Skip to main content

Image Reconstruction

  • Reference work entry
Handbook of Particle Detection and Imaging
  • 5340 Accesses

Abstract

This chapter describes the mathematical algorithms that are commonly used to reconstruct a three-dimensional image of the body being scanned in computed tomography. It covers emission and transmission tomography with electromagnetic ionizing radiation for three radiological modalities: positron emission tomography (PET), single photon emission computed tomography (SPECT), and X-ray computed tomography (X-ray CT). Analytical reconstruction algorithms are presented first in two dimensions for parallel and diverging rays. Then, the extension to three-dimensional analytical algorithms is described. Three-dimensional scanning is characterized by truncated measured data, requiring specific adaptation of the reconstruction algorithms. Finally, iterative algorithms are presented. A detailed presentation is given of the two most common reconstruction algorithms, the analytical filtered-backprojection algorithm (FBP) and the iterative expectation maximization – maximum-likelihood algorithm (EM-ML).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Browne J, de Pierro A (1996) A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag 15(5):687–699

    Article  Google Scholar 

  • Colsher JG (1980) Fully-three-dimensional positron emission tomography. Phys Med Biol 25(1):103

    Article  Google Scholar 

  • Comtat C, Kinahan P, Defrise M, Michel C, Townsend D (1998) Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci 45(3):1083–1089

    Article  ADS  Google Scholar 

  • Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28(11):1717–1724

    Google Scholar 

  • De Pierro AR (1995) A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans Med Imag 14(1):132–137

    Article  Google Scholar 

  • Defrise M, Gullberg GT (2006) Review: image reconstruction. Phys Med Biol 51(13):R139–R154

    Article  ADS  Google Scholar 

  • Defrise M, Kinahan P, Townsend D, Michel C, Sibomana M, Newport D (1997) Exact and approximate rebinning algorithms for 3-D pet data. IEEE Trans Med Imag 16(2):145–158

    Article  Google Scholar 

  • Defrise M, Townsend DW, Clack R (1989) Three-dimensional image reconstruction from complete projections. Phys Med Biol 34(5):573

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  • Edholm PR, Lewitt RM, Lindholm B (1986) Novel properties of the fourier decomposition of the sinogram. In: International workshop on physics and engineering of computerized multidimensional imaging and processing, vol 671, Newport Beach, California, pp 8–18

    Google Scholar 

  • Erdogan H, Fessler JA (1999) Ordered subsets algorithms for transmission tomography. Phys Med Biol 44(11):2835–2851

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6): 612–619

    Article  ADS  Google Scholar 

  • Fessler J (1994) Penalized weighted least-square image reconstruction for positron emission tomography. IEEE Trans Med Imag 13(2): 290–300

    Article  Google Scholar 

  • Frese T, Bouman C, Sauer K (2002) Adaptive wavelet graph model for bayesian tomographic reconstruction. IEEE Trans Image Process 11(7): 756–770

    Article  ADS  Google Scholar 

  • Grangeat P (1991) Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform. In: Mathematical methods in tomography, Lecture notes in mathematics, vol 1497. Springer, Berlin/Heidelberg, pp 66–97

    Google Scholar 

  • Herman G, Meyer L (1993) Algebraic reconstruction techniques can be made computationally efficient positron emission tomography application. IEEE Trans Med Imag 12(3):600–609

    Article  Google Scholar 

  • Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26(1):5–18. Available at http://link.aip.org/link/?MPH/26/5/1

  • Hudson H, Larkin R (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13(4):601–609

    Article  Google Scholar 

  • Katsevich A (2002) Analysis of an exact inversion algorithm for spiral cone-beam CT. Phy Med Biol 47(15):2583–2597. Available at http://stacks.iop.org/00319155/47/i=15/a=302

  • Kinahan P, Rogers J (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci 36(1):964–968

    Article  ADS  Google Scholar 

  • Kudo H, Noo F, Defrise M (1998) Cone-beam filtered-backprojection algorithm for truncated helical data. Phys Med Biol 43(10):2885–2909. Available at http://stacks.iop.org/0031-9155/43/i=10/a=016

  • Lange K, Bahn M, Little R (1987) A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. IEEE Trans Med Imag 6(2):106–114

    Article  Google Scholar 

  • Lange K, Carson R (1984) Em reconsturction algorithm for emission and transmission tomography. J Comp Assist Tomogr 8(2):306–316

    Google Scholar 

  • Lange K, Fessler J (1995) Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Image Process 4(10):1430–1438

    Article  ADS  Google Scholar 

  • Lewitt RM (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms. Phy Med Biol 37(3):705–716

    Article  Google Scholar 

  • Liu X et al (1999) Exact rebinning methods for three-dimensional pet. IEEE Trans Med Imag 18(8):657–664

    Article  Google Scholar 

  • Mumcuoglu E, Leahy R, Cherry S, Zhou Z (1994) Fast gradient-based methods for bayesian reconstruction of transmission and emission pet images. IEEE Trans Med Imag 13(4): 687–701

    Article  Google Scholar 

  • Natterer F (2001) The mathematics of computerized tomography. SIAM, Philadelphia

    Google Scholar 

  • Novikov RG (2002) On the range characterization for the two-dimensional attenuated x-ray transformation. Inverse Prob 18(3):677

    Article  MATH  ADS  Google Scholar 

  • Ollinger J (1994) Maximum-likelihood reconstruction of transmission images in emission computed tomography via the EM algorithm. IEEE Trans Med Imag 13(1):89–101

    Article  Google Scholar 

  • Orlov S (1975) Theory of three dimensional reconstruction. I. Conditions for a complete set of projections. Sov Phys Crystallogr 20(3): 312–314

    Google Scholar 

  • Panin V, Kehren F, Michel C, Casey M (2006) Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imag 25(7):907–921

    Article  Google Scholar 

  • Parker D (1982) Optimal short scan convolution reconstruction for fan-beam CT. Med Phys 9(2):254–257

    Article  Google Scholar 

  • Politte D, Snyder D (1991) Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography. IEEE Trans Med Imag 10(1):82–89

    Article  Google Scholar 

  • Qi J, Leahy RM (2006) Iterative reconstruction techniques in emission computed tomography. Phys Med Biol 51(15):R541. Available at http://stacks.iop.org/0031-9155/51/i=15/a=R01

  • Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH (1998) High-resolution 3D bayesian image reconstruction using the micropet small-animal scanner. Phys Med Biol 43(4):1001–1013

    Article  Google Scholar 

  • Rafecas M et al (2004) Use of Monte Carlo based probability matrix for 3-D reconstruction of MADPET-II data. IEEE Trans Nucl Sci 51(5):2597–2605

    Article  ADS  Google Scholar 

  • Rockmore AJ, Macovski A (1976) A maximum likelihood approach to emission image reconstruction from projections. IEEE Trans Nucl Sci 23(4):1428–1432

    Article  ADS  Google Scholar 

  • Selivanov V, Picard Y, Cadorette J, Rodrigue S, Lecomte R (2000) Detector response models for statistical iterative image reconstruction in high resolution PET. IEEE Trans Nucl Sci 47(3):1168–1175

    Google Scholar 

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1(2):113–122

    Google Scholar 

  • Snyder DL, Miller MI, Thomas LJ, Politte DG (1987) Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imag 6(3):228–238

    Google Scholar 

  • Titterington DM (1987) On the iterative image space reconstruction algorthm for ect. IEEE Trans Med Imag 6(1):52–56

    Google Scholar 

  • Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43(3): 546–552

    Google Scholar 

  • Vardi Y, Shepp LA, Kafman L (1985) A statistical model for positron emission tomography. J Am Stat Assoc 80(389): 8–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Comtat, C. (2012). Image Reconstruction. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_39

Download citation

Publish with us

Policies and ethics