Skip to main content

Synchrotron Radiation and FEL Instrumentation

  • Reference work entry
Handbook of Particle Detection and Imaging
  • 5449 Accesses

Abstract

For almost one century, x-rays have been the primary tool to probe the atomic structure of matter. With the advent of synchrotron radiation sources in the 1960s and more recently free-electron lasers, the photon flux, coherence, spectral brightness, and tunability of short-wavelength radiation has improved dramatically. After briefly reviewing the history of x-ray sources, the generation of radiation by accelerating electrons will be addressed. Synchrotron radiation is produced by circular acceleration of relativistic electrons in magnetic fields. Therefore, the discussion focuses on linear and circular particle accelerators, on the principles of particle optics as well as on magnetic devices called wigglers and undulators. After giving a brief overview of the applications of synchrotron radiation, newly emerging radiation sources, in particular free-electron lasers, will be discussed. It will become clear that x-ray science is far from settling into a routine but is presently undergoing a more rapid development than ever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Bakr M et al (2003) Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys Rev Lett 90:094801

    Article  ADS  Google Scholar 

  • Balewski K (2010) Commissioning of PETRA III. In: Proceedings of the international particle accelerator conference, Kyoto/Japan, p 1280

    Google Scholar 

  • Ban N et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289:905

    Google Scholar 

  • Bilderback DH et al (2009) Energy recovery linac (ERL) coherent hard x-ray sources. New J Phys 12:035011

    Article  Google Scholar 

  • Bonse U, Bush F (1996) X-ray computed microtomography using synchrotron radiation. Prog Biophys Mol Biol 66:133

    Article  Google Scholar 

  • Brown G et al (1983) Wiggler and undulator magnets – a review. Nucl Inst Meth 208:65

    Article  Google Scholar 

  • Casalbuoni S et al (2006) Generation of x-ray radiation in a storage ring by a superconductive cold-bore in-vacuum undulator. Phys Rev ST Accel Beams 9:010702

    Article  ADS  Google Scholar 

  • Chasman R, Green GK, Rowe EM (1975) Preliminary design of a dedicated synchrotron radiation facility. IEEE Trans Nucl Sci 22:1765

    Article  ADS  Google Scholar 

  • Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. Chem Phys Chem 10(10):28

    Article  Google Scholar 

  • Coolidge WD (1917) U.S. Patent 1,211,092

    Google Scholar 

  • Dik J et al (2008) Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping. Anal Chem 80:6436

    Article  Google Scholar 

  • Dill T et al (1998) Intravenous coronary angiography with synchrotron radiation. Eur J Phys 19:499

    Article  Google Scholar 

  • Ding Y et al (2009) Measurements and simulations of ultralow emittance and ultrashort electron beams in the linear coherent light source. Phys Rev Lett 102:254801

    Article  ADS  Google Scholar 

  • Eisebitt S et al (2004) Lensless imaging of magnetic nanostructures by x-ray spectro-holography. Nature 432:885

    Article  ADS  Google Scholar 

  • Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829

    Article  ADS  Google Scholar 

  • Fuchs M et al (2009) Laser-driven soft-X-ray undulator source. Nature Phys 5:826

    Article  ADS  Google Scholar 

  • Hara T et al (2004) Cryogenic permanent magnet undulators. Phys Rev ST Accel Beams 7:050702

    Article  ADS  Google Scholar 

  • Heuberger A (1985) X-ray lithography with synchrotron radiation. Z Phys B – Condens Matter 61:473

    Google Scholar 

  • Hubert N et al (2009) Global orbit feedback systems down to DC using fast and slow correctors. In: Proceedings of the DIPAC 2009, Basel, Switzerland, http://www.jacow.org

  • Khan S (2006) Collective phenomena in synchrotron radiation sources. Springer, Berlin

    Google Scholar 

  • Klein R, Thornagel R, Ulm G (2010) From single photons to milliwatt radiant power – electron storage rings as radiation sources with high dynamic range. Metrologia 47:R33

    Article  ADS  Google Scholar 

  • Kondratenko AM, Saldin EL (1980) Generation of coherent radiation by a relativistic electron beam in an ondulator. Part Accel 10:207

    Google Scholar 

  • Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  • Lambert G et al (2008) Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat Phys 4:296

    Article  Google Scholar 

  • Ohkuma H (2008) Top-up operation in light sources. In: Proceedings of the 2008 European particle acceleration conference, Genova/Italy, p 36, http://www.jacow.org

  • Röntgen WC (1895) Ueber eine neue Art von Strahlen (Vorläu_ge Mittheilung). In: Sitzungsberichte der Würzburger Physik.-Medic.-Gesellschaft

    Google Scholar 

  • Schmidt DA et al (2009) Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J Am Chem Soc 131:18512

    Article  Google Scholar 

  • Shintake T (2003) Real-time animation of synchrotron radiation, Nucl Intstr Meth A 507:89; the program Radiation2D 2.0 can be downloaded from http://www-xfel.spring8.or.jp

  • Stöhr J et al (1993) Element-specific magnetic microscopy with circularly polarized light. Science 259:658

    ADS  Google Scholar 

  • Tigner M (1965) A possible apparatus for electron clashing-beam experiments. Nuovo Cimento 37:1228

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737

    Article  ADS  Google Scholar 

  • Xiang D et al (2010) Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys Rev Lett 105:114801

    Article  ADS  Google Scholar 

  • Yun W et al (1999) Nanometer focusing of hard x-rays by phase zone plates. Rew Sci Instrum 70:2238

    Article  ADS  Google Scholar 

  • Zholents AA, Zolotorev MS (1996) Femtosecond x-ray pulses of synchrotron radiation. Phys Rev Lett 76:912

    Article  ADS  Google Scholar 

Further Reading

  • Als-Nielsen J, McMorrow D (2001) Elements of modern x-ray physics. Wiley, New York

    Google Scholar 

  • Attwood D (1999) Soft x-rays and extreme ultraviolet radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Duke PJ (2000) Synchrotron radiation. Oxford University Press, Oxford

    Google Scholar 

  • Falta J, Möller T (eds) (2010) Forschung mit Synchrotronstrahlung (in German). Vieweg + Teubner, Wiesbaden

    Google Scholar 

  • Pietsch U, Holy V, Baumbach T (2004) High-resolution x-ray scattering: from thin films to lateral nanostructures. Springer, Berlin

    Google Scholar 

  • Schmüser P, Dohlus M, Roßbach J (2008) Ultraviolet and soft-x-ray free-electron lasers. Springer, Berlin

    Google Scholar 

  • Wiedemann H (2003) Synchrotron radiation. Springer, Berlin

    Book  Google Scholar 

  • Wiedemann H (2007) Particle accelerator physics. Springer, Berlin

    Google Scholar 

  • Wille K (2001) The physics of particle accelerators. An introduction. Oxford University Press, Oxford

    Google Scholar 

  • Winick H (ed) (1994) Synchrotron radiation sources – a primer. World Scientific, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Khan, S., Wille, K. (2012). Synchrotron Radiation and FEL Instrumentation. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_8

Download citation

Publish with us

Policies and ethics