Skip to main content

Cryosphere Models

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 447 Accesses

Definition of the Subject and Its Importance

The cryosphere comprises all terrestrial forms of snow and ice – snow cover, floating ice, glaciers, ice sheets, frozen ground, and permafrost. It is a critical element of the climate system because of its high reflectivity, its insulating effects on the land and ocean, and its storage of water on short and long time scales (Barry 2002). Numerical models of components of the cryosphere have been developed over the last 30 years or so, and some elements of these are now incorporated in coupled climate models and earth system models.

Introduction

Currently there are no comprehensive models of the entire cryosphere. Rather there is a wide range of models of components of the cryosphere – snow cover, floating ice, glaciers, ice sheets, frozen ground, and permafrost – and various components are treated with varying degrees of detail in coupled atmosphere–ocean–land models. Cryospheric processes are generally parameterized in such earth system...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Cryosphere:

All forms of terrestrial snow and ice

Newtonian viscous body:

A body whose stress at each point is linearly proportional to its strain rate at that point

Bibliography

Primary Literature

  • Anisimov OA, Nelson FE (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climate change. Global Planet Change 14:59–72

    Article  ADS  Google Scholar 

  • Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Global Planet Change 15:61–77

    Article  ADS  Google Scholar 

  • Anisimov OA, Shiklomanov NI, Nelson FE (2002) Variability of seasonal thaw depth in permafrost regions: a stochastic modeling approach. Ecol Model 153:217–227

    Article  Google Scholar 

  • Armstrong RL, Brodzik MJ, Knowles K, Savoie M (2005) Global monthly EASE-Grid snow water equivalent climatology. National Snow and Ice Data Center, Boulder. Digital media

    Google Scholar 

  • Barry RG (1996) The parameterization of surface albedo for sea ice and its snow cover. Progr Phys Geog 20:61–77

    Article  Google Scholar 

  • Barry RG (2002) The role of snow and ice in the global climate system: a review. Polar Geog 24:235–246

    Article  Google Scholar 

  • Bartelt P, Lehning M (2002) A physical SNOWPACK model for the Swiss Avalanche Warning Services. Part I: numerical model. Cold Reg Sci Technol 35(3):123–145

    Article  Google Scholar 

  • Bitz CM, Lipscomb WH (1999) An energy-conserving thermodynamic model of sea ice. J Geophys Res 105:15669–15677

    Article  ADS  Google Scholar 

  • Bovis MJ, Mears AI (1976) Statistical prediction of snow avalanche runout from terrain variables in Colorado. Arct Alp Res 8:115–120

    Article  Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  • Budd WF, Jenssen D, Radok U (1971) Derived physical characteristics of the Antarctic ice sheet. ANARE Interim Report Series A (IV) Glaciology Publication

    Google Scholar 

  • Campbell WJ (1965) The wind-driven circulation of ice and water in a polar ocean. J Geophys Res 70:3279–3301

    Article  ADS  Google Scholar 

  • Coon MD, Knoke GS, Echert DS, Pritchard RS (1998) The architecture of anisotropic elastic-plastic sea ice mechanics constitutive law. J Geophys Res 103(C10):21915–21925

    Article  ADS  Google Scholar 

  • Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Ann Rev Earth Planet Sci 32:465–494

    Article  ADS  Google Scholar 

  • Ebert EE, Curry JA (1993) An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J Geophys Res 98(C6):10085–10110

    Article  ADS  Google Scholar 

  • Eisenman I, Untersteiner N, Wettlaufer JS (2007) On the reliability of simulated Arctic sea ice in global climate models. Geophys Res Lett 34, L10501. doi:10.1029/2007GL029914

    Article  ADS  Google Scholar 

  • Essery R, Yang ZL (2001) An overview of models participating in the snow model intercomparison project (SnowMIP). 8th Scientific Assembly of IAMAS, Innsbruck. http://www.cnrm.meteo.fr/snowmip/

  • Essery R, Li L, Pomeroy JW (1999) A distributed model of blowing snow over complex terrain. Hydrol Processes 13:2423–2438

    Article  ADS  Google Scholar 

  • Flato GM (2004) Sea-ice modelling. In: Bamber J, AJ P (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 367–390

    Chapter  Google Scholar 

  • Frei A, Robinson DA (1995) Evaluation of snow extent and its variability in the Atmospheric Model Intercomparison Project. J Geophys Res 103(D8):8859–8871

    Article  ADS  Google Scholar 

  • Frei A, Miller JA, Robinson DA (2003) Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J Geophys Res 108(D12):4369. doi:10.1029/2002JD003030

    Article  Google Scholar 

  • Gerdes R, Koeberle C (2007) Comparison of Arctic sea ice thickness variability in IPCC climate of the 20th century experiments and in ocean–sea ice hindcasts. J Geophys Res 112(C4):C04S13, 12 pp

    Google Scholar 

  • Glen J (1955) The creep of polycrystalline ice. Proc Roy Soc Lond A228:519–538

    Article  ADS  Google Scholar 

  • Goodrich LE (1982) The influence of snow cover on the ground thermal regime. Can Geotech J 19:421–432

    Article  Google Scholar 

  • Hedstrom N, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol Processes 12:1611–1525

    Article  ADS  Google Scholar 

  • Heil P, Hibler WD III (2002) Modeling the high-frequency component of Arctic sea ice drift and deformation. J Phys Oceanogr 32:3039–3057

    Article  ADS  Google Scholar 

  • Hibler WD III (1979) A dynamic-thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  ADS  Google Scholar 

  • Hibler WD III (2004) Modelling the dynamic response of sea ice. In: Bamber J, Payne AJ (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 227–334

    Chapter  Google Scholar 

  • Hibler WD III, Flato GM (1992) Sea ice models. In: Trenberth K (ed) Climate system modeling. Cambridge University Press, Cambridge, pp 413–436

    Google Scholar 

  • Hibler WD III, Schulson EM (2000) On modeling the anisotropic failure and flow of flawed sea ice. J Geophys Res 105(C7):17105–17120

    Article  ADS  Google Scholar 

  • Hoelzle M, Mittaz C, Etzelmueller B, Haeberli W (2001) Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments. Permafrost Periglac Processes 12:53–68

    Article  Google Scholar 

  • Holland MM, Bitz CM, Tremblay H (2006) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33, L23503. doi:10.1029/2006GL028024

    Article  ADS  Google Scholar 

  • Hopkins MA (1996) On the mesoscale interaction of lead ice and floes. J Geophys Res 101:18,315–18,326

    Article  ADS  Google Scholar 

  • Humlum O (2007) Modeling energy balance, surface temperatures, active layer depth and permafrost thickness around Longyeardalen, Svalbard. http://www.unis.no/research/geology/Geo_research/Ole/Modelling.htm

  • Hunke EC, Dukowicz JK (1997) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  ADS  Google Scholar 

  • Hunke EC, Holland MM (2007) Global atmospheric forcing data for Arctic ice-ocean modeling. J Geophys Res 112:C04S14, 13 pp

    Google Scholar 

  • Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Climate 12:2169–2188

    Article  ADS  Google Scholar 

  • Iken A, Roethlisberger H, Flotron A, Haeberli W (1983) The uplift of the Unteraargletscher at the beginning of the melt season – a consequence of water storage at the bed. J Glaciol 30:15–25

    Google Scholar 

  • Jin J, Gao X, Yang Z-L, Bales RC, Sorooshian S, Dickinson RE, Sun SF, Wu GX (1999) Comparative analyses of physically based snowmelt models for climate simulations. J Climate 12:2643–2657

    Article  ADS  Google Scholar 

  • Johnson M, Gaffigan S, Hunke E, Gerdes R (2007) A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J Geophys Res 112:C04S11, 16 pp

    Google Scholar 

  • Jordan R (1991) A one-dimensional temperature model for a snow cover. Technical documentation for SNTHERM special technical report 91-16. US Army Cold Regions Research and Engineering Laboratory, Hanover.

    Google Scholar 

  • Kudryavtsev VA et al (1974) Fundamentals of frost forecasting in geological engineering investigations. Nauka, Moscow. English translation: US Army Cold Regions Res Engr Lan, Hannover. Draft translation 1977

    Google Scholar 

  • Kwok R, Cunningham GF, Hibler WD III (2003) Sub-daily sea ice motion and deformation from RADARSAT observations. Geophys Res Lett 30(23):2218. doi:10.1029/2003GL018723

    Article  ADS  Google Scholar 

  • Lawrence DM, Slater AG (2007) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401, 5 pp

    Article  ADS  Google Scholar 

  • Lindsay RW, Stern HL (2005) A new Lagrangian model of Arctic sea ice. J Phys Oceanogr 34:272–283

    Article  ADS  Google Scholar 

  • Ling F, Zhang T-J (2004) A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water. Cold Reg Sci Technol 38:1–15

    Article  Google Scholar 

  • Liston GE, Hall DK (1995) An energy-balance model of lake-ice evolution. J Glaciol 41(138):373–382

    Google Scholar 

  • Lunardini V (1988) Freezing of soil with an unfrozen water content and variable thermal properties. US Army Cold Regions Research Engineering Lab, Hanover, p 31

    Google Scholar 

  • MacAyeal DR et al (1996) An ice-shelf model test based on the Ross ice shelf. Antarctica Ann Glaciol 23:46–51

    ADS  Google Scholar 

  • Martin Y, Gerdes R (2007) Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations. J Geophys Res 112(C4):C04S10, 13 pp

    Google Scholar 

  • Maykut G, Untersteiner N (1971) Some results from a time-dependent thermodynamic mode; of sea ice. J Geophys Res 76:1550–1575

    Article  ADS  Google Scholar 

  • McClung D, Schaerer P (2006) The avalanche handbook. The Mountaineers, Seattle

    Google Scholar 

  • Meehl GA, Boer GA, Covet C, Latif M, Stouffer RJ (1997) Intercomparison makes for a better climate model. EOS 78:445–446

    Article  ADS  Google Scholar 

  • Menard P et al (2002) Sensitivity of Great Slave Lake ice phenology to climate change. Squire V, Langhorne P (eds) Ice in the environment, vol 3, Proceedings of the 16th IAHR international symposium on Ice, International Association of Hydraulic Engineering and Research. Dunedin. pp 57–63

    Google Scholar 

  • Morgan VI, Jacka TH, Akermasn GJ, Clarke AL (1982) Outlet glacier and mass budget studies in Enderby, Kemp and MacRobertson Lands. Antarctica Ann Glaciol 3L:204–210

    ADS  Google Scholar 

  • Nelson FE, Outcalt DSI (1987) A computational method for prediction and regionalization of permafrost. Arct Alp Res 19:279–288

    Article  Google Scholar 

  • Nelson FE et al (1997) Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska. USA Arct Alp Res 29:367–378

    Article  Google Scholar 

  • Nick EM, van der Veen CJ, Oerlemans J (2007) Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. J Geophys Res 112:G03S24

    Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM Land Surface Scheme. Geophys Res Lett 34(8), L08591

    Article  Google Scholar 

  • Nye J (1951) The flow of glaciers and ice sheets as a problem in plasticity. Proc Roy Soc Lond A 207:554–572

    Article  ADS  MATH  Google Scholar 

  • Nye J (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J Glaciol 5:661–690

    Google Scholar 

  • Oelke C, Zhang T-J (2004) A model study of circum-Arctic soil temperatures. Permafrost Periglac Process 15:103–121

    Article  Google Scholar 

  • Oelke C et al (2003) Regional-scale modeling of soil freeze/thaw over the Arctic drainage basin. J Geophys Res 108(D10):4314

    Article  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677

    Article  ADS  Google Scholar 

  • Orowan E (1949) Remarks at the joint meeting of the British Glaciological Society, the British Rheologists’ Club and the Institute of Metals. J Glaciol 1:231–236

    Article  Google Scholar 

  • Overland JE, McNutt SL, Salo S, Groves J, Li S (1998) Arctic sea ice as a granular plastic. J Geophys Res 104(C10):21845–21867

    Article  ADS  Google Scholar 

  • Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84:311–337

    Article  ADS  Google Scholar 

  • Paterson WSB (1994) The physics of glaciers. Pergamon/Elsevier Science, New York, p 480

    Google Scholar 

  • Payne AJ et al (2000) Results from the EISMINT Phase 2 simplified geometry experiments: the effects of thermomechanical coupling. J Glaciol 46(153):227–238

    Article  Google Scholar 

  • Perla RI (1980) Avalanche release, motion, and impact. In: Colbeck SC (ed) Dynamics of snow and ice masses. Academic, New York, pp 397–462

    Chapter  Google Scholar 

  • Pomeroy JW, Parviainen J, Hedstrom N, Gray DM (1998) Coupled modelling of forest snow interception and sublimation. Hydrol Processes 12:2317–2337

    Article  ADS  Google Scholar 

  • Pritchard RS, Coon M, McPhee MG, Leavitt E (1977) Winter ice dynamics in the nearshore Beaufort Sea. Applied Physics Lab/University of Washington, Seattle, pp 37–93

    Google Scholar 

  • Raymond CF (1980) Temperate valley glaciers. In: Colbeck SC (ed) Dynamics of snow and ice masses. Academic, New York, pp 79–139

    Chapter  Google Scholar 

  • Riseborough D et al (2008) Recent advances in permafrost modelling. Permafrost Periglac Process 19(2):137–156

    Article  Google Scholar 

  • Romanovsky VE, Osterkamp TE, Duzbury NS (1997) An evaluation of three numerical models used in simulations of the active layer and permafrost temperature regimes. Cold Regions Sci Technol 26:195–201

    Article  Google Scholar 

  • Rutt IC et al (2009) The GLIMMER community ice sheet model. J Geophys Res 114(F02004):22pp

    Google Scholar 

  • Rutter N et al (2009) Evaluation of forest snow processes models (SnoMIP2). J Geophys Res 114(D6), D06111

    ADS  Google Scholar 

  • Saito K, Kimoto M, Zhang T, Takata K, Emori S (2007) Evaluating a high-resolution climate model: simulated hydrothermal regimes in frozen ground regions and their change under the global warming scenario. J Geophys Res 112:F02S11, 19 pp

    Google Scholar 

  • Sazonava TS, Romanovsky V (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafrost Periglac Proc 14:125–139

    Article  Google Scholar 

  • Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J Geophys Res 112:F03S28

    Google Scholar 

  • Shiklomanov NI, Nelson FE (1999) Analytic representation of the active layer thickness field, Kuparuk River Basin. Alaska Eccol Model 123:105–125

    Article  Google Scholar 

  • Shiklomanov NI, Nelson FE (2002) Active-layer mapping at regional scales: a 13-year spatial time series for the Kuparuk region, north-central Alaska. Permafrost Periglac Proc 13:219–230

    Article  Google Scholar 

  • Shiklomanov NI et al (2007) Comparison of model-produced active layer fields: results for northern Alaska. J Geophys Res 112(F2):F02S10

    Google Scholar 

  • Singh PS, Gan TY, Gobena AK (2009) Evaluating a hierarchy of snow melt models at a watershed in the Canadian Prairies. J Geophys Res 113, D04109

    ADS  Google Scholar 

  • Steele M, Flato GM (2000) Sea ice growth and modeling: a survey. In: Lewis EL et al (eds) The freshwater budget of the Arctic. Kluwer, Dordrecht, pp 549–587

    Chapter  Google Scholar 

  • Stroeve J et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34, L09501. doi:10.1029/2007GL029703

    Article  ADS  Google Scholar 

  • Tangborn WV (1999) A mass balance model that uses low-altitude meteorological observations and the area-altitude distribution of a glacier. Geogr Ann A 81(4):753–765

    Article  Google Scholar 

  • Thomas RH (1979) The dynamics of marine ice sheets. J Glaciol 24:167–177

    Google Scholar 

  • Tremblay L-B, Mysak LA (1997) Modeling sea ice as a granular material, including the dilatancy effect. J Phys Oceanogr 27:2342–2360

    Article  ADS  Google Scholar 

  • Trujillo E, Ramirez JA, Elder KJ (2007) Topographic, meteorologic and canopy controls on the scaling characteristics if the spatial distribution of snow depth fields. Water Resour Res 43, W07409

    Article  ADS  Google Scholar 

  • van der Veen CJ, Payne AJ (2004) Modelling land-ice dynamics. In: Bamber J, Payne AJ (eds) Mass balance of the cryosphere: observations and modelling of contemporary and future change. Cambridge University Press, Cambridge, pp 169–225

    Chapter  Google Scholar 

  • Vavrus SJ, Wynne RH, Foley JA (1996) Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol Oceanogr 41(5):822–831

    Article  Google Scholar 

  • Walsh S (1998) Global patterns of lake ice phenology and climate: model simulations and observations. J Geophys Res 103(D22):28,825–28,837

    Article  ADS  Google Scholar 

  • Washington WM, Meehl GA (1996) High-latitude climate change in a global coupled ocean-atmosphere-sea ice model with increased atmospheric CO2. J Geophys Res 101(D8):12795–12802

    Article  ADS  Google Scholar 

  • Washington WM, Semtner AJ, Parkinson C, Morrison L (1976) On the development of a seasonal change sea-ice model. J Oceanogr 6:679–685

    Article  ADS  Google Scholar 

  • Weertman J (1957) On the sliding of glaciers. J Glaciol 5:287–303

    Google Scholar 

  • Williams PJ, Smith MW (1989) The frozen earth. Cambridge University Press, Cambridge, p 306

    Book  Google Scholar 

  • Winstral A, Marks D (2002) Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol Processes 16:3585–3603

    Article  ADS  Google Scholar 

  • World Meteorological Organization (2007) WMO sea ice nomenclature. WMO no 269, Geneva

    Google Scholar 

  • Zhang TJ, Armstrong RL, Smith J (2003) Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: algorithm development and validation. J Geophys Res 108(D22):8860, GCP 21-1–21-14

    Article  Google Scholar 

  • Zhang TJ et al (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res 110, D16101, pp 1–14

    Article  ADS  Google Scholar 

Books and Reviews

  • Barry RG, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge, p 472

    Book  Google Scholar 

  • Bamber JL, Payne AJ (eds) (2004) Mass balance of the cryosphere: observations and modelling of contemporary and future change. Cambridge, Cambridge University Press, 644 pp

    Google Scholar 

  • Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, New York, p 287

    Book  Google Scholar 

  • Weeks WF (2010) On sea ice. University of Alaska Press, Fairbanks, p 664

    Google Scholar 

  • Williams RS Jr, Ferrigno JG (eds) (2013) Satellite image atlas of the world. State of the earth’s cryosphere at the beginning of the 21st century: glaciers, global snow cover, floating ice, and permafrost and periglacial environments. U.S. Geological Survey Professional paper 1386A, Washington, DC, 496 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Barry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Barry, R.G. (2014). Cryosphere Models. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_110-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_110-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics