys J B 50:147

    Article  ADS  Google Scholar 

  • Nawroth AP, Peinke J, Kleinhans D, Friedrich R (2007) Improved estimation of Fokker-Planck equations through optimisation. Phys Rev E 76:056102

    Article  ADS  Google Scholar 

  • Patanarapeelert K, Frank TD, Friedrich R, Beek PJ, Tang IM (2006) A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise. Phys Lett A 360:190

    Article  ADS  Google Scholar 

  • Prusseit J, Lehnertz K (2007) Stochastic qualifiers of epileptic brain dynamics. Phys Rev Lett 98:138103

    Article  ADS  Google Scholar 

  • Purwins HG, Amiranashvili S (2007) Selbstorganisierte Strukturen im Strom. Phys J 6(2):21

    Google Scholar 

  • Purwins HG, Bödeker HU, Liehr AW (2005) Dissipative Solitons in Reaction–Diffusion Systems, in Dissipative Solitons. In: Akhmediev N, Ankiewicz A (eds) Lecture Notes in Physics. Berlin, Germany, Springer-Verlag

    Google Scholar 

  • Ragwitz M, Kantz H (2001) Indispensable finite time corrections for Fokker-Planck equations from time series. Phys Rev Lett 87:254501

    Article  ADS  Google Scholar 

  • Ragwitz M, Kantz H (2002) Comment on: indispensable finite time correlations for Fokker-Planck equations from time series data-Reply. Phys Rev Lett 89:149402

    Article  ADS  Google Scholar 

  • Renner C, Peinke J, Friedrich R (2000) Markov properties of high frequency exchange rate data. Int J Theor Appl Finan 3:415

    Article  MATH  Google Scholar 

  • Renner C, Peinke J, Friedrich R (2001a) Experimental indications for Markov properties of small scale turbulence. J Fluid Mech 433:383

    Article  ADS  MATH  Google Scholar 

  • Renner C, Peinke J, Friedrich R (2001b) Markov properties of high frequency exchange rate data. Physica A 298:499–520

    Article  ADS  MATH  Google Scholar 

  • Renner C, Peinke J, Friedrich R, Chanal O, Chabaud B (2002) Universality of small scale turbulence. Phys Rev Lett 89:124502

    Article  ADS  Google Scholar 

  • Risken H (1989) The Fokker-Planck equation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Sangpour P, Akhavan O, Moshfegh AZ, Jafari GR, Reza Rahimi Tabar M (2005) Controlling surface statistical properties using bias voltage: atomic force microscopy and stochastic analysis. Phys Rev B 71:155423

    Article  ADS  Google Scholar 

  • Schertzer D, Larchevéque M, Duan J, Yanovsky VV, Lovejoy S (2001) Fractional Fokker-Planck equation for nonlinear stochastic differentisl equations driven by non-Gaussian Levy stable noises. J Math Phys 42:200

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Shinriki M, Yamamoto M, Mori S (1981) Multimode oscillations in a modified Van-der-Pol oscillator containing a positive nonlinear conductance. Proc IEEE 69:394

    Article  Google Scholar 

  • Siefert M, Peinke J (2004a) Reconstruction of the deterministic dynamics of stochastic systems. Int J Bifurc Chaos 14:2005

    Article  MATH  Google Scholar 

  • Siefert M, Peinke J (2004b) Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. Phys Rev E 70:015302R

    Article  ADS  Google Scholar 

  • Siefert M, Peinke J (2006) Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence. J Turbul 7:1

    Article  MATH  MathSciNet  Google Scholar 

  • Siefert M, Kittel A, Friedrich R, Peinke J (2003) On a quantitative method to analyze dynamical and measurement noise. Europhys Lett 61:466

    Article  ADS  Google Scholar 

  • Siegert S, Friedrich R (2001) Modeling nonlinear Lévy processes by data analysis. Phys Rev E 64:041107

    Article  ADS  Google Scholar 

  • Siegert S, Friedrich R, Peinke J (1998) Analysis of data sets of stochastic systems. Phys Lett A 234:275–280

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sreenivasan KR, Antonia RA (1997) The phenomenology of small-scale turbulence. Annu Rev Fluid Mech 29:435–472

    Article  ADS  MathSciNet  Google Scholar 

  • Sura P (2003) Stochastic analysis of Southern and Pacific Ocean sea surface winds. J Atmos Sci 60:654

    Article  ADS  Google Scholar 

  • Sura P, Gille ST (2003) Interpreting wind-driven Southern Ocean variability in a stochastic framework. J Mar Res 61:313

    Article  Google Scholar 

  • Tabar MRR, Ghasemi F, Peinke J, Friedrich R, Kaviani K, Taghavi F, Sadghi S, Bijani G, Sahimi M (2006) New computational approaches to analysis of interbeat intervals in human subjects. Comput Sci Eng 8:54

    Article  Google Scholar 

  • Tabar MRR, Sahimi M, Ghasemi F, Kaviani K, Allamehzadeh M, Peinke J, Mokhtari M, Vesaghi M, Niry MD, Bahraminasab A, Tabatabai S, Fayazbakhsh S, Akbari M (2007) Short-term prediction of mediumand large-size earthquakes based on Markov and extended self-similarity analysis of seismic data. In: Bhattacharyya P, Chakrabarti BK (eds) Modelling critical and catastrophic phenomena in geoscience, vol 705, Lecture notes in physics. Springer, Berlin, pp 281–301

    Chapter  Google Scholar 

  • Tutkun M, Mydlarski L (2004) Markovian properties of passive scalar increments in grid-generated turbulence. New J Phys 6:49

    Article  Google Scholar 

  • van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  • Viscek T (1992) Fractal growth phenomena. World Scientific, Singapore

    Google Scholar 

  • Wächter M, Riess F, Kantz H, Peinke J (2003) Stochastic analysis of raod surface roughness. Europhys Lett 64:579

    Article  ADS  Google Scholar 

  • Wächter M, Kouzmitchev A, Peinke J (2004) Increment definitions for sale-dependent analysis of stochastic data. Phys Rev E 70:055103(R)

    Article  ADS  Google Scholar 

  • Waechter M, Riess F, Schimmel T, Wendt U, Peinke J (2004) Stochastic analysis of different rough surfaces. Eur Phys J B 41:259

    Article  ADS  Google Scholar 

  • Yanovsky VV, Chechkin AV, Schertzer D, Tur AV (2000) Levy anomalous diffusion and fractional Fokker-Planck equation. Phys A 282:13

    Article  Google Scholar 

Download references

Acknowledgments

The scientific results reported in this review have been worked out in close collaboration with many colleagues and students. We mention St. Barth, F. Böttcher, F. Ghasemi, I. Grabec, J. Gradisek, M. Haase, A. Kittel, D. Kleinhans, St. Lück, A. Nawroth, Chr. Renner, M. Siefert, and S. Siegert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Friedrich, R., Peinke, J., Tabar, M.R.R. (2015). Fluctuations, Importance of: Complexity in the View of Stochastic Processes. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_212-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_212-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics