Skip to main content

Particle Detectors in Materials Science

  • Reference work entry
  • 5185 Accesses

Abstract

Particle detectors play a key role in today’s materials science. Being generally based on the interaction of particles with matter they naturally form the foundation of any analytical tool to derive information on the structure of materials. Therefore, advances in particle detector technology are closely interrelated with improvements in instrumentation as well as an increased knowledge gain with respect to the corresponding interaction underlying the method. Illustrated by an example of a chemical vapor deposition (CVD)-based diamond synthesis process the correlation between particle detector technology and the different stages of process and materials characterization will be shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allison WWM, Wright PRS (1991) The physics of charged particle identification. In: Ferbel T (ed) Experimental techniques in nuclear and particle physics. World Scientific, Singapore (reprinted from: Bock RK (ed) (1984) Formulae and methods in experimental data evaluation. European Physical Society, Geneva)

    Google Scholar 

  • Angus JC, Hayman CC (1988) Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 214:913

    Article  ADS  Google Scholar 

  • Baba K, Aikawa Y, Shohata N, Yoneda H, Ueda K-I (1995) Photoconductive switch with CVD diamond films by ultraviolet light pulse. NEC Res Dev 36(3):369

    Google Scholar 

  • Balducci A, Marinelli M, Milani E, Morgada ME, Pucella G, Tucciarone A, Verona-Rinati G, Angelone M, Pillon M (2005) Synthesis and characterization of a single-crystal chemical-vapor-deposition diamond particle detector. Appl Phys Lett 86:213507

    Article  ADS  Google Scholar 

  • Blodgett KB, Langmuir I (1932) Accommodation coefficient of hydrogen: a sensitive detector of surface films. Phys Rev 40:78, and references therein

    Google Scholar 

  • Celii FG, Butler JE (1989) Hydrogen atom detection in the filament-assisted diamond deposition environment. Appl Phys Lett 54:1031

    Article  ADS  Google Scholar 

  • Cherenkov PA (1934) Visible emission of clean liquids by action of γ radiation. Dokl Akad Nauk SSSR 2:451. Reprinted in Selected Papers of Soviet Physicists (1967) Usp Fiz Nauk 93:385. V sbornike: Pavel Alekseyevich Čerenkov: Chelovek i Otkrytie pod redaktsiej A. N. Gorbunova i E. P. Čerenkovoj, M., Nauka, 1999, s. 149–153

    Google Scholar 

  • Compton AH (1922) Secondary Radiations produced by X-rays and some of their applications to physical problems. In: Bulletin of the National Research Council 20:10; Nachdruck in: Compton AH, Shankland RS (1973) Scientific papers of Arthur Holly Compton. University of Chicago Press, Chicago

    Google Scholar 

  • Davis RF (ed) (1992) Diamond films and coatings. Noyes, New Jersey

    Google Scholar 

  • Eden RC (1993) Application of diamond substrates for advanced high density packaging. Diam Relat Mater 2(5–7):1051

    Article  Google Scholar 

  • Everhart TE, Thornley RFM (1960) Wide-band detector for micro-microampere low-energy electron currents. J Sci Instrum 37(7):246–248

    Article  ADS  Google Scholar 

  • Field JE (1979) The properties of diamond. Academic Press, Oxford

    Google Scholar 

  • Geis MW, Twichell JC, Efremow NN, Krohn K, Lyszczarz TM (1996) Comparison of electric field emission from nitrogen-doped, type lb diamond, and boron-doped diamond. Appl Phys Lett 68:2294

    Article  ADS  Google Scholar 

  • Harris SJ, Weiner AM (1988) Measurement of stable species present during filament-assisted diamond growth. Appl Phys Lett 53:1605

    Article  ADS  Google Scholar 

  • Heroux L, Hinteregger HE (1960) Resistance strip magnetic photomultiplier for the extreme ultraviolet. Rev Sci Instrum 31:280

    Article  ADS  Google Scholar 

  • Hsu WL, Tung DM (Sept 1992) Application of molecular-beam mass-spetrometry to chemical vapor-deposition studies. Rev Sci Instrum 63(9):4138

    Article  ADS  Google Scholar 

  • Lechner P et al (1996) Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl Instrum Methods A377:346–351

    ADS  Google Scholar 

  • Loudon R (1964) Raman effect in crystals. Adv Phys 13:423

    Article  ADS  Google Scholar 

  • Matsumoto S, Sato Y, Tsutsimi M, Setaka N (1982) Growth of diamond particles from methane hydrogen gas. J Mat Sci 17:3106

    Article  ADS  Google Scholar 

  • Meier U, Kohse-Hoinghaus K, Just Th (1986) H and O atom detection for combustion applications: study of quenching and laser photolysis effects. Chem Phys Lett 126:567

    Article  ADS  Google Scholar 

  • Meier U, Kohse-Hoinghaus K, Schafer L, Klages C-P (1990) Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low pressure H2 environment. Appl Opt 29:4993

    Article  ADS  Google Scholar 

  • Pan LS, Kania DR (eds) (1995) Diamond: electronic properties and applications. Kluwer, Boston

    Google Scholar 

  • Robinson VNE (1973) A reappraisal of the complete electron emission spectrum in scanning electron microscopy. J Phys D Appl Phys 6:L105–L106

    Article  ADS  Google Scholar 

  • Spieler H (2005) Semiconductor detector systems. Oxford Science, Oxford

    Book  Google Scholar 

  • Wilks J, Wilks E (eds) (1994) Properties and application of diamond. Butterworth Heinemann, Oxford

    Google Scholar 

  • Yarbrough W, Messier R (1990) Current issues and problems in the chemical vapor deposition of diamond. Science 247:688

    Article  ADS  Google Scholar 

  • Yoneda H, Ueda K-I, Aikwaa Y, Baba K, Shohata N (1995) Appl Phys Lett 66(4):460

    Article  ADS  Google Scholar 

  • Zhirnov VV, Hern JJ (1998) Diamond films: recent developments – electron emission from diamond films. MRS Bull 9:42

    Google Scholar 

  • Zhirnov VV, Wojak GJ, Choi WB, Cuomo JJ, Hern JJ (1997) Wide band gap materials for field emission devices. J Vac Sci Technol A 15:1733

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jiang, X., Staedler, T. (2012). Particle Detectors in Materials Science. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_29

Download citation

Publish with us

Policies and ethics