Skip to main content

Geoscientific Applications of Particle Detection and Imaging Techniques withSpecial Focus on the Monitoring Clay Mineral Reactions

  • Reference work entry
Handbook of Particle Detection and Imaging

Abstract

The combined use of focused X-ray, electron, and ion beams offers a diverse range of analytical capabilities for characterizing nanoscale mineral reactions that occur in hydrous environments. Improved image and microanalytical techniques (e.g., electron diffraction and energy-dispersive X-ray spectroscopy), in combination with controlled sample environments, are currently leading to new advances in the understanding of fluid–mineral reactions in the Earth Sciences. One group of minerals playing a key role in the containment of radioactive waste and the underground storage of CO2 is the clay minerals: these small, expandable, and highly adsorbent hydrous phyllosilicates form important low-permeable geological barriers by which waste can be safely deposited. In this article we summarize some of the state-of-the-art particle and imaging techniques employed to predict the behavior of both engineered and natural clay mineral seals in proposed storage sites. Particular attention is given to two types of low-permeability geomaterials: engineered bentonite backfill and natural shale in the subsurface. These materials have contrasting swelling properties and degrees of chemical stability that require detailed analytical study for developing suitable disposal or storage solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardenne M, von Endell L, Hofmann U (1940) Investigation of the finest fraction of bentonite and clay soil with the universal electron microscope, Bericht der Deutschen Keramischen. Gesellschaft 21:209–227

    Google Scholar 

  • Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4: 325–331

    Article  Google Scholar 

  • Bethke CM, Reed JD, Oltz DF (1991) Long-range petroleum migration in the Illinois basin. AAPG Bull 75:925–945

    Google Scholar 

  • Buseck P (1992) Principles of transmission electron microscopy. In: Buseck P (ed) Minerals and reactions at the atomic scale: transmission electron microscopy. Reviews in mineralogy, vol 27, pp 1–36

    Google Scholar 

  • Cairns-Smith AG (1985) The first organisms. Sci Am 252:90–100

    Article  Google Scholar 

  • Chipera SJ, Carey JW, Bish DL (1997) Controlled-humidity XRD analyses: application to the study of smectite expansion/contraction. In: Gilfrich J et al (eds) Advances in X-ray analysis, vol 39. Plenum, New York, pp 713–722

    Chapter  Google Scholar 

  • Cole DR, Chialvoa AA, Rothera G, Vlcekbc L, Cummings PT (2010) Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations. Phil Mag 90:2339–2363

    Article  ADS  Google Scholar 

  • Collins DR, Fitch AN, Catlow CRA (1992) Dehydration of vermiculites and montmorillonites: a time-resolved powder neutron diffraction study. J Mater Chem 2(8):865–873

    Article  Google Scholar 

  • Couture RA (1985) Steam rapidly reduced the swelling capacity of bentonite. Nature 318:50–52

    Article  ADS  Google Scholar 

  • Dickin (2005) Radiogenic isotope geology, 2nd edn. Cambridge University Press, Cambridge, p 472

    Google Scholar 

  • Dickin AP (2008) Radiogenic isotope geology, 2nd edn. Cambridge University Press, Cambridge, p 510

    Google Scholar 

  • Eberl DD, Drits VA, Srodon J (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. Am J Sci 298:499–533

    Article  Google Scholar 

  • Eitel W, Radczewski OE (1940) On recognition of montmorillonite clay minerals in supennicroscope pictures. Naturwissenschaften 28:397–398

    Article  ADS  Google Scholar 

  • Farges F, Sharpsa JA, Brown GE (1993) Local environment around gold (III) in aqueous chloride solutions: an EXAFS spectroscopy study. Geochim Cosmochim Acta 57:1243–1252

    Article  ADS  Google Scholar 

  • Ferrage E, Lanson B, Sakharov BA, Drits VA (2005) Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties. Am Min 90:1358–1374

    Article  Google Scholar 

  • Grathoff DH, Moore DM (1996) Illite polytype quantification using WILDFIRE calculated X-ray diffraction patterns. Clay Clay Miner 44: 835–842

    Article  Google Scholar 

  • Grathoff DH, Moore DM, Hay RL, Wemmer K (2001) Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations. GSA Bull 113:1092–1104

    Article  Google Scholar 

  • Hanchar JM, Nagy KL, Fenter P, Finch RJ, Beno DJ, Sturchio NC (2000) Quantification of minor phases in growth kinetics experiments with powder X-ray diffraction. Am Miner 85:1217–1222

    Google Scholar 

  • Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652

    Article  ADS  Google Scholar 

  • Herbert HJ, Kasbohm J, Moog HC, Henning KH (2004) Long-term behaviour of the Wyoming bentonite MX-80 in high saline solutions. Appl Clay Sci 26:275–291

    Article  Google Scholar 

  • Hofmann H, Bauer A, Warr LN (2004) Behaviour of smectite in strong salt brines under conditions relevant to the disposal of low- to medium-grade nuclear waste. Clay Clay Miner 52:14–24

    Article  Google Scholar 

  • Jasmund K, Lagaly G (1993) Tonminerale und Tone – Struktur. Anwendungen und Einsatz in Industrie und Umwelt. Steinkopff-Verlag Darmstadt, Eigenschaften

    Google Scholar 

  • Kaufhold S, Dohrmann R (2010) Effect of extensive drying on the cation exchange capacity of bentonites. Clay Miner 45:441–448

    Article  Google Scholar 

  • Kaszuba JP, Janecky DR, Snow MG (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem Geol 217:277–293

    Article  Google Scholar 

  • Kühnel RA, van der Gaast SJ (1993) Humidity controlled diffractometry and its applications. Adv X Ray Anal 36:439–449

    Article  Google Scholar 

  • Laird DA, Shang C, Thompson ML (1995) Hysteresis in crystalline swelling of smectities. J Colloid Interface Sci 171:240–243

    Article  Google Scholar 

  • Langford RM (2006) Focused ion beams techniques for nanomaterials characterization. Microsc Res Tech 69:538–549

    Article  Google Scholar 

  • Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick J (eds) Kinetics of geochemical processes, vol 8. Mineralogical Society of America, Blacksburg, pp 1–67

    Google Scholar 

  • Lee JH, Peacor DR (1983) Intralayer transitions in phyllosilicates of the Martinsburg shale. Nature 303:608–609

    Article  ADS  Google Scholar 

  • Mee SJ, Hart JR, Singh M, Rowson NA, Greenword RW, Allen GC, Heard PJ, Skuse DR (2008) The use of focused ion beam for the characterisation of industrial mineral microparticles. Appl Clay Sci 39:72–77

    Article  Google Scholar 

  • Montes GH (2005) Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analyses. J Colloid Interface Sci 284: 271–277

    Article  Google Scholar 

  • Mooney RW, Keenan AG, Wood LA (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. J Am Chem Soc 74(6):1371–1374

    Article  ADS  Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York, p 378

    Google Scholar 

  • Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interstratified clays as fundamental particles. Science 225:923–925

    Article  ADS  Google Scholar 

  • Nagy KL (1995) Dissolution and precipitation kinetics of sheet silicates. In: Chemical weathering rates of silicate minerals. Reviews in mineralogy, vol 31. Mineralogical Society of America, Washington, DC, 173, pp 173–225

    Google Scholar 

  • Obst M, Gasser P, Marrocordatos D, Dittrich M (2005) TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am Miner 90:1270–1277

    Article  Google Scholar 

  • Page R, Wenk HR (1979) Phyllosilicate alteration of plagioclase studied by transmission electron microscopy. Geology 7:393–397

    Article  ADS  Google Scholar 

  • Perdrial JN, Warr LN, Perdrial N, Lett MC, Elsass F (2009) Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste. Chem Geol 264:281–294

    Article  Google Scholar 

  • Plancon I, Drits VA (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clay Clay Miner 48(1):57–62

    Article  Google Scholar 

  • Pusch R (1992) Use of bentonite for isolation of radioactive waste products. Clay Miner 27: 353–361

    Article  Google Scholar 

  • Pusch R (2004) Mechanical properties of clays and clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Elsevier, Amestrdam, pp 247–260

    Google Scholar 

  • Reynolds RCJ (1985) NEWMOD a computer program for the calculation of one-dimensionalX-Ray diffraction patterns of mixed-layered clays. Reynolds RCJr, 8 Brook Dr., Hanover, New Hampshire

    Google Scholar 

  • Segl M, Mangini A, Bonani G, Hofmann HJ, Nessi M, Suter M, Wölfli W, Friedrich G, Plüger WL, Wiechowski A, Beer J (1984) 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature 309:54–543

    Article  Google Scholar 

  • Timur A, Toksoz MN (1985) Downhole geophysical logging. Annu Rev Earth Pl Sci 13:315–344

    Article  ADS  Google Scholar 

  • Wagner GA (1968) Fission-track dating. Earth Planet Sc Lett 4:411–415

    Article  ADS  Google Scholar 

  • Warr LN, Berger J (2004) Hydration of bentonite in natural waters: application of “confined volume” wet-cell X-ray diffractometry. Phys Chem Earth 32:247–258

    Google Scholar 

  • Warr LN, Hofmann H (2003) In situ monitoring of powder reactions in percolating solution by wet-cell X-ray diffraction techniques. J Appl Crystallogr 36:948–949

    Article  Google Scholar 

  • Warr LN, Rice AHN (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorph Geol 12:141–152

    Article  Google Scholar 

  • Yuan H, Bish DL (2010) NEWMOD +, a new version of the NEWMOD program for interpreting X-ray powder diffraction patterns from interstratified clay minerals. Clay Clay Miner 58: 318–326

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the “Deutsche Forschungsgemeinschaft” for their financial support in the form of large equipment grants.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Warr, L.N., Grathoff, G.H. (2012). Geoscientific Applications of Particle Detection and Imaging Techniques withSpecial Focus on the Monitoring Clay Mineral Reactions. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_27

Download citation

Publish with us

Policies and ethics