Skip to main content

Particle Detectors Used in Isotope Ratio Mass Spectrometry, with Applications in Geology, Environmental Science and Nuclear Forensics

  • Reference work entry
Handbook of Particle Detection and Imaging

Abstract

This chapter introduces the reader to mass spectrometry and the instruments used to determine high-precision isotope ratios. These instruments separate ion beams, of charged atomic particles with kinetic energies of several keV, by mass-to-charge ratio. Quantitative detection of these energetic charged particles is a key technology in mass spectrometry. For isotope ratio determination the main detector types are Faraday cups, the Daly detector, and discrete dynode secondary electron multiplier (SEM) ion counters. For high-precision applications, arrays of these detectors are arranged to collect several ion beams simultaneously. Examples are given for the application of these detectors in geology, environmental sciences, and nuclear safeguards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asogan D, Sharp BL, O’ Connor CJP, Green DA, Hutchinson RW (2009) An open, non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry. J Anal At Spectrom 24:917–923

    Article  Google Scholar 

  • Ball L, Sims KWW, Schwieters J (2008) Measurement of 234U∕238U and 230Th∕232Th in volcanic rocks using the Neptune MC-ICP-MS. J Anal At Spectrom 23:173–180

    Article  Google Scholar 

  • Barnes JH, Hieftje GM (2004) Recent advances in detector-array technology for mass spectrometry. Int J Mass Spectrom 238:33–46

    Article  Google Scholar 

  • Becker JS (2007) Inorganic mass spectrometry: principles and applications. Wiley, Chichester

    Book  Google Scholar 

  • Caro G, Bourdon B, Birck J-L, Moorbath S (2003) 146Sm- 142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423:428–432

    Article  ADS  Google Scholar 

  • Cottle JM, Horstwood MSA, Parrish RR (2009) A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J Anal At Spectrom 24:1355–1363

    Article  Google Scholar 

  • Daly NR (1960) Scintillation type mass spectrometer ion detector. Rev Sci Instrum 31:264–267

    Article  ADS  Google Scholar 

  • Dickin AP (2005) Radiogenic isotope geology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Dietz LA (1965) Basic properties of electron multiplier ion detection and pulse counting methods in mass spectrometry. Rev Sci Instrum 36:1763–1770

    Article  ADS  Google Scholar 

  • Donohue DL (1998) Strengthening IAEA safeguards through environmental sampling and analysis. J Alloys Compd 271273:11–18

    Article  Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer-Verlag, Berlin

    Google Scholar 

  • Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Horstwood MSA, Evans JA, Montgomery J (2008) Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochim Cosmochim Acta 72:5659–5674

    Article  ADS  Google Scholar 

  • Jarvis KE, Gray AL, Houk RS (2003) Handbook of iductively coupled plasma mass spectrometry. Viridian Publishing, Woking

    Google Scholar 

  • Johnson CM, Beard BL, Albarede F (2004) Geochemistry of non-traditional stable isotopes, In: Rosso JJ (ed) Reviews in mineralogy and geochemistry, vol. 55. Mineralogical Society of America and The Geochemical Society, Washington, DC

    Google Scholar 

  • Kips R, Pidduck AJ, Houlton MR, Leenaers A, Mace JD, Marie O, Pointurier F, Stefaniak EA, Taylor PDP, Van den Berghe S, Van Espen P, Van Grieken R, Wellum R (2009) Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age. Spectrochim Acta B 64:199-207

    Article  ADS  Google Scholar 

  • Lloyd NS, Parrish RR, Horstwood MSA, Chenery SRN (2009) Precise and accurate isotopic analysis of microscopic uranium-oxide grains using LA-MC-ICP-MS. J Anal At Spectrom 24:752–758

    Article  Google Scholar 

  • Mallet AI, Down S (2009) Dictionary of mass spectrometry. Wiley, Chichester

    Google Scholar 

  • Mayer K, Wallenius M, Fanghänel T (2007) Nuclear forensic science: from cradle to maturity. J Alloys Compd 444445:50–56

    Article  Google Scholar 

  • Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis, 1st edn. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Nelms SN (2005) Inductively coupled plasma mass spectrometry handbook. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Parrish RR, Thirlwall MF, Pickford C, Horstwood M, Gerdes A, Anderson J, Coggon D (2006)  Determination of 238U∕235U, 236U∕238U and uranium concentration in urine using SF-ICP-MS and MC-ICP-MS: an interlaboratory comparison. Health Phys 90:127-138

    Article  Google Scholar 

  • Parrish RR, Horstwood M, Arnason JG, Chenery S, Brewer T, Lloyd NS, Carpenter DO (2008) Depleted uranium contamination by inhalation exposure and its detection after 20 years: implications for human health assessment. Sci Total Environ 390:58–68

    Article  Google Scholar 

  • Ranebo Y, Hedberg PML, Whitehouse MJ, Ingeneri K, Littmann S (2009) Improved isotopic SIMS measurements of uranium particles for nuclear safeguard purposes. J Anal At Spectrom 24:277–287

    Article  Google Scholar 

  • Richter S, Alonso A, Aregbe Y, Eykens R, Kehoe F, Khn H, Kivel N, Verbruggen A, Wellum R, Taylor PDP (2009) A new series of uranium isotope reference materials for investigating the linearity of secondary electron multipliers in isotope mass spectrometry. Int J Mass Spectrom 281:115-125

    Article  Google Scholar 

  • Steier P, Golser R, Kutschera W, Priller A, Vockenhuber C, Winkler S (2004) VERA, an AMS facility for “all” isotopes. Nucl Instrum Methods Phys Res, Sect B 223224:67–71

    Article  ADS  Google Scholar 

  • Thirlwall M (2001) Inappropriate tail corrections can cause large inaccuracy in isotope ratio determination by MC-ICP-MS. J Anal At Spectrom 16:1121–1125

    Article  Google Scholar 

  • Vanhaecke F, Balcaen L, Malinovsky D (2009) Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis. J Anal At Spectrom 24:863–886

    Article  Google Scholar 

  • Weyer S, Schwieters JB (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom 226:355–368

    Article  Google Scholar 

  • Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA (2008) Natural fractionation of 238U∕235U. Geochim Cosmochim Acta 72:345–359

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lloyd, N.S., Schwieters, J., Horstwood, M.S.A., Parrish, R.R. (2012). Particle Detectors Used in Isotope Ratio Mass Spectrometry, with Applications in Geology, Environmental Science and Nuclear Forensics. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_28

Download citation

Publish with us

Policies and ethics