Skip to main content

CT Imaging: Basics and New Trends

  • Reference work entry
Handbook of Particle Detection and Imaging

Abstract

This chapter presents the principle of X-ray CT and its evolution during the last 40 years. The first section describes the physical basis of X-ray CT, tomographic image reconstruction algorithms, and the source of artifacts in X-ray CT images. The second section is devoted to the evolution of CT technology from the first translation–rotation systems to multi-slice spiral CTs currently used today. The next section addresses specific developments of CT technology and applications, like perfusion CT, quantitative CT, and spectral CT. The fourth section introduces the problem of radiation exposure delivered to the patient and its evaluation. Finally the last section addresses the development in micro- and even nano-CT which is a rapidly evolving area in preclinical imaging and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21(5):733–744

    Article  Google Scholar 

  • Bauer RW et al (2010) Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: comparison with 3-T MRI. Am J Roentgenol 195(3):639–646

    Article  Google Scholar 

  • Baum U et al (2004) Improvement of image quality of multislice spiral CT scans of the head and neck region using a raw data-based multidimensional adaptive filtering (MAF) technique. Eur Radiol 14(10):1873–1881

    Article  MathSciNet  Google Scholar 

  • Boutroy S et al (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  Google Scholar 

  • Brooks RA (1977) A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr 1(4):487–493

    Article  Google Scholar 

  • Christner JA et al (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. Am J Roentgenol 194(4):881–889

    Article  Google Scholar 

  • Clackdoyle R et al (2004) Quantitative reconstruction from truncated projections in classical tomography. IEEE Trans Nucl Sci 51(5): 2570–2578

    Article  ADS  Google Scholar 

  • Cormack AM (1980) Nobel Award address. Early two-dimensional reconstruction and recent topics stemming from it. Med Phys 7(4):277–282

    Article  MathSciNet  Google Scholar 

  • Deak P et al (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18(4):759–772

    Article  Google Scholar 

  • Engelke K et al (1993) High spatial resolution imaging of bone mineral using computed microtomography. Comparison with microradiography and undecalcified histologic sections. Investig Radiol 28(4):341–349

    Article  Google Scholar 

  • Engelke K et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom Off J Int Soc Clin Densitom 11(1):123–162

    Article  Google Scholar 

  • Feldkamp LA et al (1984) Practical cone-beam algorithm. J Opt Soc Am 1(6):612–619

    Article  ADS  Google Scholar 

  • Feldkamp LA et al (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res Off J Am Soc Bone Miner Res 4(1):3–11

    Article  Google Scholar 

  • Flicek KT et al (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. Am J Roentgenol 195(1):126–131

    Article  Google Scholar 

  • Flohr TG et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Investig Radiol 12(6):545–551

    Article  Google Scholar 

  • Genant HK et al (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97(5):699–705

    Google Scholar 

  • Gould GA et al (1991) Lung CT density correlates with measurements of airflow limitation and the diffusing capacity. Eur Respir J Off J Eur Soc Clin Respir Physiol 4(2):141–146

    Google Scholar 

  • Grangeat P (1991) Mathematical framework of Cone Beam 3D reconstruction via the first derivative of the radon transform. In: Herman GT, Louis AK, Natterer (eds) Mathematical Methods in Tomography. Lecture notes in mathematics, vol 1497. Springer, Berlin, pp 66–97

    Google Scholar 

  • Grangeat P (2002) La tomographie: fondements mathématiques, imagerie microscopique et imagerie industrielle (Traité IC2, série traitement du signal et de l’image). Hermès, Paris

    Google Scholar 

  • Grodzins L (1983) Optimum energy for X-ray transmission tomography of small sample. Nucl Instrum Methods 206:541–545

    Article  Google Scholar 

  • Gupta R et al (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28(7):2009–2022

    Article  Google Scholar 

  • Haberland U et al (2010) Performance assessment of dynamic spiral scan modes with variable pitch for quantitative perfusion computed tomography. Invest Radiol 45(7):378–386

    Google Scholar 

  • Hara AK et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 193(3): 764–771

    Article  Google Scholar 

  • Hawkes DJ et al (1986) Tissue analysis by dual-energy computed tomography. Br J Radiol 59(702): 537–542

    Article  ADS  Google Scholar 

  • Heremans A et al (1992) Measurement of lung density by means of quantitative CT scanning. A study of correlations with pulmonary function tests. Chest 102(3):805–811

    Article  Google Scholar 

  • Herman GT (1980) Image reconstruction from projections: the fundamentals of computerized tomography. Academic, New York

    MATH  Google Scholar 

  • Ho KT et al (2010) Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging 3(8):811–820

    Article  Google Scholar 

  • Hoffman EA, Chon D (2005) Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc 2(6):492–498, 506

    Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Google Scholar 

  • van Hove RP et al (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density – is there a role for mechanosensing? Bone 45(2):321–329

    Article  Google Scholar 

  • Hubbell JH (2006) Review and history of photon cross section calculations. Phys Med Biol 51(13):R245–R262

    Article  ADS  Google Scholar 

  • IAEA (2009) Dose reduction in CT while maintaining diagnostic confidence: a feasibility/ demonstration study

    Google Scholar 

  • Jessen KA et al (1999) Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isot Incl Data Instrum Methods Agric Ind Med 50(1):165–172

    Google Scholar 

  • Kachelriess M et al (2000) Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 27(4):754–772

    Article  Google Scholar 

  • Kachelriess M et al (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475–490

    Article  Google Scholar 

  • Kachelriess M et al (2004) Extended parallel backprojection for standard three-dimensional and phase-correlated four-dimensional axial and spiral cone-beam CT with arbitrary pitch, arbitrary cone-angle, and 100% dose usage. Med Phys 31(6):1623–1641

    Article  Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE, New York

    MATH  Google Scholar 

  • Kalender WA (2005) Computed tomography: fundamentals, system technology, image quality, applications, 2nd edn. Publicis Corporate, Erlangen. Publicis MCD Werbeagentur Verlag

    Google Scholar 

  • Kalender WA et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339

    Article  Google Scholar 

  • Kalender WA et al (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164(2):419–423

    Google Scholar 

  • Kalender WA et al (1990) Measurement of pulmonary parenchymal attenuation: use of spirometric gating with quantitative CT. Radiology 175(1): 265–268

    Google Scholar 

  • Kalender WA et al (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26(11):2248–2253

    Article  Google Scholar 

  • Kalender W, Engelke K, Fuerst TP, Glüer C-C, Laugier P, Shepherd J (2009) Quantitative aspects of bone densitometry. J ICRU 9(1):1–130

    Article  Google Scholar 

  • Kalra MK et al (2005) Computed tomography radiation dose optimization: scanning protocols and clinical applications of automatic exposure control. Curr Probl Diagn Radiol 34(5):171–181

    Article  Google Scholar 

  • Kang M et al (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30(3):685–698

    Article  Google Scholar 

  • Katsevich A (2004a) An improved exact filtered backprojection algorithm for spiral computed tomography. Adv Appl Math 32(4):681–697

    Article  MATH  MathSciNet  Google Scholar 

  • Katsevich A (2004b) On two versions of a 3-pi algorithm for spiral CT. Phys Med Biol 49(11):2129–2143

    Article  Google Scholar 

  • Kemmling A et al (2010) Dual energy bone subtraction in computed tomography angiography of extracranial-intracranial bypass: feasibility and limitations. Eur Radiol 21(4):750–756

    Article  Google Scholar 

  • Konstas AA et al (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: theoretic basis. Am J Neuroradiol 30(4):662–668

    Article  Google Scholar 

  • Kruger RA et al (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 4(3):244–249

    Article  Google Scholar 

  • Kudo K et al (2010) Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology 254(1):200–209

    Article  Google Scholar 

  • Lehmann LA et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8(5):659–667

    Article  MathSciNet  Google Scholar 

  • Lell MM et al (2007) Bone-subtraction CT angiography: evaluation of two different fully automated image-registration procedures for interscan motion compensation. Am J Neuroradiol 28(7):1362–1368

    Article  Google Scholar 

  • Maass C et al (2009) Image-based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain. Med Phys 36(8):3818–3829

    Article  Google Scholar 

  • McCollough CH et al (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26(2):503–512

    Article  Google Scholar 

  • McCollough CH et al (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 47(1):27–40

    Article  Google Scholar 

  • Mettler FA et al (2008) Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 95(5):502–507

    Google Scholar 

  • Natterer F (1986) The mathematics of computerized tomography. Wiley, Chichester, New York

    MATH  Google Scholar 

  • Nuzzo S et al (2002) Quantification of the degree of mineralization of bone in three dimension using synchrotron radiation microtomography. Med Phys 19(11):2672–2681

    Article  Google Scholar 

  • Peyrin F (2009) Investigation of bone with synchrotron radiation imaging: from micro to nano. Osteoporos Int 20(6):1057–1063

    Article  Google Scholar 

  • Peyrin FC (1985) The generalized back projection theorem for cone beam reconstruction. IEEE Trans Nucl Sci 32(4):1512–1519

    Article  ADS  Google Scholar 

  • Prakash P et al (2010) Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 34(1): 40–45

    Article  Google Scholar 

  • Radon J (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten (English translation: RADON J.: On determination of functions from their integral values along certain manifolds. IEEE Trans Med imaging 1986 MI, 5(4):170–176) Ber Verh Sächs Akad Wiss Leipzig, Math Phys Kl 69:262–277

    Google Scholar 

  • Ramachandran GN, Lakshminarayanan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci USA 68(9):2236–2240

    Article  ADS  MathSciNet  Google Scholar 

  • Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized X-ray tomography. Med Phys 4(6): 474–481

    Article  Google Scholar 

  • Ritman EL et al (1980) Physics and technical considerations in the design of the DSR: a high temporal resolution volume scanner. Am J Roentgenol 134(2):369–374

    Google Scholar 

  • Roberts HC et al (2001) Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. Am J Neuroradiol 22(6):1077–1080

    Google Scholar 

  • Rüegsegger P et al (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58(1):24–29

    Article  Google Scholar 

  • Ruzsics B et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104(3):318–326

    Article  Google Scholar 

  • Saint-Félix D et al (1994) In vivo evaluation of a new system for 3D computerized angiography. Phys Med Biol 39(3):583–595

    Article  Google Scholar 

  • Salome M et al (1999) A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Med Phys 26(10): 2194–2204

    Article  Google Scholar 

  • Salomon EJ et al (2009) Dynamic CT angiography and CT perfusion employing a 320-detector row CT: protocol and current clinical applications. Klin Neuroradiol 19(3):187–196

    Article  Google Scholar 

  • Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21:21–34

    Google Scholar 

  • Söderberg M, Gunnarsson M (2010) Automatic exposure control in computed tomography–an evaluation of systems from different manufacturers. Acta Radiologica (Stockholm, Sweden: 1987) 51(6):625–634

    Google Scholar 

  • Stanton CL et al (2010) Normal myocardial perfusion on 64-detector resting cardiac CT. J Cardiovasc Comput Tomogr 5(1):52–60

    Article  Google Scholar 

  • The International Commission on Radiological Protection (2007) Radiation protection in medicine. ICRP Publication 105. Ann ICRP 37(6):1–63

    Google Scholar 

  • Thieme SF, Hoegl S et al (2010a) Pulmonary ventilation and perfusion imaging with dual-energy CT. Eur Radiol 20(12):2882–2889

    Article  Google Scholar 

  • Thieme SF, Johnson TR et al (2010b) Dual-energy lung perfusion computed tomography: a novel pulmonary functional imaging method. Semin Ultrasound CT MR 31(4):301–308

    Article  ADS  Google Scholar 

  • Thomas C et al (2010) Automatic lumen segmentation in calcified plaques: dual-energy CT versus standard reconstructions in comparison with digital subtraction angiography. Am J Roentgenol 194(6):1590–1595

    Article  Google Scholar 

  • Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43:546–552

    Article  MathSciNet  Google Scholar 

  • UNSCEAR (2008) Sources and effects of ionizing radiation, vol 1, Annex A Medical radiation exposures. United Nations, New York

    Google Scholar 

  • Valton S et al (2006) Analysis of cone-beam artifacts in off-centered circular CT for four reconstruction methods. Int J Biomed Imaging Article ID 80421, 8 p

    Google Scholar 

  • Vetter JR et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13(3):340–343

    Article  Google Scholar 

  • Wintermark M et al (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230

    Article  Google Scholar 

  • Wintermark M et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36(9):e83–e99

    Article  Google Scholar 

  • Zerhouni EA et al (1982) Factors influencing quantitative CT measurements of solitary pulmonary nodules. J Comput Assist Tomogr 6(6): 1075–1087

    Article  Google Scholar 

  • Zhang L et al (2010) Automatic bone removal dual-energy CT angiography for the evaluation of intracranial aneurysms. J Comput Assist Tomogr 34(6):816–824

    Article  Google Scholar 

  • Zilberman DE et al (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184(6):2354–2359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Peyrin, F., Engelke, K. (2012). CT Imaging: Basics and New Trends. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_36

Download citation

Publish with us

Policies and ethics