Skip to main content

Elastic Percolation Networks

  • Living reference work entry
  • First Online:
  • 552 Accesses

Definition of the Subject

Materials or structures with sufficiently low connectivity are floppy and have very low elastic moduli, while at high connectivity, they are rigid and have relatively high elastic moduli. Elastic percolation networks describe the transition from floppy to rigid that occurs as the network connectivity increases. The percolative geometry and elastic behavior near percolation are of particular interest. Conventional percolative geometries describe some experimental systems however the elastic critical behavior falls into several different universality classes. Moreover, distinct percolative geometries occur in systems with only central forces or which have soft torsional forces, and in these cases, both the geometry and elastic behavior may be distinct from conventional percolation. Granular media manifest a further distinct elastic percolation network, with the concept of an isostatic network underlying elastic behavior near jamming. This rich fundamental...

This is a preview of subscription content, log in via an institution.

Abbreviations

Boson peak:

The Boson peak is an excess of low-frequency modes observed in glasses, as manifested, for example, in inelastic neutron scattering data. In rigidity percolation, the Boson peak is related to the number of floppy modes.

Constraint:

Edges in a graph constrain the degrees of freedom of the nodes in the graph. If edges are independent, each edge acts as one constraint.

Degrees of freedom:

In d dimensions, a point object has d degrees of freedom, while a body has d(d + 1)/2 degrees of freedom due to rotations and translations.

Floppy mode:

A floppy mode is a deformation of a structure which is soft and in ideal models is treated as a zero energy deformation.

Generic rigidity:

A network is generic if none of its edges are dependent due to the particular geometric arrangement of the nodes in the network. With high probability random networks are generic, while regular lattices are nongeneric.

Isostatic network:

An isostatic network is rigid but has no redundant bonds. Isostatic networks are marginally rigid as removal of any edge induces a floppy mode. Ideal generic granular media are isostatic at jamming.

Redundant bond:

A redundant bond is not essential to the rigidity of a structure. Generic networks which contain redundant bonds are overconstrained and internally stressed.

Rigidity percolation threshold:

The rigidity threshold marks the transition from floppy networks which have zero elastic moduli to rigid networks with finite elastic moduli.

Bibliography

  • Alava MJ, Niskanen KJ (2006) The physics of paper. Rep Prog Phys 69:669–724

    Article  ADS  Google Scholar 

  • Alexander S (1998) Amorphous materials: their structure, lattice dynamics and elasticity. Phys Rep 296:65–236

    Article  ADS  Google Scholar 

  • Angell CA (2004) Boson peaks and floppy modes: some relations between constraint and excitions phenomenology, and interpretation, of glasses and glass transition. J Phys Condens Matter 16:S5153–S5164

    Article  ADS  Google Scholar 

  • Axelos MAV, Kolb M (1990) Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys Rev Lett 64:1457–1460

    Article  ADS  Google Scholar 

  • Barsky SJ, Plischke M (1996) Order and localization in randomly cross-linked polymer networks. Phys Rev E 53:871–876

    Article  ADS  Google Scholar 

  • Bausch AR, Kroy K (2006) A bottom-up approach to cell mechanics. Nat Phys 2:231–238

    Article  Google Scholar 

  • Benguigui L (1984) Experimental study of the elastic properties of a percolating system. Phys Rev Lett 53:2028–2030

    Article  ADS  Google Scholar 

  • Bergman DJ (2003) Exact relations between critical exponents for elastic stiffness and electrical conductivity of percolating networks. Physica B 338:240–246

    Article  MathSciNet  ADS  Google Scholar 

  • Boolchand P, Georgiev DG, Goodman B (2001) Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater 3:703–720

    Google Scholar 

  • Boolchand P, Lucovsky G, Phillips JC, Thorpe MF (2005) Self-organization and the physics of glassy networks. Philos Mag 85:3823–3838

    Article  ADS  Google Scholar 

  • Bresser W, Boolchand P, Suranyi P (1986) Rigidity percolation and molecular clustering in network glasses. Phys Rev Lett 56:2493–2496

    Article  ADS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al (2004) Charmm: a program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  Google Scholar 

  • Cai Y (1989) Floppy modes in network glasses. Phys Rev B 40:10535–10542

    Article  ADS  Google Scholar 

  • Chalupa J, Leath PL, Reich GR (1979) Bootstrap percolation on a bethe lattice. J Phys C 12:L31–L35

    Article  ADS  Google Scholar 

  • Chubynsky MV, Thorpe MV (2007) Algorithms for 3d-rigidity analysis and a first-order percolation transition. Phys Rev E 76:41135

    Article  ADS  Google Scholar 

  • Day AR, Tremblay RR, Tremblay AMS (1986) Rigid backbone: a new geometry for percolation. Phys Rev Lett 56:2501–2504

    Article  ADS  Google Scholar 

  • de Gennes PG (1976) On the relation between percolation theory and the elasticity of gels. J Phys 37:L1–L2

    Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  • Deptuck D, Harrison JP, Zawadzki P (1985) Measurement of elasticity and conductivity of a three-dimensional percolation system. Phys Rev Lett 54:913–916

    Article  ADS  Google Scholar 

  • Dohler GH, Dandoloff R, Bilz H (1980) A topological-dynamical model of amorphycity. J Non-Cryst Solids 42:87–95

    Article  ADS  Google Scholar 

  • Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E 71:11105

    Article  MathSciNet  ADS  Google Scholar 

  • Duxbury PM, Jacobs DJ, Thorpe MF, Moukarzel C (1999) Floppy modes and the free energy: rigidity and connectivity percolation on bethe lattices. Phys Rev E 59:2084–2092

    Article  ADS  Google Scholar 

  • Feng S, Sen PN (1984) Percolation on elastic networks: new exponent and threshold. Phys Rev Lett 52:216–219

    Article  ADS  Google Scholar 

  • Feng S, Thorpe MF, Garboczi E (1985) Effective-medium theory of percolation on central-force networks. Phys Rev B 31:276–280

    Article  ADS  Google Scholar 

  • Feng S, Halperin B, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214

    Article  ADS  Google Scholar 

  • Feng X, Bresser WJ, Boolchand P (1997) Direct evidence for stiffness threshold in chalcogenide glasses. Phys Rev Lett 78:4422–4425

    Article  ADS  Google Scholar 

  • Fisher ME, Essam JW (1961) Some cluster size and percolation problems. J Math Phys 2:609–619

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New York

    Google Scholar 

  • Grant MC, Russell WB (1993) Volume fraction dependence of elastic moduli and transition temperatures for colloidal silica gels. Phys Rev E 47:2606–2614

    Article  ADS  Google Scholar 

  • Guyon E, Roux S, Hansen A, Bideau D, Troadec JP et al (1990) Non-local and non-linear problems in the mechanics of disordered systems: application to granular media and rigidity problems. Rep Prog Phys 53:373–419

    Article  ADS  Google Scholar 

  • Hansen A, Roux S (1989) Universality class of central-force percolation. Phys Rev B 40:749–752

    Article  ADS  Google Scholar 

  • He H, Thorpe MF (1985) Elastic properties of glasses. Phys Rev Lett 54:2107–2110

    Article  ADS  Google Scholar 

  • Head DA, Levine AJ, MacKintosh FC (2003) Distinct regimes of elastic response and deformation modes of crosslinked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:61907

    Article  ADS  Google Scholar 

  • Hendrickson B (1992) Conditions for unique graph realizations. SIAM J Comput 21:65–84

    Article  MATH  MathSciNet  Google Scholar 

  • Heussinger C, Frey E (2006) Stiff polymers, foams and fiber networks. Phys Rev Lett 96:1–4

    Article  Google Scholar 

  • Jacobs DJ (1998) Generic rigidity in three-dimensional bond-bending networks. J Phys A Math Gen 31:6653–6668

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Jacobs DJ, Hendrickson B (1997) An algorithm for two-dimensional rigidity percolation: the pebble game. J Comput Phys 137:346–365

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: the pebble game. Phys Rev Lett 75:4051–4054

    Article  ADS  Google Scholar 

  • Jacobs DJ, Thorpe MF (1996) Generic rigidity percolation in two dimensions. Phys Rev E 53:3682–3693

    Article  ADS  Google Scholar 

  • Kamitakahara WA, Cappelletti RL, Boolchand P, Halfpap B, Gompf F et al (1991) Vibrational densities of states and network rigidity in chalcogenide glasses. Phys Rev B 44:94–100

    Article  ADS  Google Scholar 

  • Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894

    Article  ADS  Google Scholar 

  • Kasza KE, Rowat AC, Liu J, Angelini RE, Brangwynne CP et al (2007) The cell as a material. Curr Opin Cell Biol 19:101–107

    Article  Google Scholar 

  • Laman G (1970) On graphs and rigidity of plane skeletal structures. J Eng Math 4:331–340

    Article  MATH  MathSciNet  Google Scholar 

  • LatvaKokko M, Timonen J (2001) Rigidity of random networks of stiff fibers in the low density limit. Phys Rev E 64:66117

    Article  ADS  Google Scholar 

  • LatvaKokko M, Makinen J, Timonen J (2001) Rigidity transition in two-dimensional random fiber networks. Phys Rev E 63:46113

    Article  ADS  Google Scholar 

  • Majmudar TS, Sperl M, Luding S, Behinger RP (2007) Jamming transition in granular systems. Phys Rev Lett 98:58001

    Article  ADS  Google Scholar 

  • Martin JE, Adolf D, Wilcox JP (1988) Viscoelasticity of near-critical gels. Phys Rev Lett 61:2620–2623

    Article  ADS  Google Scholar 

  • Maxwell JC (1864) On the calculation of the equilibrium stiffness of frames. Philos Mag 27:294–301

    Google Scholar 

  • Mayo SL, Olafson BD, Goddard WA (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  Google Scholar 

  • Moukarzel C (1996) An efficient algorithm for testing the generic rigidity of graphs in the plane. J Phys A Math Gen 29:8079–8098

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Moukarzel CF (1998) Isostatic phase transition and instability in stiff granular materials. Phys Rev Lett 81:1634–1637

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM (1990) Comparison of rigidity and connectivity percolation in two dimensions. Phys Rev E 59:2614–2622

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM (1995) Stressed backbone and elasticity of random central-force system. Phys Rev Lett 75:4055–4058

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM, Leath PL (1997a) First-order rigidity on Cayley trees. Phys Rev E 55:5800–5811

    Article  ADS  Google Scholar 

  • Moukarzel C, Duxbury PM, Leath PL (1997b) Infinite-cluster geometry in central-force networks. Phys Rev Lett 78:1480–1483

    Article  ADS  Google Scholar 

  • Obukhov SP (1995) First order rigidity transition in random rod networks. Phys Rev Lett 74:4472–4475

    Article  ADS  Google Scholar 

  • Ohern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:11306

    Article  ADS  Google Scholar 

  • Parisi G (2003) On the origin of the boson peak. J Phys Condens Matter 15:S765–S774

    Article  ADS  Google Scholar 

  • Phillips JC (1979) Topology of covalent non-crystalline solids i: short-range order in chalcogenide alloys. J Non-Cryst Solids 34:153–181

    Article  ADS  Google Scholar 

  • Plischke M (2006) Critical behavior of entropic shear rigidity. Phys Rev E 73:61406

    Article  ADS  Google Scholar 

  • Plischke M, Joos B (1998) Entropic elasticity of diluted central force networks. Phys Rev Lett 80:4907–4910

    Article  ADS  Google Scholar 

  • Plischke M, Vernon DC, Joos B, Zhou Z (1998) Entropic elasticity of diluted central force networks. Phys Rev E 60:3129–3135

    Article  ADS  Google Scholar 

  • Rader AJ, Hespenheide BM, Kuhn LA, Thorpe MF (2002) Protein unfolding: rigidity lost. PNAS 99:3540–3545

    Article  ADS  Google Scholar 

  • Rivoire O, Barré J (2006) Exactly solvable models of adaptive networks. Phys Rev Lett 97:148701

    Article  ADS  Google Scholar 

  • Ross-Murphy SB (2007) Biopolymer gelation-exponents and critical exponents. Polym Bull 58:119–126

    Article  Google Scholar 

  • Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218

    Article  ADS  Google Scholar 

  • Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:214–395

    Article  MathSciNet  ADS  Google Scholar 

  • Sahimi M, Arbabi S (1993a) Mechanics of disordered solids. i. percolation on elastic networks with central forces. Phys Rev B 47:695–702

    Article  ADS  Google Scholar 

  • Sahimi M, Arbabi S (1993b) Mechanics of disordered solids. ii. percolation on elastic networks with bond-bending forces. Phys Rev B 47:703–712

    Article  ADS  Google Scholar 

  • Schwartz LM, Feng S, Thorpe MF, Sen PN (1985) Behavior of depleted elastic networks: comparison of effective medium theory and numerical simulations. Phys Rev B 32:4607–4617

    Article  ADS  Google Scholar 

  • Schwarz JH, Liu AJ, Chayes LQ (2006) The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys Lett 73:560–566

    Article  ADS  Google Scholar 

  • Serrano D, Peyrelasse J, Boned C, Harran D, Monge P (1990) Application of the percolation model to gelation of an epoxy resin. J Appl Polym Sci 39:670–693

    Article  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44:103–158

    Article  Google Scholar 

  • Tang W, Thorpe MF (1988) Percolation of elastic networks under tension. Phys Rev B 37:5539–5551

    Article  ADS  Google Scholar 

  • Tay TS (1984) Rigidity of multi-graphs. i. linking rigid bodies in n-space. J Comb Theory B 36:95–112

    Article  MATH  MathSciNet  Google Scholar 

  • Tay TS, Whiteley W (1985) Generating isostatic frameworks. Struct Topol 11:21–68

    MATH  MathSciNet  Google Scholar 

  • Tharmann R, Claessens MMAE, Bausch AR (2007) Viscoelasticity of isotropically crosslinked actin networks. Phys Rev Lett 98:88103

    Article  ADS  Google Scholar 

  • Thorpe MF (1983) Continuous deformations in random networks. J Non-Cryst Solids 57:355–370

    Article  ADS  Google Scholar 

  • Thorpe MF, Duxbury PM (eds) (1999) Rigidity theory and applications. Plenum, New York

    Google Scholar 

  • Thorpe MF, Jacobs DJ, Chubynsky MV, Phillips JC (2000) Self-organization in network glasses. J Non-Cryst Solids 266–269:859–866

    Article  Google Scholar 

  • Uebbing B, Sievers AJ (1996) Role of network topology on the vibrational lifetime of an H 2 O molecule in the ge-as-se glass series. Phys Rev Lett 76:932–935

    Article  ADS  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  Google Scholar 

  • Whiteley W (2005) Counting out to the flexibility of molecules. Phys Biol 2:S116–S126

    Article  ADS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near the liquid-solid transition. Adv Polym Sci 134:165–234

    Article  Google Scholar 

  • Wyart M (2005) On the rigidity of amorphous solids. Ann Phys Fr 30:1–96

    Article  Google Scholar 

  • Wyart M, Nagel SR, Witten TA (2005) Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys Lett 72:486–492

    Article  ADS  Google Scholar 

  • Wyss HM, Tervoort EV, Gauckler LJ (2005) Mechanics and microstructures of concentrated particle gels. J Am Ceram Soc 88:2337–2348

    Article  Google Scholar 

  • Xing X, Mukhopadhyay S, Goldbart PM (2004) Scaling of entropic shear rigidity. Phys Rev Lett 93:225701

    Article  ADS  Google Scholar 

  • Xu J, Bohnsack DA, Mackay ME, Wooley KL (2007) Unusual mechanical performance of amphiphilic crosslinked polymer networks. J Am Chem Soc Commun 129:506–507

    Article  Google Scholar 

  • Zabolitzky JG, Bergman DJ, Stauffer D (1985) Precision calculation of elasticity for percolation. J Stat Phys 54:913–916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip M. Duxbury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Duxbury, P.M. (2013). Elastic Percolation Networks. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_170-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_170-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics