Skip to main content

Chronobiology and the Implications for Safety Pharmacology

  • Reference work entry
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 3207 Accesses

Abstract

In order to get an insight into the mechanisms of action, efficacy, the pharmacokinetics, side effects, and toxicity of a compound for clinical use, it is essential to perform studies in animal models. In preclinical studies, rodents such as rats and mice serve as an important tool for drug development. In addition, dogs, monkeys, pigs, and some other large animals are of great importance in preclinical safety evaluation. Safety pharmacology is an essential part of this process. This review will concentrate on published data within these groups of experimental animals under the special focus whether and to what extent biological rhythms are involved in studies using these animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Taha I, Lemmer B (2006) The kind of metabolic cages significantly influences drinking behaviour and urine excretion in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 372(Suppl 1):R95/352

    Google Scholar 

  • Akita M et al (2001) The daily pattern of heart rate, body temperature, and locomotor activity in guinea pigs. Exp Anim 50(5):409–415

    Article  PubMed  CAS  Google Scholar 

  • Akita M et al (2002) The daily pattern of cardiovascular parameters in Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Exp Anim 51(4):353–360

    Article  PubMed  CAS  Google Scholar 

  • Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92(3):1348–1355

    PubMed  CAS  Google Scholar 

  • Albrecht U (2004) The mammalian circadian clock: a network of gene expression. Front Biosci 9:48–55

    Article  PubMed  CAS  Google Scholar 

  • Albrecht U et al (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7):1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Almirall H et al (2001) Ultradian and circadian body temperature and activity rhythms in chronic MPTP treated monkeys. Neurophysiol Clin 31(3):161–170

    Article  PubMed  CAS  Google Scholar 

  • Almon RR et al (2008) Circadian variations in rat liver gene expression: relationships to drug actions. J Pharmacol Exp Ther 326(3):700–716

    Article  PubMed  CAS  Google Scholar 

  • Anigbogu CN et al (2011) Circadian variations in blood pressure, heart rate, and HR-BP cross-correlation coefficient during progression of diabetes mellitus in rat. Int J Hypertens, 2011:738689. Epub 2011

    Google Scholar 

  • Armstrong S, Clarke J, Coleman G (1978) Light–dark variation in laboratory rat stomach and small intestine content. Physiol Behav 21:785–788

    Article  PubMed  CAS  Google Scholar 

  • Arraj M, Lemmer B (2006) Circadian rhythms in heart rate, motility, and body temperature of wild-type C57 and eNOS knock-out mice under light–dark, free-run, and after time zone transition. Chronobiol Int 23(4):795–812

    Article  PubMed  CAS  Google Scholar 

  • Arraj M, Lemmer B (2007) Endothelial nitric oxide is not involved in circadian rhythm generation of blood pressure: experiments in wild-type C57 and eNOS knock-out mice under light–dark and free-run conditions. Chronobiol Int 24(6):1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Arraj M et al (2004) Abolition of 24-h rhythm in heart rate but not in blood pressure of eNOS-knock-out in comparison to wild-type C57bl mice. Naunyn Schmiedebergs Arch Pharmacol 369(Suppl 1):R 42

    Google Scholar 

  • Aschoff J (1954) Zeitgeber der tierischen Tagesperiodik. Naturwissenschaften 41(3):49–56

    Article  Google Scholar 

  • Aschoff J (1963a) Gesetzmäßigkeiten der biologischen Tagesperiodik. Dtsch Med Wochenschr 88:1930–1937

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1963b) Comparative physiology: diurnal rhythms. Annu Rev Physiol 25:581–600

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1965) Circadian clocks. North-Holland, Amsterdam

    Google Scholar 

  • Aschoff J, Pöhl H (1978) Phase relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften 65:80–84

    Article  PubMed  CAS  Google Scholar 

  • Ashkar E (1979) Twenty-four-hour pattern of circulation by radiotelemetry in the unrestrained dog. Am J Physiol Regul Integr Comp Physiol 236:R231–R236

    CAS  Google Scholar 

  • Atterson P et al (2010) Combining safety pharmacology endpoints: impedance based respiratory measurement via implantable telemetry device. J Pharmacol Toxicol Methods 62(2):e32

    Article  Google Scholar 

  • Authier S et al (2007a) A cardiovascular monitoring system in conscious cynomolgus monkeys for regulatory safety pharmacology. Part 1: non-pharmacological validation. J Pharmacol Toxicol Methods 56:115–121

    Article  PubMed  CAS  Google Scholar 

  • Authier S et al (2007b) A cardiovascular monitoring system used in conscious cynomolgus monkeys for regulatory safety pharmacology. Part 2: pharmacological validation. J Pharmacol Toxicol Methods 56:122–130

    Article  PubMed  CAS  Google Scholar 

  • Authier S et al (2010) Combined cardiopulmonary assessments with implantable telemetry device in conscious freely moving cynomolgus monkeys. J Pharmacol Toxicol Methods 62(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Authier S et al (2011) Cardiovascular and respiratory safety pharmacology in Göttingen minipigs: pharmacological characterization. J Pharmacol Toxicol Methods 64(1):53–59

    Article  PubMed  CAS  Google Scholar 

  • Bargiello T, Jackson F, Young M (1984) Restoration of circadian behavioural rhythms by gene transfer in drosophila. Nature 312:752–754

    Article  PubMed  CAS  Google Scholar 

  • Bass AS et al (2005) Drugs effects on ventricular repolarization: a critical evaluation of the strengths and weaknesses of current methodologies and regulatory practices. J Pharmacol Toxicol Methods 52(1):12–21

    Article  PubMed  CAS  Google Scholar 

  • Bazett JC (1920) An analysis of time relations of electrocardiograms. Heart 7:353–367

    Google Scholar 

  • Beglinger R et al (1975a) The Goettingen miniature swine as an experimental animal. 1. Review of literature, breeding and handling, cardiovascular parameters. Res Exp Med (Berl) 24:251–263

    Article  Google Scholar 

  • Beglinger R et al (1975b) The Goettingen miniature swine as an experimental animal. 1. Review of literature, breeding and handling, cardiovascular parameters. Res Exp Med (Berl) 165(3):251–263

    Article  CAS  Google Scholar 

  • Bexton RS, Vallin HO, Camm AJ (1986) Diurnal variation of the QT interval-influence of the autonomic nervous system. Br Heart J 55:253–258

    Article  PubMed  CAS  Google Scholar 

  • Bícego-Nahas K, Branco L (1999) Seasonal changes in the cardiorespiratory responses to hypercarbia and temperature in the bullfrog, Rana catesbeiana. Comp Biochem Physiol A Mol Integr Physiol 124:221–229

    Article  PubMed  Google Scholar 

  • Bilan A et al (2005) Circadian rhythm of spectral indices of heart rate variability in healthy subjects. J Electrocardiol 38(3):239–243

    Article  PubMed  Google Scholar 

  • Bjarnason GA et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell cycle phases. Am J Pathol 158(5):1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Bode G et al (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62:196–220

    Article  PubMed  CAS  Google Scholar 

  • Bollen P, Ellegaard L (1997) The Göttingen minipig in pharmacology and toxicology. Pharmacol Toxicol 80(Suppl 2):3–4

    Article  PubMed  CAS  Google Scholar 

  • Bonnemeier H et al (2003) Circadian profile of QT interval and QT interval variability in 172 healthy volunteers. Pacing Clin Electrophysiol 26(1 Pt 2):377–382

    Article  PubMed  Google Scholar 

  • Bortolan G, Bressan M, Golferini F, ILSA Study Group (2004) QT dispersion in the elderly. The ILSA study. Aging Clin Exp Res 16:342–348

    PubMed  Google Scholar 

  • Boulos Z, Macchi M, Terman M (1996) Twilight transitions promote circadian entrainment to lengthening light–dark cycles. Am J Physiol Regul Integr Comp Physiol 271:R813–R818

    CAS  Google Scholar 

  • Brockway R, Brockway B (1996) A new method for chronic measurements of respiratory rate in conscious freely moving rats. Chronobiol Int 13(Suppl 1):14

    Google Scholar 

  • Brockway BP, Mills PA, Azar SH (1991) A new method for continuous chronic measurement and recording of blood pressure, heart rate and activity in the rat via radio-telemetry. Clin Exp Hypertens A 13(5):885–895

    Article  PubMed  CAS  Google Scholar 

  • Bruguerolle B (1984) Circadian chronotoxicity of procainamide. IRCS Med Sci 12:579

    CAS  Google Scholar 

  • Bubenik GA et al (2000) Circadian variation of portal, arterial and venous blood levels of melatonin in pigs and its relationship to food intake and sleep. J Pineal Res 28(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Chwalibog A, Tauson AH, Thorbek G (2004) Diurnal rhythm in heat production and oxidation of carbohydrate and fat in pigs during feeding, starvation and re-feeding. J Anim Physiol Anim Nutr (Berl) 88(7–8):266–274

    Article  CAS  Google Scholar 

  • Cimini C, Zambraski E (1985) Non-invasive blood pressure measurement in Yucatan miniature swine using tail cuff sphygmomanometry. Lab Anim Sci 35:412–416

    PubMed  CAS  Google Scholar 

  • Cools F et al (2011) ECG arrhythmias in non-implanted vs. telemetry-implanted dogs: need for screening before and sufficient recovery time after implantation. J Pharmacol Toxicol Methods 64(1):60–67

    Article  PubMed  CAS  Google Scholar 

  • Davey P, Bateman J (1999) Heart rate and catecholamine contribution to QT interval shortening on exercise. Clin Cardiol 22:513–518

    Article  PubMed  CAS  Google Scholar 

  • Davis AS (1998) The pre-clinical assessment of QT interval prolongation: a comparison of in vitro and in vivo methods. Clin Cardiol 22:513–518

    Google Scholar 

  • DeBoer E, Friedrichs G (2009) EEG telemetry models in the rodent and non-human primate. J Pharmacol Toxicol Methods 60:217

    Article  Google Scholar 

  • Douglas WR (1972) Of pigs and men and research: a review of applications and analogies of the pig, Sus scrofa, in human medical research. Space Life Sci 3:226–234

    PubMed  CAS  Google Scholar 

  • Dunlap K et al (2007) Seasonal and diurnal melatonin production in exercising sled dogs. Comp Biochem Physiol A Mol Integr Physiol 147:863–867

    Article  PubMed  CAS  Google Scholar 

  • Dunlop JC, Loros LL, DeCoursey PJ (2004) Chronobiology—biological timekeeping, Sinauer, Sunderland

    Google Scholar 

  • Edmunds LN (1997) Regulation of cell division cycles by circadian oscillators: signal transduction between clocks. Springer, Berlin/New York/Heidelberg, pp 29–53

    Google Scholar 

  • Eijzenbach V, Sneek JH, Borst C (1986) Arterial pressure and heart period in the conscious rabbit: diurnal rhythm and influence of activity. Clin Exp Pharmacol Physiol 13:585–592

    Article  PubMed  CAS  Google Scholar 

  • Eisermann K (1988) Seasonal and environmental influences upon the diurnal heart-rate pattern in wild rabbits living under seminatural conditions. Physiol Behav 43:559–565

    Article  PubMed  CAS  Google Scholar 

  • Ekkel ED et al (1996) The circadian rhythm of cortisol in the saliva of young pigs. Physiol Behav 60(3):985–989

    PubMed  CAS  Google Scholar 

  • Food and Drug Administration (H) (2005) International conference on harmonisation; guidance on S7B nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals; availability. Fed Regist 70:61133–61134

    Google Scholar 

  • Food and Drug Administration (H.H.S) (2001) International conference on harmonisation; guidance on S7A safety pharmacology studies for human pharmaceuticals; availability notice. Fed Regist 66(135):36791–36792

    Google Scholar 

  • Fridericia LS (1920) The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. Acta Med Scand 53:469–486

    Article  Google Scholar 

  • Friedrichs GS, Patmore L, Bass A (2005) Nonclinical evaluation of ventricular repolarization (ICH S7B): results of an interim survey of international pharmaceutical companies. J Pharmacol Toxicol Methods 52:6–11

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Edgar DM (1986) Effects of light intensity on the circadian temperature and feeding rhythms in the squirrel monkey. Physiol Behav 36:687–691

    Article  PubMed  CAS  Google Scholar 

  • Gauvin DV et al (2006a) Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving laboratory beagle dog by remote radiotelemetry. J Pharmacol Toxicol Methods 53:128–139

    Article  PubMed  CAS  Google Scholar 

  • Gauvin DV et al (2006b) Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving cynomolgus monkey by remote radiotelemetry. J Pharmacol Toxicol Methods 53:140–151

    Article  PubMed  CAS  Google Scholar 

  • Georgiev S, Schoen A, Merkenschlager M (1972) Effect of various environmental temperatures and humidities of some physiologic parameters of the Göttinger minipig in various stages of growth. 3. Adults. Berl Munch Tierarztl Wochenschr 85:409–413

    PubMed  CAS  Google Scholar 

  • Gralinski MR (2003) The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol 31:11–16

    PubMed  CAS  Google Scholar 

  • Grundt C, Meier K, Lemmer B (2006) Gender dependency of circadian blood pressure and heart rate profiles in spontaneously hypertensive rats: effects of beta-blockers. Chronobiol Int 23(4):813–829

    Article  PubMed  CAS  Google Scholar 

  • Grundt A et al (2009) Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR. Physiol Behav 97(3–4):341–346

    Article  PubMed  CAS  Google Scholar 

  • Halberg F (1959) Physiologic 24-hour periodicity: general and procedural considerations with reference to the adrenal cycle. Z Vitamin-Hormon-Ferment-Forsch 10:225–296

    CAS  Google Scholar 

  • Halberg F (1969) Chronobiology. Annu Rev Physiol 31:675–725

    Article  PubMed  CAS  Google Scholar 

  • Halberg F, Bittner JJ, Visscher MB (1951) Tail blood eosinophil levels in several inbred strains of mice under standard conditions. Blood 6(9):832–837

    PubMed  CAS  Google Scholar 

  • Halberg F et al (1954) Daily variations in tissue mitoses, blood eosinophils and rectal temperatures of rats. Am J Physiol 177(3):361–366

    PubMed  CAS  Google Scholar 

  • Hall JC (1998) Molecular neurogenetics of biological rhythms. J Neurogenet 12(3):115–181

    Article  PubMed  CAS  Google Scholar 

  • Hanneman SK et al (2005) Circadian temperature rhythm of laboratory swine. Comp Med 55(3):249–255

    PubMed  CAS  Google Scholar 

  • Hardin PE (2004) Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19(5):348–360

    Article  PubMed  CAS  Google Scholar 

  • Harms E et al (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19(5):361–373

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M et al (1999) Diurnal variation of autonomic nervous activity in the rat—investigation by power spectral analysis of heart rate variability. J Electrocardiol 32(2):167–171

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH (1997) The vertebrate clock: localisation, connection and entrainment. Springer, Berlin/New York/Heidelberg, pp 1–28

    Google Scholar 

  • Hastings M (1998) The brain, circadian rhythms, and clock genes. Br Med J 317(7174):1704–1707

    Article  CAS  Google Scholar 

  • Hastings MH (2003) Circadian clocks: self-assembling oscillators? Curr Biol 13(17):R681–R682

    Article  PubMed  CAS  Google Scholar 

  • Hastings MH, Herzog ED (2004) Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 19(5):400–413

    Article  PubMed  CAS  Google Scholar 

  • Haus E, Halberg F (1959) 24-Hour rhythm in susceptibility of C mice to a toxic dose of ethanol. J Appl Physiol 14:878–880

    PubMed  CAS  Google Scholar 

  • Hayashi T (1981) Physiological beat-to-beat variation of heart rates in normal unrestrained rabbits for 24 hours. J Physiol Soc Jpn 43:171–181

    CAS  Google Scholar 

  • Hiebl B et al (2010) Gross anatomical variants of the vasculature of the Göttingen Minipig™. Appl Cardiopulm Pathophysiol 14:236–243

    Google Scholar 

  • Holzgrefe HH, Cavero I, Gleason CR (2007) Analysis of the nonclinical telemetered ECG: next term Impact of logging rate and RR bin width in the previous term dog next term and cynomolgus monkey. J Pharmacol Toxicol Methods 56:34–42

    Article  PubMed  CAS  Google Scholar 

  • Hossain MJ et al (1990) Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm Res 7:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Hughes HC (1986) Swine in cardiovascular research. Lab Animal Sci 36:348–350

    CAS  Google Scholar 

  • Ishida S et al (1997) Circadian variation of QT interval dispersion: correlation with heart rate variability. J Electrocardiol 30(3):205–210

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Pohl O (2010) QT correction in beagle dogs and Göttingen Minipigs. The Researcher. Harlan Newsletter, 2010. https://webapps.harlan.com/theresearcher/archives/issue_30_03_10/default.asp?article=4

  • Janssen BJ et al (1993) Time-dependent efficacy of antihypertensive agents in spontaneously hypertensive rats. Chronobiol Int 10(6):420–434

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJA et al (1994) Suprachiasmatic lesions eliminate 24-h blood pressure variability in rats. Physiol Behav 55(2):307–311

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJA, Leenders PJA, Smits JFM (1998) Circadian and ultradian blood pressure variability in mice. Effects of L-NAME, metoprolol and atropine. J Hypertens 16(Suppl 2):S277, P39.03

    Google Scholar 

  • Janssen BJ, Leenders PJ, Smits JF (2000) Short-term and long-term blood pressure and heart rate variability in the mouse. Am J Physiol Regul Integr Comp Physiol 278(1):R215–R225

    PubMed  CAS  Google Scholar 

  • Jilge B (1985) The rhythm of food and water ingestion, faeces excretion and locomotor activity in the guinea pig. Z Versuchstierk 27:215–225

    CAS  Google Scholar 

  • Kagohashi M et al (2008) Wireless voltammetry recording in unesthetised behaving rats. Neurosci Res 60:120–127

    Article  PubMed  Google Scholar 

  • Kanai K et al (2008) Circadian variations in salivary chromogranin a concentrations during a 24-hour period in dogs. J Vet Sci 9(4):423–425

    Article  Google Scholar 

  • Kano M et al (2005a) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99:501–511

    Article  PubMed  CAS  Google Scholar 

  • Kano M et al (2005b) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99:501–511

    Article  PubMed  CAS  Google Scholar 

  • Kerkhof GA, VanDongen HPA, Bobbert AC (1998) Absence of endogenous circadian rhythmicity in blood pressure? Am J Hypertens 11(3 Part 1):373–377

    Article  PubMed  CAS  Google Scholar 

  • Köhn F, Sharifi AR, Simianer H (2007) Modeling the growth of the Goettingen minipig. J Anim Sci 85:84–92

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68(9):2112–2116

    Article  PubMed  CAS  Google Scholar 

  • Kornhauser JM, Mayo KE, Takahashi JS (1996) Light, immediate-early genes, and circadian rhythms. Behav Genet 26(3):221–240

    Article  PubMed  CAS  Google Scholar 

  • Koukkari WL, Sothern RB (2006) Introducing biological rhythms. Springer, New York

    Google Scholar 

  • Koyama T, Omata Y, Saito A (2003) Changes in salivary cortisol concentrations during a 24-hour period in dogs. Horm Metab Res 35(6):355–357

    Article  PubMed  CAS  Google Scholar 

  • Kramer K et al (2000) Telemetric monitoring of blood pressure in freely moving mice: a preliminary study. Lab Anim 34(3):272–280

    Article  PubMed  CAS  Google Scholar 

  • Krauchi K et al (2002) Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 17(4):364–376

    PubMed  Google Scholar 

  • Kreutzer JM (1838) Handbuch der allgemeinen thierärztlichen Arzneiverordnungs-Lehre. v. Jenich und Stage’sche Buchhandlung, Augsburg

    Google Scholar 

  • Kuwahara M et al (1999) Power spectral analysis of heart rate variability for assessment of diurnal variation of autonomic nervous activity in miniature swine. Lab Anim Sci 49(2):202–208

    PubMed  CAS  Google Scholar 

  • Kyriacou CP et al (2008) Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet 24(3):124–132

    Article  PubMed  CAS  Google Scholar 

  • Lange J, Brockway B, Azar S (1991) Telemetric monitoring of laboratory animals: an advanced technique that has come of age. Lab Anim 20(7):28–33

    Google Scholar 

  • Laursen M et al (2011) Characterization of cardiac repolarization in the Göttingen minipig. J Pharmacol Toxicol Methods 63:186–195

    Article  PubMed  CAS  Google Scholar 

  • Leishman DJ et al (2011) Best practice in key nonclinical cardiovascular assessments in drug development: current recommendations from the Safety Pharmacology Society. J Pharmacol Toxicol Methods (submitted) 2011 Aug 31. [Epub ahead of print] http://www.sciencedirect.com/science/article/pii/S1056871911002814

  • Lemmer B (1989) Chronopharmacology—cellular and biochemical interactions. Marcel Dekker, New York/Basel

    Google Scholar 

  • Lemmer B (1996) Differential effects of antihypertensive drugs on circadian rhythm in blood pressure from chronobiological point of view. Blood Press Monit 1:161–169

    PubMed  Google Scholar 

  • Lemmer B (2000) Genetic aspects of chronobiologic rhythms in cardiovascular disease. In: Zehender M, Breithardt G, Just H (eds) From molecule to men. Steinkopff, Darmstadt, pp 201–213

    Chapter  Google Scholar 

  • Lemmer B (2006) The importance of circadian rhythms on drug response in hypertension and coronary heart disease–from mice and man. Pharmacol Ther 111(3):629–651

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B (2011) Chronopharmakologie, 4th edn. Wiss, Stuttgart

    Google Scholar 

  • Lemmer B, Holle L (1991) Chronopharmacokinetics of imipramine and desipramine in rat forebrain and plasma after single and chronic treatment with imipramine. Chronobiol Int 8:176–185

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Mattes A, Bose S (1992) Dose-dependent effects of amlodipine on 24-hour rhythms in blood pressure and heart rate in the normotensive and hypertensive rat. Am J Hypertens 5:110 A

    Google Scholar 

  • Lemmer B et al (1993a) Circadian blood pressure variation in transgenic hypertensive rats. Hypertension 22(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Mattes A, Ganten D (1993b) Transgen-hypertensive (TGR[mRen-2]27) Ratten als Modell der sekundären Hypertonie. Nieren- und Hochdruckkrankheiten 22:219–220

    Google Scholar 

  • Lemmer B et al (1994) Effects of enalaprilat on circadian profiles in blood pressure and heart rate of spontaneously and transgenic hypertensive rats. J Cardiovasc Pharmacol 23(2):311–314

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B et al (2000a) Circadian rhythms in the renin-angiotensin system and adrenal steroids may contribute to the inverse blood pressure rhythm in hypertensive TGR(mREN-2)27 rats. Chronobiol Int 17(5):645–658

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B, Hauptfleisch S, Witte K (2000b) Loss of 24 h rhythm and light-induced c-fos mRNA expression in the suprachiasmatic nucleus of the transgenic hypertensive TGR(mRen2)27 rat and effects on cardiovascular rhythms. Brain Res 883(2):250–257

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B et al (2003) Transgenic TGR(mREN2)27 rats as a model for disturbed circadian organization at the level of the brain, the heart, and the kidneys. Chronobiol Int 20(4):711–738

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B et al (2004a) eNOS-knock-out mice display a disturbed 24-h rhythm in heart rate but not in blood pressure. Am J Hypertens 17:79A/P–127

    Google Scholar 

  • Lemmer B et al (2004) eNOS-knock-out mice display a disturbed 24-h rhythm in heart rate but not in blood pressure. Am J Hypertens 17:79A/P–127

    Google Scholar 

  • Lemmer B et al (2004) Use of telemetry for research in cardiovascular chronobiology/chronopharmacology in rats and mice. In: European chronobiology telemetry user group meeting. Erl Wood Manor, UK (23.4.2004)

    Google Scholar 

  • Lemmer B et al (2005a) Inverse blood pressure rhythm of transgenic hypertensive TGR(mREN2)27 rats: role of norepinephrine and expression of tyrosine-hydroxylase and reuptake1-transporter. Chronobiol Int 22:473–488

    Article  PubMed  CAS  Google Scholar 

  • Lemmer B et al (2005) Radiotelemetry in mice: circadian rhythms in wild-type and eNOS knock-our mice. In: UK telemetry user group meeting, Manchester

    Google Scholar 

  • Lepeschkin E (1951) Modern electrocardiography, 1st edn. Williams & Wilkins Co, Baltimore

    Google Scholar 

  • Levin BE, Goldstein A, Natelson BH (1978) Ultradian rhythm of plasma noradrenaline in rhesus monkeys. Nature 272:164–166

    Article  PubMed  CAS  Google Scholar 

  • Li GR et al (2003) Calcium-activated transient outward chloride current and phase 1 repolarization of swine ventricular action potential. Cardiovasc Res 58:89–98

    Article  PubMed  CAS  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  PubMed  CAS  Google Scholar 

  • Markert M (2011) Educational package: cardiovascular safety pharmacology in the Göttingen minipig. Ellegaard Göttingen Minipigs. http://www.minipigs.com

  • Markert M et al (2009) Validation of the normal, freely moving Göttingen minipig for pharmacological safety testing. J Pharmacol Toxicol Methods 60:79–87

    Article  PubMed  CAS  Google Scholar 

  • Martins MI et al (2006) The effect of season on serum testosterone concentrations in dogs. Theriogenology 66:1603–1605

    Article  PubMed  CAS  Google Scholar 

  • Mattes A, Lemmer B (1991) Telemetric registrations on the effects of atenolol and amlodipine on circadian rhythms in blood pressure and heart rate of the rat. J Interdiscipl Cycle Res 22:154

    Google Scholar 

  • Mattu A, Brady WJ, Perron AD (2002) Electrocardiographic manifestations of hypothermia. Am J Emerg Med 20:314–326

    Article  PubMed  Google Scholar 

  • Mayersbach H (1976) Time—a key in experimental and practical medicine. Arch Toxicol 36(3–4):185–216

    Article  PubMed  CAS  Google Scholar 

  • Meier K, Gorbey S, Lemmer B (2004) Effects of nebivolol and metoprolol on nitric oxide urinary excretion, on expression of eNOS and on blood pressure in SH-rats. Naunyn Schmiedebergs Arch Pharmacol 369(Suppl 1):R42 Abstr 167

    Google Scholar 

  • Müller O (1971) Die Circadianstruktur der Leber. Habilitationsschrif. Medizinische Hochschule Hannover, Hannover

    Google Scholar 

  • Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  PubMed  CAS  Google Scholar 

  • Murakawa Y et al (1992) Role of sympathovagal interaction in diurnal variation of QT interval. Am J Cardiol 69(4):339–343

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M et al (2005) Gender differences in autonomic modulation of ventricular repolarization in humans. J Cardiovasc Pharmacol 16:278–284

    Google Scholar 

  • Nozaki M, Tsushima M, Mori Y (1990) Diurnal changes in serum melatonin concentrations under indoor and outdoor environments and light suppression of nighttime melatonin secretion in the female Japanese monkey. J Pineal Res 9(3):221

    Article  PubMed  CAS  Google Scholar 

  • Palazzolo DL, Quadri SK (1987) The effects of aging on the circadian rhythm of serum cortisol in the dog. Exp Gerontol 22:379–387

    Article  PubMed  CAS  Google Scholar 

  • Piccione G, Caola G, Refinetti R (2005) Daily rhythms of blood pressure, heart rate, and body temperature in fed and fasted male dogs. J Vet Med A Physiol Pathol Clin Med 52(8):377–381

    Article  PubMed  CAS  Google Scholar 

  • Pond AL et al (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I(kr) channels. J Biol Chem 25:5997–6006

    Article  Google Scholar 

  • Pons M et al (1996) Circadian rhythms in renal function in hypertensive TGR(mRen-2)27 rats and their normotensive controls. Am J Physiol 271(4 Pt 2):R1002–R1008

    PubMed  CAS  Google Scholar 

  • Pueyo E et al (2004) Characterization of QT interval adaptation to RR interval changes and its use as a riskstratifier of arrhythmic mortality in amiodarone-treated survivors of acute myocardial infarction. IEEE Trans Biomed Eng 51:1511–1520

    Article  PubMed  Google Scholar 

  • Pugsley MK, Authier S, Curtis MJ (2008) Principles of safety pharmacology. Br J Pharmacol 154:1382–1399

    Article  PubMed  CAS  Google Scholar 

  • Pugsley MK et al (2010) Non-clinical models: validation, study design and statistical consideration in safety pharmacology. J Pharmacol Toxicol Methods 61:1–3

    Article  CAS  Google Scholar 

  • Pummer S, Lemmer B (2000) Dose-dependent effects of telmisartan on circadian rhythm in blood pressure and heart rate in spontaneously hypertensive rats (SHR). Dtsch Med Wochenschr 125(Suppl 3):S39

    Google Scholar 

  • Rackley RJ, Meyer MC, Straughn AB (1988) Circadian rhythm in theophylline disposition during a constant-rate intravenous infusion of aminophylline in the dog. J Pharm Sci 77:658–661

    Article  PubMed  CAS  Google Scholar 

  • Redfern P, Lemmer B (eds) (1997) Physiology and pharmacology of biological rhythms, vol 125, Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Refinetti R, Piccione G (2003) Daily rhythmicity of body temperature in the dog. J Vet Med Sci 65(8):935–937

    Article  PubMed  CAS  Google Scholar 

  • Reinberg A, Halberg F (1971) Circadian chronopharmacology. Annu Rev Pharmacol 11:455–492

    Article  PubMed  CAS  Google Scholar 

  • Reinberg A, Smolensky MH (1983) Biological rhythms and medicine, Springer, New York/Berlin/Heidelberg

    Book  Google Scholar 

  • Reis DJ, Weinbren M, Corvelli A (1968) A circadian rhythm of norepinephrine regionally in cat brain: its relationship to environmental lighting and to regional diurnal variations in brain serotonin. J Pharmacol Exp Ther 164(1):135–145

    PubMed  CAS  Google Scholar 

  • Rensing L (1997) Genetics and molecular biology of circadian clocks. Springer, Berlin/Heidelberg/New York, pp 55–77

    Google Scholar 

  • Reppert SM (2000) Cellular and molecular basis of circadian timing in mammals. Semin Perinatol 24:243–246

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser AM, Boulos Z, Terman M (1981) Circadian organization of food intake and meal patterns in the rat. Physiol Behav 27:33–39

    Article  PubMed  CAS  Google Scholar 

  • Ross FH et al (1981) Circadian variation of diazepam acute toxicity in mice. Experientia 37:72–73

    Article  PubMed  CAS  Google Scholar 

  • Rusak B et al (1992) Circadian variation in photic regulation of immediate-early gene messenger RNAs in rat suprachiasmatic nucleus cells. Brain Res Mol Brain Res 14(1–2):124–130

    Article  PubMed  CAS  Google Scholar 

  • Sanctorius S (1644) De statica medicina. Et de responsione ad statiomasticem ars. Adrian Vlaque, Den Hagae

    Google Scholar 

  • Sato K, Chatani F, Sato S (1995) Circadian and short-term variabilities in blood pressure and heart rate measured by telemetry in rabbits and rats. J Auton Nerv Syst 54(3):235–246

    Article  PubMed  CAS  Google Scholar 

  • Schiffer S et al (2000) Circadian pattern of angiotensin II and catecholamines in plasma of TGR(mREN2)27 rats, an animal model of secondary hypertension. Dtsch Med Wochenschr 125(Suppl 3):S59

    Article  Google Scholar 

  • Schiffer S et al (2001) Cardiovascular regulation in TGR(mREN2)27 rats: 24h variation in plasma catecholamines, angiotensin peptides, and telemetric heart rate variability. Chronobiol Int 18(3):461–474

    Article  PubMed  CAS  Google Scholar 

  • Schnecko A, Witte K, Lemmer B (1995) Effects of the angiotensin II receptor antagonist losartan on 24-hour blood pressure profiles of primary and secondary hypertensive rats. J Cardiovasc Pharmacol 26(2):214–221

    Article  PubMed  CAS  Google Scholar 

  • Schnecko A, Witte K, Lemmer B (1996) Effects of routine procedures on cardiovascular parameters of Sprague–Dawley rats in periods of activity and rest. J Exp Anim Sci 38:181–190

    Google Scholar 

  • Schnell CR, Wood JM (1993) Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. Am J Physiol 264:H1509–H1516

    PubMed  CAS  Google Scholar 

  • Schulze-Bahr E et al (2005) Gender differences in cardiac arrhythmias. Herz 30:390–400

    Article  PubMed  Google Scholar 

  • Shellhammer LJ et al (2009) Effects of body temperature on QT interval in Beagle Dogs. J Pharmacol Toxicol Methods 60:237–238

    Article  Google Scholar 

  • Shigeyoshi Y et al (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91(7):1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Shimomura K et al (1998) Circadian behavior and plasticity of light-induced c-fos expression in SCN of tau mutant hamsters. J Biol Rhythms 13(4):305–314

    Article  PubMed  CAS  Google Scholar 

  • Shiotani M et al (2008) Aging-related changes of QT and RR intervals in conscious guinea pigs. J Pharmacol Toxicol Methods 57(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Sitzmann BD et al (2008) Effects of age on clock gene expression in the rhesus macaque pituitary gland. Neurobiol Aging 31(4):696–705

    Article  PubMed  CAS  Google Scholar 

  • Soloviev MV et al (2006a) Different species require different QT corrections. Cardiovasc Toxicol 6:145–157

    Article  PubMed  Google Scholar 

  • Soloviev MV et al (2006b) Variations in hemodynamic parameters and ECG in healthy, conscious, freely moving telemetrized beagle dogs. Cardiovasc Toxicol 6(1):51–62

    Article  PubMed  Google Scholar 

  • Soloviev MV et al (2006c) Comparison of two major in vivo cardiovascular safety pharmacology models. Poster Presentation at VI Safety Pharmacology Society Meeting, San Diego, CA

    Google Scholar 

  • Soloviev MV et al (2007) Comparison of two major in vivo cardiovascular safety pharmacology models. J Pharmacol Toxicol Methods 56:e27

    Article  Google Scholar 

  • Spoelstra K et al (2004) Phase responses to light pulses in mice lacking functional per or cry genes. J Biol Rhythms 19(6):518–529

    Article  PubMed  CAS  Google Scholar 

  • Storch KF et al (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417(6884):78–83

    Article  PubMed  CAS  Google Scholar 

  • Strubbe JH, Woods SC (2004) The timing of meals. Psychol Rev 111(1):128–141

    Article  PubMed  Google Scholar 

  • Stubhan M et al (2008) Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen Minipig. J Pharmacol Toxicol Methods 57:202–211

    Article  PubMed  CAS  Google Scholar 

  • Sutin EL, Kilduff T (1992) Circadian and light-induced expression of immediate early gene messenger RNAs in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 15(3–4):281–290

    Article  PubMed  CAS  Google Scholar 

  • Takahashi J (1992) Circadian clock genes are ticking (perspective). Science 258(5080):238–240

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Harada E (2002) Age-related changes in sleep-wake rhythm in dog. Behav Brain Res 136:193–199

    Article  PubMed  Google Scholar 

  • Teelink JR, Clozel JP (1993) Hemodynamic variability and circadian rhythm in rats with heart failure: role of locomotor activity. Am J Physiol 264:H2111–H2118

    Google Scholar 

  • Tokita Y et al (1994) Hypertension in the transgenic rat TGR(mRen-2)27 may be due to enhanced kinetics of the reaction between mouse renin and rat angiotensinogen. Hypertension 23(4):422–427

    Article  PubMed  CAS  Google Scholar 

  • Torres-Farfan C et al (2008) Circadian cortisol secretion and circadian adrenal responses to ACTH are maintained in dexamethasone suppressed capuchin monkeys (Cebus apella). Am J Primatol 70(1):93–100

    Article  PubMed  CAS  Google Scholar 

  • Tsinkalovsky O et al (2007) Circadian variations in clock gene expression of human bone marrow CD34+ cells. J Biol Rhythms 22(2):140–150

    Article  PubMed  CAS  Google Scholar 

  • Van de Water A et al (1989) An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. J Pharmacol Methods 22:207–217

    Article  PubMed  Google Scholar 

  • van der Laan JW et al (2010) Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J Pharmacol Toxicol Methods 62:184–195

    Article  PubMed  CAS  Google Scholar 

  • van der Linde HJ et al (2008) The effect of changes in core body temperature on the QT interval in beagle dogs: a previously ignored phenomenon, with a method for correction. Br J Pharmacol 154:1474–1481

    Article  PubMed  CAS  Google Scholar 

  • Varosi SM, Brigmon RL, Besch EL (1990) A simplified telemetry system for monitoring body temperature in small animals. Lab Anim Sci 40:299–302

    PubMed  CAS  Google Scholar 

  • Wauschkuhn CA et al (2005) Circadian periodicity of cerebral blood flow revealed by laser-Doppler flowmetry in awake rats: relationship to blood pressure and activity. Am J Physiol Heart Circ Physiol 289(4):H1662-8

    Article  PubMed  CAS  Google Scholar 

  • Weed MR, Hienz RD (2006) Effects of morphine on circadian rhythms of motor activity and body temperature in pig-tailed macaques. Pharmacol Biochem Behav 84(3):487–496

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Lemmer B (1995) Free-running rhythms in blood pressure and heart rate in normotensive and transgenic hypertensive rats. Chronobiol Int 12(4):237–247

    Article  Google Scholar 

  • Witte K, Lemmer B (1999) Development of inverse circadian blood pressure pattern in transgenic hypertensive TGR(mREN2)27 rats. Chronobiol Int 16(3):293–303

    Article  PubMed  CAS  Google Scholar 

  • Witte K et al (1998a) Effects of amlodipine once or twice daily on circadian blood pressure profile, myocardial hypertrophy, and beta-adrenergic signaling in transgenic hypertensive TGR(mREN2)27 rats. J Cardiovasc Pharmacol 31(5):661–668

    Article  PubMed  CAS  Google Scholar 

  • Witte K et al (1998b) Effects of melatoninergic agonists on light-suppressed circadian rhythms in rats. Physiol Behav 65(2):219–224

    Article  PubMed  CAS  Google Scholar 

  • Witte K et al (1998c) Effects of SCN-lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats. Chronobiol Int 15:135–145

    Article  PubMed  CAS  Google Scholar 

  • Witte K et al (2001) Normalisation of blood pressure in hypertensive TGR(mREN2)27 rats by amlodipine vs. enalapril: effects on cardiac hypertrophy and signal transduction pathways. Naunyn Schmiedebergs Arch Pharmacol 363(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Witte K et al (2004) Circadian and short-term regulation of blood pressure and heart rate in transgenic mice with cardiac overexpression of the beta 1-adrenoceptor. Chronobiol Int 21(2):205–216

    Article  PubMed  CAS  Google Scholar 

  • Zambraski EJ, Fuchs B (1980) Resting metabolism of Yucatan miniature swine. Lab Anim Sci 30:51–53

    PubMed  CAS  Google Scholar 

  • Zhao Y et al (1993) Ontogenetic regulation of mouse Ren-2d renin gene in transgenic hypertensive rats, TGR(mREN2)27. Am J Physiol Endocrinol Metab 265(5):E699–E707

    CAS  Google Scholar 

  • Zhdanova IV et al (2011) Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta. J Biol Rhythms 26(2):149–159

    Article  PubMed  CAS  Google Scholar 

  • Zuther P, Lemmer B (2004) Chronos-fit. http://www.ma.uni-heidelberg.de/inst/phar/forschungLemmer.html

  • Zuther, P, Lemmer B (2004) Chronos-fit. version 1.02. Available from: http://www.ma.uni-heidelberg.de/inst/phar/forschungLemmer.html

  • Zuther P, Witte K, Lemmer B (1996) ABPM-FIT and CV-SORT: an easy-to-use software package for detailed analysis of data from ambulatory blood pressure monitoring. Blood Press Monit 1(4):347–354

    PubMed  Google Scholar 

Download references

Acknowledgment

The research of B.L. was supported by several grants from the Deutsche Forschungsgemeinschaft and from PROCOP program of the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Lemmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lemmer, B., Soloviev, M. (2013). Chronobiology and the Implications for Safety Pharmacology. In: Vogel, H.G., Maas, J., Hock, F.J., Mayer, D. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25240-2_23

Download citation

Publish with us

Policies and ethics