Skip to main content

Failure Strength Tests

  • Reference work entry
Handbook of Adhesion Technology

Abstract

Failure strength tests are used for quality control, for adhesive properties development, and for design purposes. Typically, manufacturers provide the average single lap joint (SLJ) shear strength and the peel strength. However, these are not intrinsic adhesive properties and are of limited use for design purposes. The prediction of the joint strength based on stress or strain limit criteria needs the adhesive stress–strain curve. In this chapter, the most important tests for the determination of the adhesive mechanical properties are described. Tests for the three basic loading modes – tension, compression, and shear – are discussed, indicating for each case the advantages and disadvantages. Reference is made to the corresponding standards according to the major standards-setting organizations such as the American Society for Testing and Materials (ASTM) and the International Standards Organization (ISO). Within each category (compression, tension, and shear), tests on bulk specimens and those on joints are compared. Recommendations to select the most suitable test are given, and it is shown that a reasonable relationship exists between adhesive properties measured in compression, tension, and shear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DF, Walrath DE (1987) Current status of the Iosipescu shear test method. J Comp Mater 21:494

    Article  Google Scholar 

  • Adams RD (1990) Failure strength tests and their limitations. In: Dostal CA (ed) Engineered materials handbook, vol 3: Adhesives and sealants. American Society for Materials, Metals Park, pp 325–335

    Google Scholar 

  • Adams RD, Coppendale J (1977) The elastic moduli of structural adhesives. In: Allen KW (ed) Adhesion 1. Applied Science, London, pp 1–17

    Google Scholar 

  • Adams RD, Coppendale J (1979) The stress–strain behaviour of axially-loaded butt joints. J Adhesion 10:49

    Article  Google Scholar 

  • Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal 9:185

    Article  Google Scholar 

  • Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Althof W, Neumann G (1974) Verfahren zur ermittlung von schubspannungs–gleitungs–diagrammen von konstruktionsklebstoffen. Materialprüf 16(12):387

    Google Scholar 

  • Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane stress states with applications to fiber reinforced materials. Exp Mech 18:141

    Article  Google Scholar 

  • Banea MD, da Silva LFM (2009) Mechanical characterization of flexible adhesives. J Adhesion 85:261

    Article  Google Scholar 

  • Chen Z, Adams RD, da Silva LFM (2011) Fracture toughness of bulk adhesives in mode I and mode III and curing effect. Int J Fracture 167(2):221

    Article  Google Scholar 

  • Cognard JY, Davies P, Gineste B, Sohier L (2005) Development of an improved adhesive test method for composite assembly design. Compos Sci Technol 65:359

    Article  Google Scholar 

  • Cognard JY, Créac’hcadec R, Sohier L, Davies P (2008) Analysis of the nonlinear behavior of adhesives in bonded assemblies – comparison of TAST and Arcan tests. Int J Adhes Adhes 28:393

    Article  Google Scholar 

  • Cognard JY, Créac’hcadec R, Maurice J, Davies P, Peleau M, da Silva LFM (2010) Analysi. J Adhes Sci Technol, doi:10.1163/016942410X507696

    Google Scholar 

  • da Silva LFM, Adams RD (2005) Measurement of the mechanical properties of structural adhesives in tension and shear over a wide range of temperatures. J Adhes Sci Technol 19:109

    Article  Google Scholar 

  • da Silva LFM, Adams RD, Gibbs M (2004) Manufacture of adhesive joints and bulk specimens with high temperature adhesives. Int J Adhes Adhes 24(1):69

    Article  Google Scholar 

  • da Silva LFM, Rodrigues TNSS, Figueiredo MAV, de Moura MFSF, Chousal JAG (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82:1091

    Article  Google Scholar 

  • da Silva LFM, da Silva RAM, Chousal JAG, Pinto AMG (2008) Alternative methods to measure the adhesive shear displacement in the Thick Adherend Shear Test. J Adhes Sci Technol 22:15

    Google Scholar 

  • Dean GD, Duncan BC, Adams RD, Thomas R, Vaughn L (1996) Comparison of bulk and joint specimen tests for determining the shear properties of adhesives. NPL Report CMMT(B)51, National Physical Laboratory, Teddington

    Google Scholar 

  • Dolev G, Ishai O (1981) Mechanical characterization of adhesive layer in-situ and as bulk material. J Adhes 12:283

    Article  Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157

    MathSciNet  MATH  Google Scholar 

  • El-Hajjar R, Haj-Ali R (2004) In-plane shear testing of thick-section pultruded FRP composites using a modified Arcan fixture. Composites Part B 35:421

    Article  Google Scholar 

  • Gali S, Dolev G, Ishai O (1981) An effective stress/strain concept in the mechanical characterization of structural adhesive bonding. Int J Adhes Adhes 1:135

    Article  Google Scholar 

  • Grabovac I, Morris CEM (1991) The application of the Iosipescu shear test to structural adhesives. J Appl Polym Sci 33:2033

    Article  Google Scholar 

  • Grant LDR, Adams RD, da Silva LFM (2009) Experimental and numerical analysis of single lap joints for the automotive industry. Int J Adhes Adhes 29:405

    Article  Google Scholar 

  • Hart-Smith LJ (1973) Adhesive bonded double lap joints. NASA CR-112235

    Google Scholar 

  • Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2:537

    Google Scholar 

  • Jeandrau JP (1991) Analysis and design data for adhesively bonded joints. Int J Adhes Adhes 11:71

    Article  Google Scholar 

  • Jeandreau JP (1993) Technologie du collage structural pour les applications en mécanique. ISBN 2-85400-255-5, Centre Technique des Industries Mécaniques (CETIM). Senlis, France

    Google Scholar 

  • Krieger RB (1988) Stress analyses concepts for adhesive bonding of aircraft primary structure. In: Johnson WS (ed) Adhesive bonded joints; testing, analysis and design. American Society for Testing and Materials, Philadelphia, pp 264–275

    Chapter  Google Scholar 

  • Kuenzi EW, Stevens OH (1963) Determination of mechanical properties of adhesives for use in design of bonded joints. US Forest Products Service Research Note FPL-011. US Department of Agriculture, Madison

    Google Scholar 

  • Lilleheden L (1994) Mechanical properties of adhesives in situ and in bulk. Int J Adhes Adhes 14:31

    Article  Google Scholar 

  • Martínez MA, Velasco F, Abenojar J, Pantoja M, Del Real JC (2008) Analytical solution to calculate the stress distribution in pin-and-collar samples bonded with anaerobic adhesives (following ISO 10123 standard). Int J Adhes Adhes 28:405

    Article  Google Scholar 

  • Nadai A (1931) Plasticity: a mechanics of the plastic state of matter. McGraw-Hill, New York

    MATH  Google Scholar 

  • Nemeş O, Lachaud F, Mojtabi A (2006) Contribution to the study of cylindrical adhesive joining. Int J Adhes Adhes 26(6):474

    Article  Google Scholar 

  • Pinto AMG, Magalhães AG, Campilho RDSG, da Silva LFM, Chousal JAG, Baptista APM (2010) Shear modulus and strength of an acrylic adhesive with the notched plate method (Arcan) and the thick adherend shear test (TAST). Mater Sci Forum 636–637:787

    Article  Google Scholar 

  • Raghava RS, Cadell R, Yeh GSY (1973) The macroscopic yield behaviour of polymers. J Mater Sci 8:225

    Article  Google Scholar 

  • Vaughn LF (1998) Measurement of basic mechanical properties of adhesives for design use. PhD thesis, Department of Mechanical Engineering, University of Bristol, UK

    Google Scholar 

  • Volkersen O (1938) Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten. Luftfahrtforschung 15:41

    Google Scholar 

  • Voloshin A, Arcan M (1980) Pure shear moduli of unidirectional Fiber-Reinforced Materials (FRM). Fibre Sci Technol 13:125

    Article  Google Scholar 

  • Weissberg V, Arcan M (1988) A uniform pure shear testing specimen for adhesive characterisation. In: Johnson WS (ed) Adhesively bonded joints: testing, analysis and design, ASTM STP 981. American Society for Testing and Materials, Philadelphia, pp 28–38

    Chapter  Google Scholar 

  • Wycherley GW, Mestan SA, Grabovac I (1990) A method for uniform shear stress–strain analysis of adhesives. J Test Eval 18:203

    Article  Google Scholar 

  • Young RJ, Lovell PA (1991) Introduction to polymers, 2nd edn. Chapman & Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas F. M. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

da Silva, L.F.M. (2011). Failure Strength Tests. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds) Handbook of Adhesion Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_19

Download citation

Publish with us

Policies and ethics