Skip to main content

Inhibitors of Hydrolyzing Metalloenzymes

  • Reference work entry
Drug Design

Abstract

A metal ion in the catalytic site is needed for the function of another important class of enzymes that cleave peptide and ester bonds. By coordinating the metal ion, these enzymes activate a water molecule for nucleophilic attack on the bond that is to be cleaved. The water molecule experiences a drastic change in its pK a value in this state. By far, zinc is the most commonly used metal ion in these enzymes, but iron, cadmium, cobalt, or manganese are also found. The presence of a metal ion is essential for the activity of the protease or esterase. If the metal ion is removed from the enzyme by the addition of a strong complexation reagent, for example, β-mercaptoethanol or ethylenediaminetetraacetic acid (EDTA), the catalytic activity is not observable anymore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

General Literature

  • Becket RP, Davidson AH, Drummond AH, Huxley P, Whittaker M (1996) Recent advances in matrix metalloproteinase inhibitor research. Drug Discov Today 1:16–26

    Article  Google Scholar 

  • Fersht A (1985) Enzyme structure and mechanism. W. H. Freeman, New York, p 416

    Google Scholar 

  • Rich DH (1990) Peptidase inhibitors. In: Hansch C, Sammes PG, Taylor JB (eds) Comprehensive medicinal chemistry, vol 2, Enzymes & other molecular targets. Pergamon Press, Oxford, pp 391–441

    Google Scholar 

  • Türk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  PubMed  Google Scholar 

Special Literature

  • Acharya KR, Sturrock ED, Riordan JF, Ehlers MRW (2003) ACE revisited: a new target for structure-based drug design. Nat Rev Drug Discov 2:891–902

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JJ, Ponticello GS, Anderson PS et al (1989) Thienothiopyran-2-sulfonamides: novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J Med Chem 32:2510–2513

    Article  PubMed  CAS  Google Scholar 

  • Bertenshaw SR et al (1993) Thiol and hydroxamic acid containing inhibitors of endothelin converting enzyme. Bioorg Med Chem Lett 3:1953–1958

    Article  CAS  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ (2006) Snapshots of the reaction mechanism of matrix metalloproteinases. Angew Chem Int Ed 45:7952–7955

    Article  CAS  Google Scholar 

  • Borkakoti N, Winkler FK, Williams DH, D’Arcy A, Broadhurst MJ, Brown PA, Johnson WH, Murray EJ (1994) Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Biol 1:106–110

    Article  PubMed  CAS  Google Scholar 

  • Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16:5484–5491

    Article  PubMed  CAS  Google Scholar 

  • Hu J, van den Steen PE, Sang Q-XA, Opdenakker G (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6:480–498

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Chen D, White RJ, Patel DV, Yuan Z (2005) Bacterial peptide deformylase inhibitors: a new class of antibacterial agents. Curr Med Chem 12:1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Matter H, Schudok M (2004) Recent advances in the design of matrix metalloprotease inhibitors. Curr Opin Drug Discov Devel 7:513–535

    PubMed  CAS  Google Scholar 

  • Matthews BW (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340

    Article  CAS  Google Scholar 

  • Morgan BP, Holland DR, Matthews BW, Bartlett PA (1994) Structure-based design of an inhibitor of the zinc peptidase thermolysin. J Am Chem Soc 116:3251–3260

    Article  CAS  Google Scholar 

  • Porter JR, Beeley NR, Boyce BA et al (1994) Potent and selective inhibitors of gelatinase-A, 1. Hydroxamic acid derivatives. Bioorg Med Chem Lett 4:2741–2746

    Article  CAS  Google Scholar 

  • Rotella DP (2002) Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 1:674–682

    Article  PubMed  CAS  Google Scholar 

  • Supuran CT, Scozzafava A (2000) Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat 10:575–600

    Article  CAS  Google Scholar 

  • Supuran CT, Mastrolorenzo A, Barbaro G, Scozzafava A (2006) Phosphodiesterase 5 inhibitors – drug design and differentiation based on selectivity, pharmacokinetic and efficacy profiles. Curr Pharm Des 12:3459–3465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Klebe, G. (2013). Inhibitors of Hydrolyzing Metalloenzymes. In: Klebe, G. (eds) Drug Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17907-5_25

Download citation

Publish with us

Policies and ethics