Skip to main content

Cytoskeleton and Cell Motility

  • Living reference work entry
  • First Online:

Definition of the Subject

We, as human beings, are made of a collection of cells, which are most commonly considered as the elementary building blocks of all living forms on earth (Alberts et al. 2002a). Whether they belong to each of the three domains of life (archaea, bacteria, or eukarya), cells are small membrane-bounded compartments that are capable of homeostasis, metabolism, response to their environment, growth, reproduction, adaptation through evolution, and, at the cellular as well as multicellular level, organization. In addition, spontaneous, self-generated movement – also known as motility – is one of the properties that we most closely associate with all life forms. Even in the case of apparently inanimate living forms on macroscopic scales, like most plants and fungi, constitutive cells are constantly remodeling their internal structure for the entire organism to perform its metabolism, growth, and reproduction (Bray 2001). In animals like human beings, cell motility is...

This is a preview of subscription content, log in via an institution.

Abbreviations

Cell:

Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be characterized as living.

Eukaryotic cell:

Cell that possesses a nucleus, a small membrane-bounded compartment that contains the genetic material of the cell. Cells that lack a nucleus are called prokaryotic cells or prokaryotes – domains of life archaea, bacteria, and eukarya – or in English eukaryotes and made of eukaryotic cells, which constitute the three fundamental branches in which all life forms are classified. Archaea and bacteria are prokaryotes. All multicellular organisms are eukaryotes, but eukaryotes can also be single-cell organisms. Eukaryotes are usually classified into four kingdoms: animals, plants, fungi, and protists.

Motility:

Spontaneous, self-generated movement of a biological system.

Cytoskeleton:

System of protein filaments crisscrossing the inner part of the cell and which, with the help of the many proteins that interact with it, enables the cell to insure its structural integrity and morphology, exert forces, and produce motion.

Amoeboid motility:

Crawling locomotion of a eukaryotic cell by means of protrusion of its leading edge.

Molecular motor:

Motor of molecular size. In this context, protein or macromolecular complex that converts a specific source of energy into mechanical work.

Filament:

Here, extended unidimensional structure made of an assembly of repeated protein units that hold together via physical interactions (without covalent bonds). A filament will be either a single polymer (or here biopolymer), a linear assembly of such polymers, or a linear assembly of molecular motors.

Active gel:

Cross-linked network of linear or branched polymers interacting by physical means and that is dynamically driven out of equilibrium by a source of energy.

Bibliography

Primary Literature

  • Abercrombie M (1980) The crawling movement of metazoan cells. Proc R Soc Lond B Biol Sci 108:387–393

    Google Scholar 

  • Ahmadi A, Liverpool TB, Marchetti MC (2005) Nematic and polar order in active filament solutions. Phys Rev E Stat Nonlinear Soft Matter Phys 72(6 Pt 1):060901

    Google Scholar 

  • Ahmadi A, Marchetti MC, Liverpool TB (2006) Hydrodynamics of isotropic and liquid crystalline active polymer solutions. Phys Rev E Stat Nonlinear Soft Matter Phys 74(6 Pt 1):061913

    Google Scholar 

  • Ajdari A (1995) Transport by active filaments. Europhys Lett 31(2):69–74

    ADS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002a) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  • Albertson DG (1984) Formation of the first cleavage spindle in nematode embryos. Dev Biol 101(1):61–72

    Google Scholar 

  • Alt W, Dembo M (1999) Cytoplasm dynamics and cell motion: two-phase flow models. Math Biosci 156(1–2):207–228

    MATH  Google Scholar 

  • Amos LA, van den Ent F, Lowe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16(1):24–31

    Google Scholar 

  • Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317

    Google Scholar 

  • Andersen SS (2000) Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/OP18. Trends Cell Biol 10(7):261–267

    Google Scholar 

  • Aranson IS, Tsimring LS (2005) Pattern formation of microtubules and motors: inelastic interaction of polar rods. Phys Rev E Stat Nonlinear Soft Matter Phys 71(5 Pt 1):050901

    Google Scholar 

  • Aranson IS, Tsimring LS (2006) Theory of self-assembly of microtubules and motors. Phys Rev E Stat Nonlinear Soft Matter Phys 74(3 Pt 1):031915

    ADS  MathSciNet  Google Scholar 

  • Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276(5314):917–922

    Google Scholar 

  • Astumian RD, Bier M (1994) Fluctuation driven ratchets: molecular motors. Phys Rev Lett 72(11):1766–1769

    ADS  Google Scholar 

  • Astumian RD, Bier M (1996) Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys J 70(2):637–653

    Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115(6):705–713

    Google Scholar 

  • Badoual M, Jülicher F, Prost J (2002) Bidirectional cooperative motion of molecular motors. Proc Natl Acad Sci USA 99(10):6696–6701

    ADS  Google Scholar 

  • Balland M, Desprat N, Icard D, Fereol S, Asnacios A, Browaeys J, Henon S, Gallet F (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E Stat Nonlinear Soft Matter Phys 74(2 Pt 1):021911

    ADS  Google Scholar 

  • Belmont LD, Hyman AA, Sawin KE, Mitchison TJ (1990) Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62(3):579–589

    Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780–794

    Google Scholar 

  • Bernheim-Groswasser A, Wiesner S, Golsteyn RM, Carlier M-F, Sykes C (2002) The dynamics of actin-based motility depend on surface parameters. Nature 417(6886):308–311

    ADS  Google Scholar 

  • Bernheim-Groswasser A, Prost J, Sykes C (2005) Mechanism of actin-based motility: a dynamic state diagram. Biophys J 89(2):1411–1419

    Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481

    Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89(16):7290–7294

    ADS  Google Scholar 

  • Bottino D, Mogilner A, Roberts T, Stewart M, Oster G (2002) How nematode sperm crawl. J Cell Sci 115(Pt 2):367–384

    Google Scholar 

  • Boukellal H, Campas O, Joanny J-F, Prost J, Sykes C (2004) Soft Listeria: Actin-based propulsion of liquid drops. Phys Rev E Stat Nonlinear Soft Matter Phys 69(6 Pt 1):061906

    Google Scholar 

  • Bray D (2001) Cell movements, 2nd edn. Garland, New York

    Google Scholar 

  • Brokaw CJ (1975) Molecular mechanism for oscillation in flagella and muscle. Proc Natl Acad Sci USA 72(8):3102–3106

    ADS  Google Scholar 

  • Bullock TL, Roberts TM, Stewart M (1996) 2.5 A resolution crystal structure of the motile major sperm protein (MSP) of Ascaris suum. J Mol Biol 263(2):284–296

    Google Scholar 

  • Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1(2):130–136

    Google Scholar 

  • Camalet S, Jülicher F (2000) Generic aspects of axonemal beating. New J Phys 2:1–23

    MathSciNet  Google Scholar 

  • Camalet S, Jülicher F, Prost J (1999) Self-organized beating and swimming of internally driven filaments. Phys Rev Lett 82(7):1590–1593

    ADS  Google Scholar 

  • Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA (1999) Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA 96(9):4908–4913

    ADS  Google Scholar 

  • Cameron LA, Giardini PA, Soo FS, Theriot JA (2000) Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 1(2):110–119

    Google Scholar 

  • Carlsson AE (2001) Growth of branched actin networks against obstacles. Biophys J 81(4):1907–1923

    MathSciNet  Google Scholar 

  • Carlsson AE (2003) Growth velocities of branched actin networks. Biophys J 84(5):2907–2918

    Google Scholar 

  • Chaen S, Inoue J, Sugi H (1995) The force-velocity relationship of the ATP-dependent actin -myosin sliding causing cytoplasmic streaming in algal cells, studied using a centrifuge microscope. J Exp Biol 198(Pt 4):1021–1027

    Google Scholar 

  • Chowdhury D, Schadschneider A, Nishinari K (2005) Physics of transport and traffic phenomena in biology from molecular motors and cells to organisms. Phys Life Rev 2(4):318–352

    ADS  Google Scholar 

  • Cossart P, Bierne H (2001) The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr Opin Immunol 13(1):96–103

    Google Scholar 

  • Coussen F, Choquet D, Sheetz MP, Erickson HP (2002) Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 115(Pt 12):2581–2590

    Google Scholar 

  • de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359(6392):254–256

    ADS  Google Scholar 

  • de Gennes P-G, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, New York

    Google Scholar 

  • Derrida B (1983) Velocity and diffusion constant of a periodic one-dimensional hopping model. J Stat Phys 31(3):433

    ADS  MathSciNet  Google Scholar 

  • Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule -destabilizing enzymes. Cell 96(1):69–78

    Google Scholar 

  • Dickinson RB, Purich DL (2007) Nematode sperm motility: nonpolar filament polymerization mediated by end-tracking motors. Biophys J 92(2):622–631

    Google Scholar 

  • Dickinson RB, Caro L, Purich DL (2004) Force generation by cytoskeletal filament end-tracking proteins. Biophys J 87(4):2838–2854

    Google Scholar 

  • Dogterom M, Yurke B (1997) Measurement of the force-velocity relation for growing microtubule s. Science 278(5339):856–860

    ADS  Google Scholar 

  • Dogterom M, Kerssemakers JWJ, Romet-Lemonne G, Janson ME (2005) Force generation by dynamic microtubules. Curr Opin Cell Biol 17(1):67–74

    Google Scholar 

  • Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103

    ADS  Google Scholar 

  • dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473

    Google Scholar 

  • Duke T, Leibler S (1996) Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys J 71(3):1235–1247

    Google Scholar 

  • Endow SA, Higuchi H (2000) A mutant of the motor protein kinesin that moves in both directions on microtubule s. Nature 406(6798):913–916

    ADS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Google Scholar 

  • Erickson HP (2007) Evolution of the cytoskeleton. Bioessays 29(7):668–677

    Google Scholar 

  • Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93(1):519–523

    ADS  Google Scholar 

  • Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310(5972):58–61

    ADS  Google Scholar 

  • Evans MR, Foster DP, Godreche C, Mukamel D (1995) Spontaneous symmetry breaking in a one dimensional driven diffusive system. Phys Rev Lett 74(2):208–211

    ADS  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102

    ADS  Google Scholar 

  • Faivre-Moskalenko C, Dogterom M (2002) Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. Proc Natl Acad Sci USA 99(26):16788–16793

    ADS  Google Scholar 

  • Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10):3796–3805

    Google Scholar 

  • Feynman RP, Leighton RB, Sands M (1963) The Feynman lectures on physics, vol 1. Addison-Wesley, Reading

    Google Scholar 

  • Fisher ME (1998) Renormalization group theory: its basis and formulation in statistical physics. Rev Mod Phys 70(2):653–681

    ADS  MATH  Google Scholar 

  • Fisher ME, Kolomeisky AB (1999) The force exerted by a molecular motor. Proc Natl Acad Sci USA 96(12):6597–6602

    ADS  Google Scholar 

  • Fletcher DA, Theriot JA (2004) An introduction to cell motility for the physical scientist. Phys Biol 1(1–2):T1–T10

    ADS  Google Scholar 

  • Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M (2007) Direct measurement of force generation by actin filament polymerization using an optical trap. PNAS 104(7):2181–2186

    ADS  Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus flytrap snaps. Nature 433(7024):421–425

    ADS  Google Scholar 

  • Frey E, Täuber UC, Cauber U (1994) 2-loop renormalization-group analysis of the Burgers-Kardar-Parisi-Zhang equation. Phys Rev E 50(2):1024–1045

    ADS  MathSciNet  Google Scholar 

  • Frischknecht F, Way M (2001) Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 11(1):30–38

    Google Scholar 

  • Fujita H, Ishiwata S (1998) Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J 75(3):1439–1445

    Google Scholar 

  • Fukui Y (2002) Mechanistics of amoeboid locomotion: signal to forces. Cell Biol Int 26(11):933–944

    Google Scholar 

  • Fygenson DK, Marko JF, Libchaber A (1997) Mechanics of microtubule-based membrane extension. Phys Rev Lett 79(22):4497–4500

    ADS  Google Scholar 

  • Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2004a) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    ADS  Google Scholar 

  • Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2004b) Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 93(18):188102

    ADS  Google Scholar 

  • Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F- actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci USA 103(6):1762–1767

    ADS  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805

    Google Scholar 

  • Gerbal F, Chaikin P, Rabin Y, Prost J (2000) An elastic analysis of Listeria monocytogenes propulsion. Biophys J 79(5):2259–2275

    Google Scholar 

  • Giardini PA, Fletcher DA, Theriot JA (2003) Compression forces generated by actin comet tails on lipid vesicles. Proc Natl Acad Sci USA 100(11):6493–6498

    ADS  Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubule s and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934

    Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386

    Google Scholar 

  • Goldberg MB (2001) Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65(4):595–626

    Google Scholar 

  • Granger C, Cyr R (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114(Pt 3):599–607

    Google Scholar 

  • Grill SW, Gonczy P, Stelzer EH, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the caenorhabditis elegans embryo. Nature 409(6820):630–633

    ADS  Google Scholar 

  • Grill SW, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys Rev Lett 94(10):108104

    ADS  Google Scholar 

  • Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422(6933):775–781

    ADS  Google Scholar 

  • Gueron S, Levit-Gurevich K, Liron N, Blum JJ (1997) Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc Natl Acad Sci USA 94(12):6001–6006

    ADS  MATH  Google Scholar 

  • Guirao B, Joanny J-F (2007) Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys J 92(6):1900–1917

    Google Scholar 

  • Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125(7):1361–1374

    Google Scholar 

  • Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891–895

    Google Scholar 

  • Hanney T, Evans MR (2004) Condensation transitions in a two-species zero-range process. Phys Rev E Stat Nonlinear Soft Matter Phys 69(1 Pt 2):016107

    ADS  Google Scholar 

  • Hanson J, Huxley HE (1953) Structural basis of the cross-striations in muscle. Nature 172(4377):530–532

    ADS  Google Scholar 

  • Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92(11):118101

    ADS  Google Scholar 

  • Hayden JH, Bowser SS, Rieder CL (1990) Kinetochores capture astral microtubule s during chromosome attachment to the mitotic spindle: Direct visualization in live newt lung cells. J Cell Biol 111(3):1039–1045

    Google Scholar 

  • Heintzelman MB (2003) Gliding motility: the molecules behind the motion. Curr Biol 13(2):R57–R59

    Google Scholar 

  • Hill TL (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle, part I. Prog Biophys Mol Biol 28:267–340

    Google Scholar 

  • Hinrichsen H (2006) Non-equilibrium phase transitions. Physica A 369(1):1–28

    ADS  MathSciNet  Google Scholar 

  • Hoffman BD, Massiera G, Van Citters KM, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103(27):10259–10264

    ADS  Google Scholar 

  • Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49(3):435–479

    ADS  Google Scholar 

  • Holy TE, Dogterom M, Yurke B, Leibler S (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci USA 94(12):6228–6231

    ADS  Google Scholar 

  • Howard J (1997) Molecular motors: structural adaptations to cellular functions. Nature 389(6651):561–567

    ADS  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422(6933):753–758

    ADS  Google Scholar 

  • Howard M, Rutenberg AD (2003) Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys Rev Lett 90(12):128102

    ADS  Google Scholar 

  • Humphrey D, Duggan C, Saha D, Smith D, Käs J (2002) Active fluidization of polymer networks through molecular motors. Nature 416(6879):413–416

    ADS  Google Scholar 

  • Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11(2):445–457

    Google Scholar 

  • Huxley AF (1957a) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173(4412):971–973

    ADS  Google Scholar 

  • Huxley HE (1953a) Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta 12(3):387–394

    Google Scholar 

  • Huxley HE (1953b) X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci 141(902):59–62

    ADS  Google Scholar 

  • Huxley HE (1957b) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3(5):631–648

    Google Scholar 

  • Huxley HE (1996) A personal view of muscle and motility mechanisms. Annu Rev Physiol 58:1–19

    ADS  Google Scholar 

  • Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271(8):1403–1415

    Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    ADS  Google Scholar 

  • Hyman AA, Karsenti E (1996) Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84(3):401–410

    Google Scholar 

  • Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12(Spec no 1):R27–R35

    Google Scholar 

  • Inoue S, Salmon ED (1995) Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6(12):1619–1640

    Google Scholar 

  • Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier MF (1995) Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444

    Google Scholar 

  • Italiano JE Jr, Roberts TM, Stewart M, Fontana CA (1996) Reconstitution in vitro of the motile apparatus from the amoeboid sperm of ascaris shows that filament assembly and bundling move membranes. Cell 84(1):105–114

    Google Scholar 

  • Italiano JE Jr, Stewart M, Roberts TM (1999) Localized depolymerization of the major sperm protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm. J Cell Biol 146(5):1087–1096

    Google Scholar 

  • Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160

    Google Scholar 

  • Janson ME, Dogterom M (2004) Scaling of microtubule force-velocity curves obtained at different tubulin concentrations. Phys Rev Lett 92(24):248101

    ADS  Google Scholar 

  • Joanny J-F, Jülicher F, Prost J (2003) Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. Phys Rev Lett 90(16):168102

    ADS  Google Scholar 

  • Joanny J-F, Jülicher F, Kruse K, Prost J (2007) Hydrodynamic theory for multi-component active polar gels. New J Phys 9:422

    Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in bacillus subtilis. Cell 104(6):913–922

    Google Scholar 

  • Jülicher F, Prost J (1995) Cooperative molecular motors. Phys Rev Lett 75(13):2618–2621

    ADS  Google Scholar 

  • Jülicher F, Prost J (1997) Spontaneous oscillations of collective molecular motors. Phys Rev Lett 78(23):4510–4513

    ADS  Google Scholar 

  • Jülicher F, Ajdari A, Prost J (1997) Modeling molecular motors. Rev Mod Phys 69(4):1269–1281

    ADS  Google Scholar 

  • Jülicher F, Kruse K, Prost J, Joanny JF (2007) Active behavior of the cytoskeleton. Phys Rep 449(1–3):3–28

    ADS  MathSciNet  Google Scholar 

  • Jurado C, Haserick JR, Lee J (2005) Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin. Mol Biol Cell 16(2):507–518

    Google Scholar 

  • Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115(4):475–487

    Google Scholar 

  • Karki S, Holzbaur EL (1999) Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 11(1):45–53

    Google Scholar 

  • Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294(5542):543–547

    ADS  Google Scholar 

  • Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107

    Google Scholar 

  • Kaverina I, Krylyshkina O, Small JV (2002) Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34(7):746–761

    Google Scholar 

  • King KL, Essig J, Roberts TM, Moerland TS (1994) Regulation of the ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motil Cytoskeleton 27(3):193–205

    Google Scholar 

  • Klumpp S, Lipowsky R (2004a) Asymmetric simple exclusion processes with diffusive bottlenecks. Phys Rev E Stat Nonlinear Soft Matter Phys 70(6 Pt 2):066104

    Google Scholar 

  • Klumpp S, Lipowsky R (2004b) Phase transitions in systems with two species of molecular motors. Europhys Lett 66(1):90–96

    ADS  Google Scholar 

  • Kolomeisky AB, Fisher ME (2001) Force-velocity relation for growing microtubule s. Biophys J 80(1):149–154

    Google Scholar 

  • Kondo S (2002) The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells 7(6):535–541

    Google Scholar 

  • Kozlov MM, Mogilner A (2007) Model of polarization and bistability of cell fragments. Biophys J 93(11):3811–3819

    Google Scholar 

  • Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubule s and the actin cytoskeleton. Nat Cell Biol 4(4):294–301

    Google Scholar 

  • Kruse K, Jülicher F (2000) Actively contracting bundles of polar filaments. Phys Rev Lett 85(8):1778–1781

    ADS  Google Scholar 

  • Kruse K, Jülicher F (2003) Self-organization and mechanical properties of active filament bundles. Phys Rev E Stat Nonlinear Soft Matter Phys 67(5 Pt 1):051913

    ADS  Google Scholar 

  • Kruse K, Jülicher F (2006) Dynamics and mechanics of motor-filament systems. Eur Phys J E Soft Matter 20(4):459–465

    Google Scholar 

  • Kruse K, Sekimoto K (2002) Growth of fingerlike protrusions driven by molecular motors. Phys Rev E Stat Nonlinear Soft Matter Phys 66(3 Pt 1):031904

    ADS  Google Scholar 

  • Kruse K, Camalet S, Jülicher F (2001) Self-propagating patterns in active filament bundles. Phys Rev Lett 87(13):138101

    ADS  Google Scholar 

  • Kruse K, Zumdieck A, Jülicher F (2003) Continuum theory of contractile fibres. Europhys Lett 64(5):716–722

    ADS  Google Scholar 

  • Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2004) Asters, vortices, and rotating spirals in active gels of polar filaments. Phys Rev Lett 92(7):078101

    ADS  Google Scholar 

  • Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E Soft Matter 16(1):5–16

    Google Scholar 

  • Kruse K, Joanny JF, Jülicher F, Prost J (2006) Contractility and retrograde flow in lamellipodium motion. Phys Biol 3(2):130–137

    ADS  Google Scholar 

  • Lacayo CI, Theriot JA (2004) Listeria monocytogenes actin-based motility varies depending on subcellular location: a kinematic probe for cytoarchitecture. Mol Biol Cell 15(5):2164–2175

    Google Scholar 

  • Landau LD, Lifschitz EM (1995) The theory of elasticity. Butterworth-Heinemann, Boston

    Google Scholar 

  • Lasa I, Gouin E, Goethals M, Vancompernolle K, David V, Vandekerckhove J, Cossart P (1997) Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J 16(7):1531–1540

    Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Google Scholar 

  • Lee HY, Kardar M (2001) Macroscopic equations for pattern formation in mixtures of microtubule s and molecular motors. Phys Rev E Stat Nonlinear Soft Matter Phys 64(5 Pt 2):056113

    ADS  Google Scholar 

  • Lee J, Ishihara A, Jacobson K (1993) The fish epidermal keratocyte as a model system for the study of cell locomotion. Symp Soc Exp Biol 47:73–89

    Google Scholar 

  • Leibler S, Huse DA (1993) Porters versus rowers: a unified stochastic model of motor proteins. J Cell Biol 121(6):1357–1368

    Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16(4):769–782

    Google Scholar 

  • Lipowsky R, Klumpp S, Nieuwenhuizen TM (2001) Random walks of cytoskeletal motors in open and closed compartments. Phys Rev Lett 87(10):108101

    ADS  Google Scholar 

  • Liverpool TB (2003) Anomalous fluctuations of active polar filaments. Phys Rev E Stat Nonlinear Soft Matter Phys 67(3 Pt 1):031909

    ADS  Google Scholar 

  • Liverpool TB (2006) Active gels: where polymer physics meets cytoskeletal dynamics. Philos Trans A Math Phys Eng Sci 364(1849):3335–3355

    ADS  Google Scholar 

  • Liverpool TB, Marchetti MC (2003) Instabilities of isotropic solutions of active polar filaments. Phys Rev Lett 90(13):138102

    ADS  Google Scholar 

  • Liverpool TB, Marchetti MC (2005) Bridging the microscopic and the hydrodynamic in active filament solutions. Europhys Lett 69(5):846–852

    ADS  Google Scholar 

  • Liverpool TB, Marchetti MC (2006) Rheology of active filament solutions. Phys Rev Lett 97(26):268101

    ADS  Google Scholar 

  • Liverpool TB, Marchetti MC (2008) Hydrodynamics and rheology of active polar filaments. In: Lenz P (ed) Cell motility. Springer, New York

    Google Scholar 

  • Liverpool TB, Maggs AC, Ajdari A (2001) Viscoelasticity of solutions of motile polymers. Phys Rev Lett 86(18):4171–4174

    ADS  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401(6753):613–616

    ADS  Google Scholar 

  • Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391(6663):203–206

    ADS  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10(25):4617–4624

    Google Scholar 

  • MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1):1–5

    Google Scholar 

  • Machesky LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146(2):267–272

    Google Scholar 

  • Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD (1999) Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci USA 96(7):3739–3744

    ADS  Google Scholar 

  • Machin KE (1958) Wave propagation along flagella. J Exp Biol 35:796

    Google Scholar 

  • Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71(10):1477–1481

    ADS  Google Scholar 

  • Magnasco MO (1994) Molecular combustion motors. Phys Rev Lett 72(16):2656–2659

    ADS  Google Scholar 

  • Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288(5463):95–100

    ADS  Google Scholar 

  • Maney T, Wagenbach M, Wordeman L (2001) Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem 276(37):34753–34758

    Google Scholar 

  • Manson MD, Armitage JP, Hoch JA, Macnab RM (1998) Bacterial locomotion and signal transduction. J Bacteriol 180(5):1009–1022

    Google Scholar 

  • Marcy Y, Prost J, Carlier M-F, Sykes C (2004) Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc Natl Acad Sci USA 101(16):5992–5997

    ADS  Google Scholar 

  • Martin PC, Parodi O, Pershan P (1972) Unified hydrodynamic theory for crystals, liquid crystals and normal fluids. Phys Rev A 6:2401

    ADS  Google Scholar 

  • McGrath JL, Eungdamrong NJ, Fisher CI, Peng F, Mahadevan L, Mitchison TJ, Kuo SC (2003a) The force-velocity relationship for the actin-based motility of Listeria monocytogenes. Curr Biol 13(4):329–332

    Google Scholar 

  • McGrath JL, Somlo S, Makova S, Tian X, Brueckner M (2003b) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73

    Google Scholar 

  • Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1(1):72–74

    Google Scholar 

  • Miao L, Vanderlinde O, Stewart M, Roberts TM (2003) Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science 302(5649):1405–1407

    ADS  Google Scholar 

  • Michie KA, Lowe J (2006) Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 75:467–492

    Google Scholar 

  • Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98(13):7004–7011

    ADS  Google Scholar 

  • Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–E90

    Google Scholar 

  • Mitchison TJ, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–242

    ADS  Google Scholar 

  • Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84(3):371–379

    Google Scholar 

  • Mitchison TJ, Salmon ED (2001) Mitosis: a history of division. Nat Cell Biol 3(1):E17–E21

    Google Scholar 

  • Mogilner A (2006) On the edge: modeling protrusion. Curr Opin Cell Biol 18(1):32–39

    Google Scholar 

  • Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophys J 71(6):3030–3045

    Google Scholar 

  • Mogilner A, Oster G (2003a) Cell biology. Shrinking gels pull cells. Science 302(5649):1340–1341

    Google Scholar 

  • Mogilner A, Oster G (2003b) Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys J 84(3):1591–1605

    Google Scholar 

  • Mogilner A, Oster G (2003c) Polymer motors: pushing out the front and pulling up the back. Curr Biol 13(18):R721–R733

    Google Scholar 

  • Mohanty PK, Kruse K (2007) Driven diffusive systems of active filament bundles. J Stat Phys 128(1–2):95–110

    ADS  MATH  MathSciNet  Google Scholar 

  • Mukherjee A, Dai K, Lutkenhaus J (1993) Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 90(3):1053–1057

    ADS  Google Scholar 

  • Nakazawa H, Sekimoto K (1996) Polarity sorting in a bundle of actin filaments by two-headed myosins. J Phys Soc Jpn 65(8):2404–2407

    ADS  Google Scholar 

  • Nedelec F, Surrey T, Maggs AC (2001) Dynamic concentration of motors in microtubule arrays. Phys Rev Lett 86(14):3192–3195

    ADS  Google Scholar 

  • Nedelec FJ, Surrey T, Maggs AC, Leibler S (1997) Self-organization of microtubule s and motors. Nature 389(6648):305–308

    ADS  Google Scholar 

  • Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422(6933):766–774

    ADS  Google Scholar 

  • Nieuwenhuizen TM, Klumpp S, Lipowsky R (2004) Random walks of molecular motors arising from diffusional encounters with immobilized filaments. Phys Rev E 69(6):061911

    ADS  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391(6663):199–203

    ADS  Google Scholar 

  • Noireaux V, Golsteyn RM, Friederich E, Prost J, Antony C, Louvard D, Sykes C (2000) Growing an actin gel on spherical surfaces. Biophys J 78(3):1643–1654

    Google Scholar 

  • Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte J-C, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121(4):633–644

    Google Scholar 

  • Okamura N, Ishiwata S (1988) Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils. J Muscle Res Cell Motil 9(2):111–119

    Google Scholar 

  • Ott A, Magnasco M, Simon A, Libchaber A (1993) Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 48(3):R1642–R1645

    Google Scholar 

  • Paluch E, Sykes C, Prost J, Bornens M (2006a) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16(1):5–10

    Google Scholar 

  • Paluch E, van der Gucht J, Joanny J-F, Sykes C (2006b) Deformations in actin comets from rocketing beads. Biophys J 91(8):3113–3122

    Google Scholar 

  • Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin E-L (2006) Thermal fluctuations of grafted microtubule s provide evidence of a length-dependent persistence length. Proc Natl Acad Sci USA 103(27):10248–10253

    ADS  Google Scholar 

  • Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin-based motility. Science 292(5521):1502–1506

    ADS  Google Scholar 

  • Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284(5415):765–770

    ADS  Google Scholar 

  • Parmeggiani A, Franosch T, Frey E (2003) Phase coexistence in driven one-dimensional transport. Phys Rev Lett 90(8):086601

    ADS  Google Scholar 

  • Parmeggiani A, Jülicher F, Ajdari A, Prost J (1999) Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 60(2 Pt B):2127–2140

    Google Scholar 

  • Peskin CS, Ermentrout GB, Oster GF (1994) Cell mechanics and cellular engineering. Springer, New York

    Google Scholar 

  • Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the brownian ratchet. Biophys J 65(1):316–324

    Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization – a unified approach to nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  • Plastino J, Lelidis I, Prost J, Sykes C (2004) The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth. Eur Biophys J 33(4):310–320

    Google Scholar 

  • Plastino J, Sykes C (2005) The actin slingshot. Curr Opin Cell Biol 17(1):62–66

    Google Scholar 

  • Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422(6933):741–745

    ADS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Google Scholar 

  • Porter ME (1996) Axonemal dyneins: assembly, organization, and regulation. Curr Opin Cell Biol 8(1):10–17

    Google Scholar 

  • Prost J, Chauwin JF, Peliti L, Ajdari A (1994) Asymmetric pumping of particles. Phys Rev Lett 72(16):2652–2655

    ADS  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3

    ADS  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: rho GTPases lead the way. Dev Biol 265(1):23–32

    Google Scholar 

  • Ramaswamy S, Simha RA, Toner J (2003) Active nematics on a substrate: giant number fluctuations and long-time tails. Europhys Lett 62(2):196–202

    ADS  Google Scholar 

  • Ramaswamy S, Toner J, Prost J (2000) Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys Rev Lett 84(15):3494–3497

    ADS  Google Scholar 

  • Raychaudhuri D, Park JT (1992) Escherichia coli cell-division gene FtsZ encodes a novel GTP-binding protein. Nature 359(6392):251–254

    ADS  Google Scholar 

  • Reimann P (2002) Brownian motors: noisy transport far from equilibrium. Phys Rep 361:57–265

    ADS  MATH  MathSciNet  Google Scholar 

  • Revenu C, Athman R, Robine S, Louvard D (2004) The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol 5(8):635–646

    Google Scholar 

  • Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11(12):471–477

    Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709

    ADS  Google Scholar 

  • Rieder CL, Khodjakov A (2003) Mitosis through the microscope: advances in seeing inside live dividing cells. Science 300(5616):91–96

    ADS  Google Scholar 

  • Risler T, Prost J, Jülicher F (2004) Universal critical behavior of noisy coupled oscillators. Phys Rev Lett 93(17):175702

    ADS  Google Scholar 

  • Riveline D, Ott A, Jülicher F, Winkelmann DA, Cardoso O, Lacapere JJ, Magnusdottir S, Viovy JL, Gorre-Talini L, Prost J (1998) Acting on actin: the electric motility assay. Eur Biophys J 27(4):403–408

    Google Scholar 

  • Roberts TM, Stewart M (2000) Acting like actin. The dynamics of the nematode major sperm protein (MSP) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J Cell Biol 149(1):7–12

    Google Scholar 

  • Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12(1):57–62

    Google Scholar 

  • Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2):413–439

    MATH  MathSciNet  Google Scholar 

  • Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20):8281–8286

    ADS  Google Scholar 

  • Sammak PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332(6166):724–726

    ADS  Google Scholar 

  • Sankararaman S, Menon GI, Sunil Kumar PB (2004) Self-organized pattern formation in motor-microtubule mixtures. Phys Rev E Stat Nonlinear Soft Matter Phys 70(3 Pt 1):031905

    ADS  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular motors. Nature 422(6933):759–765

    ADS  Google Scholar 

  • Schmittmann B, Zia RKP (1995) Statistical mechanics of driven diffusive systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 17. Academic, London

    Google Scholar 

  • Scholey JM, Brust-Mascher I, Mogilner A (2003) Cell division. Nature 422(6933):746–752

    ADS  Google Scholar 

  • Schuyler SC, Pellman D (2001) Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105(4):421–424

    Google Scholar 

  • Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 19. Academic, London

    Google Scholar 

  • Sekimoto K, Nakazawa H (1998) Contraction of a bundle of actin filaments: 50 years after Szent-Gyorgyi, vol 1. World Scientific, Singapore, p 394

    Google Scholar 

  • Sekimoto K, Prost J, Jülicher F, Boukellal H, Bernheim-Grosswasser A (2004) Role of tensile stress in actin gels and a symmetry-breaking instability. Eur Phys J E Soft Matter 13(3):247–259

    Google Scholar 

  • Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70(3):729–754

    Google Scholar 

  • Simha RA, Ramaswamy S (2002) Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89(5):058101

    ADS  Google Scholar 

  • Small JV, Geiger B, Kaverina I, Bershadsky A (2002a) How do microtubule s guide migrating cells? Nat Rev Mol Cell Biol 3(12):957–964

    Google Scholar 

  • Small JV, Kaverina I (2003) Microtubule s meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15(1):40–47

    Google Scholar 

  • Small JV, Stradal T, Vignal E, Rottner K (2002b) The lamellipodium: where motility begins. Trends Cell Biol 12(3):112–120

    Google Scholar 

  • Spudich JA (1994) How molecular motors work. Nature 372(6506):515–518

    ADS  Google Scholar 

  • Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194

    ADS  Google Scholar 

  • Surrey T, Nedelec F, Leibler S, Karsenti E (2001) Physical properties determining self-organization of motors and microtubules. Science 292(5519):1167–1171

    ADS  Google Scholar 

  • Täuber UC, Howard M, Vollmayr-Lee BP (2005) Applications of field-theoretic renormalization group methods to reaction-diffusion problems. J Phys A 38(17):R79–R131

    MATH  Google Scholar 

  • Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin -dependent propulsion of endosomes and lysosomes by recruitment of N-WASp. J Cell Biol 148(3):519–530

    Google Scholar 

  • Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc A 209:447

    ADS  MATH  Google Scholar 

  • Theriot JA (2000) The polymerization motor. Traffic 1(1):19–28

    Google Scholar 

  • Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357(6375):257–260

    ADS  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109(4 Pt 1):1597–1608

    Google Scholar 

  • Toner J, Tu YH (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58(4):4828–4858

    ADS  MathSciNet  Google Scholar 

  • Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153(2):397–411

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc (Lond) 237:37

    ADS  Google Scholar 

  • Upadhyaya A, Chabot JR, Andreeva A, Samadani A, van Oudenaarden A (2003) Probing polymerization forces by using actin -propelled lipid vesicles. Proc Natl Acad Sci USA 100(8):4521–4526

    ADS  Google Scholar 

  • Upadhyaya A, van Oudenaarden A (2003) Biomimetic systems for studying actin-based motility. Curr Biol 13(18):R734–R744

    Google Scholar 

  • Urrutia R, McNiven MA, Albanesi JP, Murphy DB, Kachar B (1991) Purified kinesin promotes vesicle motility and induces active sliding between microtubule s in vitro. Proc Natl Acad Sci USA 88(15):6701–6705

    ADS  Google Scholar 

  • Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288(5463):88–95

    ADS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule -based motility. Cell 42(1):39–50

    Google Scholar 

  • Vallotton P, Danuser G, Bohnet S, Meister J-J, Verkhovsky AB (2005) Tracking retrograde flow in keratocytes: news from the front. Mol Biol Cell 16(3):1223–1231

    Google Scholar 

  • Van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413(6851):39–44

    ADS  Google Scholar 

  • Verkhovsky AB, Svitkina TM, Borisy GG (1999) Self-polarization and directional motility of cytoplasm. Curr Biol 9(1):11–20

    Google Scholar 

  • Vernon GG, Woolley DM (2004) Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum. Biophys J 87(6):3934–3944

    Google Scholar 

  • Vilfan A, Frey E, Schwabl F (1998) Elastically coupled molecular motors. Eur Phys J B 3(4):535–546

    ADS  Google Scholar 

  • Vilfan A, Frey E, Schwabl F (1999) Force-velocity relations of a two-state crossbridge model for molecular motors. Europhys Lett 45(3):283–289

    ADS  Google Scholar 

  • Vilfan A, Jülicher F (2006) Hydrodynamic flow patterns and synchronization of beating cilia. Phys Rev Lett 96(5):058102

    ADS  Google Scholar 

  • Voituriez R, Joanny JF, Prost J (2006) Generic phase diagram of active polar films. Phys Rev Lett 96(2):028102

    ADS  Google Scholar 

  • Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (1999) Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1(1):45–50

    Google Scholar 

  • Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281(5373):105–108

    ADS  Google Scholar 

  • Wiesner S, Helfer E, Didry D, Ducouret G, Lafuma F, Carlier M-F, Pantaloni D (2003) A biomimetic motility assay provides insight into the mechanism of actin-based motility. J Cell Biol 160(3):387–398

    Google Scholar 

  • Wolgemuth CW, Miao L, Vanderlinde O, Roberts T, Oster G (2005) MSP dynamics drives nematode sperm locomotion. Biophys J 88(4):2462–2471

    Google Scholar 

  • Yasuda K, Shindo Y, Ishiwata S (1996) Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys J 70(4):1823–1829

    Google Scholar 

  • Yeh E, Yang C, Chin E, Maddox P, Salmon ED, Lew DJ, Bloom K (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11(11):3949–3961

    Google Scholar 

  • Yoshida K, Soldati T (2006) Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119(Pt 18):3833–3844

    Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – a marvelous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677

    Google Scholar 

  • Zhou FQ, Cohan CS (2001) Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization. J Cell Biol 153(5):1071–1084

    Google Scholar 

  • Ziebert F, Zimmermann W (2004) Pattern formation driven by nematic ordering of assembling biopolymers. Phys Rev E 70(2):022902

    ADS  Google Scholar 

  • Ziebert F, Zimmermann W (2005) Nonlinear competition between asters and stripes in filament-motor systems. Eur Phys JE 18(1):41–54

    Google Scholar 

  • Zinn-Justin J (2002) Quantum field theory and critical phenomena, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Zumdieck A, Lagomarsino MC, Tanase C, Kruse K, Mulder B, Dogterom M, Jülicher F (2005) Continuum description of the cytoskeleton: ring formation in the cell cortex. Phys Rev Lett 95(25):258103

    ADS  Google Scholar 

Books and Reviews

  • Alberts B et al (2002b) The cytoskeleton. The mechanics of cell division. In: Gibbs S (ed) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Bray D (2000) In: Day M (ed) Cell movements. Garland, New York

    Google Scholar 

  • Lenz P (ed) (2008) Cell motility. Biological and medical physics, biomedical engineering. Springer, New York

    Google Scholar 

  • Reviews of special interest and that cover the subjects treated in this article can be found in the following references: Ananthakrishnan and Ehrlicher (2007), Erickson (2007), Fletcher and Theriot (2004), Huxley (2004), Jülicher et al. (1997, 2007), Kaverina et al. (2002), Liverpool (2006), Plastino and Sykes (2005), Pollard (2003), Ridley et al. (2003), Shih and Rothfield (2006), Small et al. (2002)]

    Google Scholar 

Download references

Acknowledgments

To write this entry, I grandly benefited from Karsten Kruse’s habilitation thesis, which constituted a very good starting point as an extensive review of the existing biophysical literature on the cytoskeleton. I acknowledge Cécile Sykes and Jean-François Joanny for discussions, careful reading of the manuscript, and constructive criticisms and suggestions. I also acknowledge Andrew Callan-Jones for pointing to me important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Risler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Risler, T. (2013). Cytoskeleton and Cell Motility. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_112-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_112-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics