Skip to main content

Safety of Intravenous and Inhalation Anesthetics

  • Reference work entry
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

The determination of safety of intravenous anesthetics first agents used as intravenous anesthetics were barbiturates. Barbiturates with a duration of action appropriate to the requirements of surgery became available with the introduction of hexobarbital and thiopental (Volwiler and Tabern 1930; Miller et al. 1936). The studies with barbiturates were extended (Butler and Bush 1942; Christensen and Lee 1973). Intravenous anesthetics from other chemical groups were developed, such as acetamidoeugenol (Estil, Domenjoz 1959), steroid derivatives (Presuren = hydroxydione sodium, Laubach et al. 1955), alfaxolone (CT1341, Child et al. 1971), propanidid (Epontol, Goldenthal 1971), ketamine (CI-581, Chen et al. 1966; Reich and Silvay 1989), etomidate (Janssen et al. 1975), propofol (ICI 35868, Glenn 1980), and midazolam (Pieri 1983; Reilly and Nimmo 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Antognini JF, Eisele PH (1993) Anesthetic potency and cardiopulmonary effects of enflurane, halothane, and isoflurane in goats. Lab Anim Sci 43:607–610

    PubMed  CAS  Google Scholar 

  • Borkowski GL, Dannemann PJ, Russel GB, Lang CM (1990) An evaluation of three intravenous regimens in New Zealand rabbits. Lab Anim Sci 40:270–276

    PubMed  CAS  Google Scholar 

  • Büch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    Article  PubMed  Google Scholar 

  • Büch H, Grund W, Buzello W, Rummel W (1969) Narkotische Wirksamkeit und Gewebsverteilung der optischen antipoden des pentobarbitals bei der ratte. Biochem Pharmacol 18:1005–1009

    Article  PubMed  Google Scholar 

  • Butler TC, Bush MT (1942) Anesthetic potency of some new derivatives of barbituric acid. Proc Soc Exp Biol Med 50:232–243

    CAS  Google Scholar 

  • Cervin A, Lindberg S (1998) Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth 80:475–480

    Article  PubMed  CAS  Google Scholar 

  • Chaves AA, Dech SJ, Nakayama T et al (2003) Age and anesthetic effects on murine electrocardiography. Life Sci 72:2401–2412

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The neuropharmacology of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharm Exp Ther 152:332–339

    CAS  Google Scholar 

  • Child KJ, Currie JP, Davis B et al (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    Article  PubMed  CAS  Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active di-substituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    Article  PubMed  CAS  Google Scholar 

  • Davis NL, Nunnally RL, Malinin TI (1975) Determination of the minimal alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Br J Anesthesiol 47:341–345

    Article  CAS  Google Scholar 

  • Domenjoz R (1959) Anaesthesist 8:16

    PubMed  CAS  Google Scholar 

  • Doquier MA, Lavand’homme P, Ledermann C et al (2003) Can determining the minimum alveolar anesthetic concentration of volatile anesthetic be used as an objective tool to assess antinociception in animals? Anesth Analg 97:1033–1039

    Article  Google Scholar 

  • Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiol 26:756–763

    Article  Google Scholar 

  • Eger EI II, Johnson BH, Weiskopf RB et al (1988) Minimum alveolar concentration of I-653 and isoflurane in pigs. Anaesth Analg 67:1174–1176

    Article  Google Scholar 

  • Eger EI II, Ionescu P, Laster MJ et al (1999) Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis. Anesth Analg 88:867–876

    PubMed  CAS  Google Scholar 

  • Eger EI II, Xing Y, Laster M et al (2003) Halothane and isoflurane have additive minimum alveolar concentration (MAC) effects in rats. Anesth Analg 96:1350–1353

    Article  PubMed  Google Scholar 

  • Fang Z, Gong D, Ionescu P et al (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anaesth Analg 84:852–858

    CAS  Google Scholar 

  • Fukuda H, Hirabayashi Y, Shimizu R et al (1996) Sevoflurane is equivalent to isoflurane for attenuating bupivacaine-induced arrhythmias and seizures in rats. Anesth Analg 83:570–573

    PubMed  CAS  Google Scholar 

  • Glenn JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742

    Article  Google Scholar 

  • Goldenthal EI (1971) A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 18:185–207

    Article  PubMed  CAS  Google Scholar 

  • Gong D, Fang Z, Ionescu P et al (1998) Strain minimally influences anesthetic and convulsant requirements of inhaled compounds in rats. Anesth Analg 87:963–966

    PubMed  CAS  Google Scholar 

  • Hall RI, Murphy MR, Hug CC (1987) The enfluorane sparing effect of sufentanil in dogs. Anesthesiol 67:518–525

    Article  CAS  Google Scholar 

  • Hanagata K, Matsukawa T, Sessler DI et al (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81:581–584

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Imamura S, Ikeda K, Nakashima M (1994) Electrophysiological effects of volatile anesthetics, sevoflurane and halothane, in a canine myocardial infarction model. J Anesth 8:93–100

    Article  Google Scholar 

  • Hashimoto Y, Hirota K, Ohtomo N et al (1996) In vivo direct measurement of the bronchodilating effect of sevoflurane using a superfine fiber-optic bronchoscope: comparison with enflurane and halothane. J Cardiothorac Vasc Anesth 10:213–216

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Fujigaki T, Shibata O, Sumikawa K (1995) A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 80:651–656

    PubMed  CAS  Google Scholar 

  • Hisaka Y, Ohe N, Takase K, Ogasawara S (1997) Cardiopulmonary effects of sevoflurane in cats: comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63:205–210

    Article  Google Scholar 

  • Ide T, Sakurai Y, Aono M, Nishino T (1998) Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anaesth Analg 86:191–197

    CAS  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn 214:92–132

    PubMed  CAS  Google Scholar 

  • Johnson RA, Striler E, Sawyer DC, Brunson DB (1998) Comparison of isoflurane with sevoflurane for anesthesia induction and recovery in adult dogs. Am J Vet Res 59:478–481

    PubMed  CAS  Google Scholar 

  • Kanaya N, Kawana S, Tsuchida H et al (1998) Comparative myocardial depression of sevoflurane, isoflurane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg 67:1041–1047

    Google Scholar 

  • Kashimoto S, Furuya A, Nonoka A et al (1997) The minimum alveolar concentration of sevoflurane in rats. Eur J Anesthesiol 14:359–361

    Article  CAS  Google Scholar 

  • Kataoka Y, Manabe M, Takimoto E et al (1994) Negative inotropic effects of sevoflurane, isoflurane, enflurane and halothane in canine blood-perfused papillary muscles. Anesth Resusc 30:73–76

    CAS  Google Scholar 

  • Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiol 58:556–561

    Article  CAS  Google Scholar 

  • Kissin I, Kerr CR, Smith LR (1984) Morphine-halothane interaction in rats. Anesthesiol 60:553–561

    Article  CAS  Google Scholar 

  • Korkmaz S, Wahlström G (1997) The EEG burst suppression threshold test to determine the CNS sensitivity to intravenous anesthetics in rats. Brain Res Prot 1:378–384

    Article  CAS  Google Scholar 

  • Krantz JC Jr, Carr CJ, Forman SE et al (1941) Anesthesia. IV. The anesthetic action of cyclopropylethyl ether. J Pharmacol Exp Ther 72:233–244

    CAS  Google Scholar 

  • Krantz JCJ, Carr CJ, Lu G, Bell FK (1953) Anesthesia. XL. The anesthetic action of trifluoroethyl vinyl ether. J Pharm Exp Ther 108:488–495

    CAS  Google Scholar 

  • Laubach GD, Pan SY, Rudel HW (1955) Steroid anesthetic agent. Science 122:78

    Article  PubMed  CAS  Google Scholar 

  • Mazzeo AJ, Cheng EY, Bosnjak ZJ et al (1996) Differential effects of desflurane and halothane on peripheral airway smooth muscle. Br J Anaesth 76:841–846

    Article  PubMed  CAS  Google Scholar 

  • McMurphy RM, Hodgson DS (1996) Cardiopulmonary effects of desflurane in cats. Am J Vet Res 57:367–370

    PubMed  CAS  Google Scholar 

  • Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia. Anesthesiol 24:346–357

    Article  CAS  Google Scholar 

  • Miller E, Munch JC, Crossley FS, Hartung WH (1936) J Am Chem Soc 58:1090

    Article  CAS  Google Scholar 

  • Mitsuhata H, Saitoh J, Shimizu R et al (1994) Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiol 81:1230–1234

    Article  CAS  Google Scholar 

  • Murdock HR (1969) Anesthesia in the rabbit. Fed Proc 28:1510–1516

    PubMed  Google Scholar 

  • Murphy MR, Hug CC (1982) The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiol 57:485–488

    Article  CAS  Google Scholar 

  • Mutoh T, Nishimura R, Kim HY et al (1997) Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res 58:885–890

    PubMed  CAS  Google Scholar 

  • Novalija E, Hogan QH, Kulier AH et al (1998) Effects of desflurane, sevoflurane and halothane on postinfarction spontaneous dysrhythmias in dogs. Acta Anaesthesiol Scand 42:353–357

    Article  PubMed  CAS  Google Scholar 

  • Ohmura S, Ohta T, Yamamoto K, Kobayashi T (1999) A comparison of the effects of propofol and sevoflurane on the systemic toxicity of intravenous bupivacaine in rats. Anesth Analg 88(1):155–159

    PubMed  CAS  Google Scholar 

  • Peeters ME, Gil D, Teske E et al (1988) Four methods for general anesthesia in rabbits: a comparative study. Lab Animals 22:355–360

    Article  CAS  Google Scholar 

  • Pieri L (1983) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    Article  PubMed  Google Scholar 

  • Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiol 53:315–334

    Article  CAS  Google Scholar 

  • Regan MJ, Eger EI II (1967) Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiol 28:689–700

    Article  CAS  Google Scholar 

  • Reich DL, Silvay G (1989) Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 36:186–197

    Article  PubMed  CAS  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    Article  PubMed  CAS  Google Scholar 

  • Robbins BH (1946) Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J Pharmacol Exp Ther 86:197–204

    PubMed  CAS  Google Scholar 

  • Saeki Y, Hasegawa Y, Shibamoto T et al (1996) The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits. Anesth Analg 82:342–348

    PubMed  CAS  Google Scholar 

  • Saidman LJ, Eger EI II (1964) Effect of nitrous oxide and narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiol 25:302–306

    Article  CAS  Google Scholar 

  • Salmempera M, Wilson D, Szlam F, Hugg CCJ (1992) Anesthetic potency of the opioid GI 87084B in dogs. Anesthesiology 77:A368

    Article  Google Scholar 

  • Seifen E, Seifen AB, Kennedy RH et al (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothor Anesth 1:543–553

    Article  CAS  Google Scholar 

  • Selgrade MK, Gilmour MI (2010) Suppression of pulmonary host defenses and enhanced susceptibility to respiratory bacterial infection in mice following inhalation exposure to trichloroethylene and chloroform. J Immunotoxicol 7(4):350–356

    Article  PubMed  CAS  Google Scholar 

  • Soma LR, Terney WJ, Hogan GK, Satoh N (1995) The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic and pathologic study. Anesth Analg 81:347–352

    PubMed  CAS  Google Scholar 

  • Sonner JM (2002) Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth Analg 95:609–614

    PubMed  CAS  Google Scholar 

  • Steffey EP, Howland D (1978) Potency of enflurane in dogs: comparison with halothane and isoflurane. Am J Vet Res 39:573–577

    PubMed  CAS  Google Scholar 

  • Stirt JA, Berger JM, Roe SD, Ricker SM, Sullivan SF (1981) Safety of enflurane following administration of aminophylline in experimental animals. Anesth Analg 60(12):871–873

    Article  PubMed  CAS  Google Scholar 

  • Van Poznak A, Artusio FJ (1960a) Anesthetic properties of a series of fluorinated compounds. I. Fluorinated hydrocarbons. Toxicol Appl Pharmacol 2:363–373

    Article  Google Scholar 

  • Van Poznak A, Artusio FJ (1960b) Anesthetic properties of a series of fluorinated compounds. II. Fluorinated ethers. Toxicol Appl Pharmacol 2:363–373

    Article  Google Scholar 

  • Volwiler EH, Tabern DL (1930) J Am Chem Soc 52:1676

    Article  CAS  Google Scholar 

  • Waizer PR, Baez S, Orkin LR (1973) A method for determining minimum alveolar concentration of anesthetic in the rat. Anesthesiol 39:394–397

    Article  CAS  Google Scholar 

  • White PF, Johnston RR, Eger EI II (1974) Determination of anesthetic requirement in rats. Anesthesiol 40:52–57

    Article  CAS  Google Scholar 

  • Wolfson B, Dorsch SE, Kuo TS, Siker ES (1972) Brain anesthetic concentration – a new concept. Anesthesiol 36:176–179

    Article  CAS  Google Scholar 

  • Wolfson B, Kielar CM, Lake C et al (1973) Anesthetic index – a new approach. Anesthesiol 38:583–586

    Article  CAS  Google Scholar 

  • Zhou JX, Luo NF, Liang XM, Liu J (2006) The efficacy and safety of intravenous emulsified isoflurane in rats. Anesth Analg 102(1):129–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Arendt-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Arendt-Nielsen, L. (2013). Safety of Intravenous and Inhalation Anesthetics. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_9

Download citation

Publish with us

Policies and ethics