Skip to main content

Abstract

The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented – water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi R et al (2010) Search for muon neutrinos from gamma-ray bursts with the icecube neutrino telescope. Astrophys J 710:346

    Article  ADS  Google Scholar 

  • Abbasi R et al (2011) Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with icecube. Phys Rev D 83: 012001

    Article  ADS  MathSciNet  Google Scholar 

  • Ackermann M et al (2004) Search for neutrino-induced cascades with AMANDA. Astropart Phys 22:127

    Article  ADS  Google Scholar 

  • Acquafredda R et al (2009) The OPERA experiment in the CERN to gran sasso neutrino beam. JINST 4, P04018

    Article  ADS  Google Scholar 

  • Adamson P et al (2010) Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector. Phys Rev D 81:072002

    Article  ADS  Google Scholar 

  • Agafonova N et al (2010) Observation of a first ντ candidate event in the OPERA experiment in the CNGS beam. Phys Lett B 691:138

    Article  ADS  Google Scholar 

  • Aguilar-Arevalo AA et al (2010) Event excess in the MiniBooNE search for \(\bar{\nu }\mu \rightarrow \bar{ \nu }e\) oscillations. Phys Rev Lett 105:181801

    Article  ADS  Google Scholar 

  • Aharmim B et al (2005) Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the sudbury neutrino observatory. Phys Rev C 72:055502

    Article  ADS  Google Scholar 

  • Aharmim B et al (2010) Low-energy-threshold analysis of the Phase I and Phase II data sets of the sudbury neutrino observatory. Phys Rev C 81:055504

    Article  ADS  Google Scholar 

  • Ahn MH et al (2006) Measurement of neutrino oscillation by the K2K experiment. Phys Rev D 74:072003

    Article  ADS  Google Scholar 

  • Altmann M et al (2001) Solar nutrinos. Rep Prog Phys 64:97

    Article  ADS  Google Scholar 

  • Altmann M et al (2005) Complete results for five years of GNO solar neutrino observations. Phys Lett B 616:174

    Article  ADS  Google Scholar 

  • Ankowski A et al (2010) Energy reconstruction of electromagnetic showers from decays with the ICARUS T600 liquid argon TPC. Acta Phys Pol B41:103

    Google Scholar 

  • Anselmann P et al (1992) Solar neutrinos observed by GALLEX at gran sasso. Phys Lett B 285:376

    Article  ADS  Google Scholar 

  • Anselmann P et al (1995) GALLEX solar neutrino observations: Complete results for GALLEX II. Phys Lett B 357:237

    Article  ADS  Google Scholar 

  • Araki T et al (2005a) Experimental investigation of geologically produced electron antineutrinos with KamLAND. Nature 436:499

    Article  ADS  Google Scholar 

  • Araki T et al (2005b) Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys Rev Lett 94:081801

    Article  ADS  Google Scholar 

  • Arpesella C et al (2008b) Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data. Phys Rev Lett 101:091302

    Article  ADS  Google Scholar 

  • Autiero L et al (2007) Large undergroung liquid based detectors for astro-particle physics in Europe: Scientific case and prospects. JCAP 0711:011

    ADS  Google Scholar 

  • Back H et al (2006) CNO and pep neutrino spectroscopy in borexino: measurement of the deep-underground production of cosmogenic 11C in an organic liquid scintillator. Phys Rev C 74:045805

    Article  ADS  Google Scholar 

  • Back H et al (2008a) First real time detection of 7Be solar neutrinos by borexino. Phys Lett B 658:101

    Article  ADS  Google Scholar 

  • Bahcall J et al (1998) Where do we stand with solar neutrino oscillations? Phys Rev D 58:096016

    Article  ADS  Google Scholar 

  • Bahcall JN (2003) Solar models: An historical overview. Nucl Phys B (Proc Suppl) 118:77

    Google Scholar 

  • Bahcall JN et al (2005) New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys J 621:L85

    Article  ADS  Google Scholar 

  • Bahcall JN, Davis R Jr (1976) Solar neutrinos: a scientific puzzle. Science 191:264

    Article  ADS  Google Scholar 

  • Bahcall JN, Pinsonneault MH (1995) Solar models with helium and heavy-element diffusion. Rev Mod Phys 67:781

    Article  ADS  Google Scholar 

  • Bellini G et al (2010a) Observation of geo-neutrinos. Phys Lett B 687:299

    Article  ADS  Google Scholar 

  • Bellini G et al (2010b) Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys Rev D 82:033006

    Article  ADS  Google Scholar 

  • Berezinsky V et al (2000) Vacuum oscillations and excess of high energy solar neutrino events observed in superkamiokande. Astropart Phys 12:299

    Article  ADS  Google Scholar 

  • Beuthe M (2003) Oscillations of neutrinos and mesons in quantum field theory. Phys Rep 375:105

    Article  ADS  MathSciNet  Google Scholar 

  • Bilenky SM, Pontecorvo B (1978) Lepton mixing and neutrino oscillations. Phys Rep 41:225

    Article  ADS  Google Scholar 

  • Bionta RM et al (1987) Observation of a neutrino burst in coincidence with supernova 1987A in the large magellanic cloud. Phys Rev Lett B 58:1494

    Article  ADS  Google Scholar 

  • Cleveland BT et al (1995) Update on the measurement of the solar neutrino flux with the homestake chlorine detector. Nucl Phys B (Proc Suppl) 38:47

    Google Scholar 

  • Cowan CL et al (1956) Detection of the free neutrino: a confirmation. Science 124:103

    Article  ADS  Google Scholar 

  • Davis R (1994) A review of the homestake solar neutrino experiment. Part Nucl Phys 32:13

    Article  ADS  Google Scholar 

  • Davis R (1996) A review of measurements of the solar neutrino flux and their variation. Nucl Phys B (Proc Suppl) 48:284

    Google Scholar 

  • Davis R Jr (1964) Solar neutrinos. II. Experimental. Phys Rev Lett 12:303

    Article  ADS  Google Scholar 

  • de Bellefon A et al MEMPHYS:A large scale water cerenkov detector at Fréjus. hep-ex/0607026

    Google Scholar 

  • Eisele F (1986) High energy neutrino interactions. Rep Prog Phys 49:233

    Article  ADS  Google Scholar 

  • Fermi E A (1934) An attempt of a theory of beta radiation. Z Phys 88:161

    Article  MATH  ADS  Google Scholar 

  • Fiorentini G et al (2007) Geo-neutrinos and earth’s interior. Phys Rept 453:117

    Article  ADS  Google Scholar 

  • Fukuda Y et al (1999) Constraints on neutrino oscillation parameters from the measurement of day-night solar neutrino fluxes at super-kamiokande. Phys Rev Lett 82:1810

    Article  ADS  Google Scholar 

  • Fukuda Y et al (2002) Determination of solar neutrino oscillation parameters using 1496 days of super-kamiokande-I data. Lett B 539:179

    ADS  Google Scholar 

  • Gavrin VN et al (2003) Measurement of the solar neutrino capture rate in sage. Nucl Phys B (Proc Suppl) 118:39

    Google Scholar 

  • Gribov VN, Pontecorvo B (1969) Neutrino astronomy and lepton charge. Phys Lett B 28:493

    Article  ADS  Google Scholar 

  • Hall LJ (1999) Phys Lett B463:241

    ADS  Google Scholar 

  • Hampel W et al (1996) GALLEX solar neutrino observations: results for GALLEX III. Phys Lett B 388:384

    Article  ADS  Google Scholar 

  • Hampel W et al (1999) GALLEX solar neutrino observations: results for GALLEX IV. Phys Lett B 477:127

    ADS  Google Scholar 

  • Heusser G (1995) Low radioactivity background techniques. Annu Rev Nucl Part Sci 45:543

    Article  ADS  Google Scholar 

  • Hill J (1995) An alternative analysis of the LSND neutrino oscillation search data on \(\bar{\nu }\mu \rightarrow \bar{ \nu }e\). Phys Rev Lett 75:2654

    Article  ADS  Google Scholar 

  • Hirata K et al (1987) Observation of a neutrino burst from the supernova SN1987A. Phys Rev Lett 58:1490

    Article  ADS  Google Scholar 

  • Kirsten T (1999) Solar neutrino experiments: results and implications. Rev Mod Phys 71:1213

    Article  ADS  Google Scholar 

  • Kodama K et al (2001) Observation of tau neutrino interactions. Phys Lett B 504:218

    Article  ADS  Google Scholar 

  • Koshiba M (1992) Observational neutrino astrophysics. Phys Rep 220:229

    Article  ADS  Google Scholar 

  • MiniBoone collab. (2010) Event excess in the MiniBooNE search for \(\bar{\nu }\mu \rightarrow \bar{ \nu }e\) oscillations. arXiv:1007.1150v2

    Google Scholar 

  • MINOS collab. (2010) Phys Rev Lett 105:151601

    Google Scholar 

  • Nakahata M (2005) Super-Kamiokande’s solar neutrino results. Nucl Phys B (Proc Suppl) 143:13

    Google Scholar 

  • Naumov DV, Naumov VA (2010) A diagrammatic treatment of neutrino oscillations. J Phys G: Nucl Part Phys 37:105014

    Article  ADS  Google Scholar 

  • Niu K et al (1971) A possible decay in flight of a new type particle. Prog Theor Phys 46:1644

    Article  ADS  Google Scholar 

  • OPERA collab. (2010) Observation of a first ντ candidate in the OPERA experiment in the CNGS beam. Phys Lett B691:138

    Google Scholar 

  • Pandola L et al (2004) Neural network pulse shape analysis for proportional counters events. Nucl Instr Meth A 522:521

    Article  ADS  Google Scholar 

  • Peltoniemi J (2009) Liquid scintillator as tracking detector for high-energy events. arXiv: 0909.4974

    Google Scholar 

  • Pontecorvo B (1968) Neutrino experiments and the problem of conservation of leptonic charge. Sov Phys JETP 26:984

    ADS  Google Scholar 

  • Presani E (2009) Antares completed: First selected results. Nucl Phys B (Proc Suppl) 188:270

    Google Scholar 

  • Reines F (1979) The early days of experimental neutrino physics. Science 203:11

    Article  ADS  Google Scholar 

  • Reines F, Cowan CL (1956) The neutrino. Nature 178:446

    Article  ADS  Google Scholar 

  • Reines F, Cowan CL Jr (1953a) A proposed experiment to detect the free neutrino. Phys Rev 92:492

    Article  ADS  Google Scholar 

  • Reines F, Cowan CL Jr (1953b) Detection of the free neutrino. Phys Rev 92:830

    Article  ADS  Google Scholar 

  • Requejo OM et al (2005) Super-NOVA: A long-baseline neutrino experiment with two off-axis detectors. Phys Rev D72:053002

    Article  ADS  Google Scholar 

  • T2K collab. (2009) The T2K experiment at J-parc. arXiv:0910.4211

    Google Scholar 

  • Turck-Chièze S (2001) Solar neutrino emission deduced from a seismic model. Astro J 555:69

    Article  ADS  Google Scholar 

  • Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369

    Article  ADS  Google Scholar 

  • Wurm M et al (2010) The physics potential of the LENA detector. Acta Phys Pol B41:1749

    Google Scholar 

  • www.km3net.org

  • Zacek G et al (1986) Neutrino-oscillation experiments at the Gösgen nuclear power reactor. Phys Rev D 34:9

    Article  Google Scholar 

  • Zacek G (1986) Ph.D. thesis, Technische Universität München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

von Feilitzsch, F., Lanfranchi, JC., Wurm, M. (2012). Neutrino Detectors. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_14

Download citation

Publish with us

Policies and ethics